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olymer composites using 1D higher-order theories
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UL2 Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
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A B S T R A C T

This work investigates the effect of voids within the matrix of composite materials. Effects on local stress and
plastic strain values are evaluated by conducting a micromechanical analysis. The microscale Representative
Volume Element (RVE) is modeled through refined 1D elements based on the Carrera Unified Formulation
(CUF). Using 1D models for the RVE leads to a significant reduction in computational costs compared to
standard 3D elements. Fibers are modeled as orthotropic, and the matrix has an elastoplastic behavior. Random
distributions of voids are considered, and statistical analyses are carried out. Furthermore, the influence of the
depth of the RVE is investigated. The results show significant mean and peak stress values increases as the
void volume fraction grows. Also, the use of deeper RVE leads to higher stress values.
. Introduction

Nowadays, fiber-reinforced composites are widely used in vari-
us engineering applications. Their advantages stem from the high
pecific strength and stiffness. However, the multiscale nature of com-
osites requires the development of accurate models for analyzing their
echanical behavior (Aboudi et al., 2012) and achieving a level of

ccuracy comparable to that of isotropic materials. Another potentially
ritical aspect to consider is the generation of defects during manu-
acturing, e.g., dispersed air gaps – voids – in the matrix or the fiber
isalignment. Such defects can alter the microstructure of composites,

ffect elastic properties, and trigger failure onset (Hinton et al., 2004).
e et al. (2020) quantified voids within the composite while other
orks focused on countermeasures during manufacturing (Potter et al.,
008; Saenz-Castillo et al., 2019; Zhang et al., 2022). Moreover, several
xperimental works studied how the mechanical performance of fiber-
einforced polymers decays due to defects (Blok et al., 2018; Hsu,
988; Justo et al., 2018; Stone and Clarke, 1975). Voids are most often
onsidered among all defects due to their impact on various proper-
ies (Mehdikhani et al., 2019). The presence and shape of voids are
ritical in evaluating the homogenized properties of porous materials,
s noted in Masmoudi et al. (2017) and Khdir et al. (2014). Addition-
lly, voids can significantly modify the dimensions and configuration
f the stress field within the material (Touliatou and Wheel, 2019).
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The numerical modeling of defects aims to understand better the
performance degradation of composites (Talreja, 2015). Numerical
methods to estimate material properties usually involve analysis of a
Representative Volume Element (RVE) (Sun and Vaidya, 1996). The
RVE is considered the smallest representative volume and corresponds
to a periodic fiber packing sequence (Li and Sitnikova, 2019; Gitman
et al., 2007; Gitman, 2006). Micromechanics is used to evaluate the
behavior of multiphase materials (Aboudi et al., 2012; Aboudi, 2004;
Nemat-Nasser and Hori, 1999), and various approaches are avail-
able for obtaining homogenized properties, and local stress and strain
fields (Aboudi et al., 2001). Among the others, the method of cells
has proven to be very versatile and reliable (Aboudi, 1981) and was
later extended (Aboudi, 2004, 1989; Paley and Aboudi, 1992). The
Generalised Method of Cells (GMC) was used by Dai et al. (2022) to
simulate the effect of residual thermal stress and weak interphases on
micro-cracking and later progressive failure of B4C-TiB2 composites.
In some recent works, the High-Fidelity Generalised Method of Cells
(HFGMC) replaced the GMC as a new generalized method (Aboudi,
2004; Bednarcyk et al., 2010; Pineda, 2012; Pineda et al., 2013). Recent
investigations (Huang, 2023b,a) examined the effect of reinforcement-
induced stress concentration on homogenized stress in the matrix by
incorporating a stress concentration factor (SCF).
vailable online 20 July 2023
167-6636/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

ttps://doi.org/10.1016/j.mechmat.2023.104747
eceived 28 February 2023; Received in revised form 24 June 2023; Accepted 11 J
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

uly 2023

https://www.elsevier.com/locate/mecmat
http://www.elsevier.com/locate/mecmat
mailto:marco.petrolo@polito.it
mailto:alfonso.pagani@polito.it
mailto:mattia.trombini@polito.it
mailto:erasmo.carrera@polito.it
https://doi.org/10.1016/j.mechmat.2023.104747
https://doi.org/10.1016/j.mechmat.2023.104747
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2023.104747&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mechanics of Materials 184 (2023) 104747M. Petrolo et al.
The Finite Element Method (FEM) is another approach for mi-
cromechanics. In the work of Dong and Huo (2016), FEM was used to
model voids and dry patches via a two-scale RVE model with periodic
boundary conditions to evaluate elastic constants and micro stress of 3D
braided composites. Huang and Gong (2018) discussed the influence of
voids in fiber tows and woven composites. They used multiscale FEM
and found that the reduction of elastic properties in woven composites
is less sensitive to the voids in the matrix than those in fiber tows.
Jiang et al. (2019) showed that voids have little influence on the lon-
gitudinal stress–strain response, while a more pronounced decrease of
in-plane and out-of-plane shear strength with increasing voids content
is obtained. In Pineda et al. (2022), the prediction of the difference in
strength between a baseline model of a woven composite containing
0.4% of voids and a representative model with ten times increase in
void content was obtained using the NASA Multiscale Analysis Tool
(NASMAT). A ∼10%–11% variation between the two models in the
ultimate stress was found. The effect of interfiber and circular voids
on the strength of composite under transverse tension and compression
was discussed in Ashouri Vajari et al. (2014), while Zhang et al. (2021)
investigated the irregular stress and damage evolution contours that
occur due to the random arrangement of the fibers and the voids in
the matrix. In the work of Carrera et al. (2020), the effect of matrix
voids on homogenized properties was studied. Moreover, dehomoge-
nization allowed for obtaining local stress fields using both random
and clustered distributions of voids. Nagaraj et al. (2021) introduced
the material nonlinearity by involving an elastoplastic matrix behavior
and studied how voids affect von Mises stress (VM) and the equivalent
plastic strain (PEEQ) of composites.

To improve accuracy, 3D FEM is used for RVE; however, such
a strategy may lead to unaffordable computational costs in many
cases, e.g., multiscale and nonlinear analyses. An alternative approach
to tackling such a problem was proposed by Carrera et al. (2014),
Kaleel et al. (2017, 2018b) and based on the use of 1D higher-order
structural theories obtained via the Carrera Unified Formulation (CUF).
The present article adopts such a framework to reduce computational
costs while maintaining 3D accuracy in stress and strain. Following this
approach, shape functions act along the RVE axis, and the expansion
functions enhance the cross-section kinematics. Past works proved that
1D CUF could be used to tackle various problems, including progressive
failure analysis (Pagani et al., 2022) and composite stress analysis.

This work aims to extend the findings from Carrera et al. (2020),
including the effect of matrix nonlinearity, as previously done by
Nagaraj et al. (2021), where a single random distribution of voids is
used for each strain applied. The present paper involves micromechan-
ical dehomogenization, followed by a statistical analysis performed
on multiple void distributions. The purpose is to collect statistical
parameters and identify critical load conditions for the RVE, leading
to stress peaks. Furthermore, the present work investigates the impact
of the RVE thickness on the micromechanical nonlinear response. This
paper is organized as follows: Section 2 presents the CUF approach;
Section 3 describes the micromechanics model; Section 4 provides a
brief overview of the statistical analysis and corresponding parameters;
in Section 5 numerical results are shown and discussed; and in Section 6
conclusions are drawn.

2. CUF and finite element formulation

Considering the reference frame shown in Fig. 1, the three displace-
ment components are

𝒖 (𝑥, 𝑦, 𝑧) =
{

𝑢𝑥 𝑢𝑦 𝑢𝑧
}𝑇 (1)

CUF is employed to generate structural theories and related equa-
tions. In the 1D case, the displacement field becomes

𝒖 𝑥, 𝑦, 𝑧 = 𝐹 𝑥, 𝑧 𝒖 𝑦 , 𝜏 = 1, 2,… ,𝑀 (2)
2

( ) 𝜏 ( ) 𝜏 ( )
Fig. 1. Reference frame.

F𝜏 is the expansion function and 𝒖𝜏 is the vector of generalized displace-
ments. Moreover, M is the number of expansion terms. The expansion
exploits Lagrange polynomials in this work, resulting in a Component
Wise (CW) approach. A comprehensive explanation of Lagrange poly-
nomials for CUF can be found in Carrera and Petrolo (2012). The
current work utilizes 9-node bi-quadratic expansion elements (L9) to
discretize the unknown displacements over the cross-section, as shown
in Fig. 2. The iso-parametric formulation is used to model arbitrarily
shaped geometries. The L9 displacement field is given by

𝑢𝑥 = 𝐹1𝑢𝑥1 + 𝐹2𝑢𝑥2 + 𝐹3𝑢𝑥3 +⋯ + 𝐹9𝑢𝑥9
𝑢𝑦 = 𝐹1𝑢𝑦1 + 𝐹2𝑢𝑦2 + 𝐹3𝑢𝑦3 +⋯ + 𝐹9𝑢𝑦9
𝑢𝑧 = 𝐹1𝑢𝑧1 + 𝐹2𝑢𝑧2 + 𝐹3𝑢𝑧3 +⋯ + 𝐹9𝑢𝑧9

(3)

u𝑥1 , . . . , u𝑧9 are the displacement variables of the problem, and they
represent the translational displacement components of each point of
the L9 element.

The beam is discretized using the classical finite element approach
along 𝑦 using standard shape functions, i.e.,

𝒖 (𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑥, 𝑧)𝑁𝑖 (𝑦) 𝒖𝜏𝑖, 𝜏 = 1, 2,… ,𝑀, 𝑖 = 1, 2,… , 𝑝 + 1 (4)

N𝑖 is the shape function of order p, and 𝒖𝜏𝑖 is the vector of nodal
displacements. This paper used CUF to obtain 1D structural models,
with standard shape functions acting along one direction and expansion
functions over the cross-section. The three displacement components
are obtained as a combination of generalized displacement variables,
such variables are the nodal degrees of freedom of the problem. If, for
instance, an expansion with five terms is used, the number of nodal
degrees of freedom is fifteen. As mentioned in the book of Washizu
(1968), 1D or 2D models with infinite expansions provide 3D solutions.
A convergence analysis over the expansion terms can be carried out to
select the proper order. Also, the role of each term over the solution
can be studied via the axiomatic/asymptotic approach (Carrera and
Petrolo, 2010). In recent years, CUF has been applied to many classes
of composite structures, different loading conditions, and dynamic
and nonlinear regimes (Carrera et al., 2021). The stress and strain
components are

𝝈 =
{

𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑥𝑦 𝜎𝑥𝑧 𝜎𝑦𝑧
}𝑇

𝜺 =
{

𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝜀𝑥𝑦 𝜀𝑥𝑧 𝜀𝑦𝑧
}𝑇 (5)

The linear strain–displacement relation is used,

𝜺 = 𝐃𝒖 (6)

𝐃 is the linear differential operator, i.e.,

𝐃 = 𝐃𝛺 + 𝐃𝑦

𝐃𝛺 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝜕
𝜕𝑥 0 0
0 0 0
0 0 𝜕

𝜕𝑧
0 𝜕

𝜕𝑥 0
𝜕
𝜕𝑧 0 𝜕

𝜕𝑥
𝜕

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

𝐃𝑦 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0 0 0
0 𝜕

𝜕𝑦 0
0 0 0
𝜕
𝜕𝑦 0 0
0 0 0

𝜕

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(7)
⎣ 0 𝜕𝑧 0 ⎦ ⎣
0 0 𝜕𝑦 ⎦
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Fig. 2. L9 expansion in natural coordinates.
Fig. 3. Reference frame for micromechanics.

Fig. 4. Two different sets of void distribution over the section of the hex-packed RVE
- 5% of void volume fraction.

Fig. 5. Plasticity curve of the matrix.
3

Fig. 6. Hex-Pack 1D model using CUF.

Fig. 7. Axial (left) and shear (right) strains applied to the hex-packed RVE.

The constitutive law is, then, employed,

𝝈 = 𝐂ep𝜺 (8)

𝐂ep is the elastoplastic tangent matrix. This work considers material
nonlinearities due to von Mises plasticity, and a Newton–Raphson
scheme is used to solve the iterative process. Using the principle of
virtual work over strain energy and the work of external forces,

𝛿𝐿int = 𝛿𝐿ext (9)

Defining V as the volume of the body, the strain energy becomes

𝛿𝐿int = 𝛿𝒖𝑠𝑗𝒌𝜏𝑠𝑖𝑗𝒖𝜏𝑖 (10)

𝒌𝜏𝑠𝑖𝑗 is the Fundamental Nucleus (FN),

𝒌𝜏𝑠𝑖𝑗 = 𝐃𝑇 𝐂ep𝐃𝜏𝑗 𝑑𝑉 (11)
∫𝑉 𝑠𝑗
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Fig. 8. Distribution of voids over the section of the hex-packed RVE - 1% (a), 3% (b), and 5% (c).

Fig. 9. Boxplots of von Mises stress (a), maximum equivalent plastic strain (b), and maximum 𝜎𝑥𝑥 (c) over the matrix of hex-packed RVE when 𝜀𝑥𝑥 is applied.

Fig. 10. Distribution of 𝜎𝑥𝑥 (a) and von Mises stress (b) over the cross-section of hex-packed RVE with 5% of voids when 𝜀𝑥𝑥 is applied, MPa.
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Fig. 11. Boxplots of maximum 𝜎𝑥𝑥 (a), 𝜎𝑦𝑦 (b), and 𝜎𝑧𝑧 (c) over the fiber of hex-packed RVE when 𝜀𝑥𝑧 is applied.

Fig. 12. Boxplots of maximum 𝜎𝑥𝑥 (a), 𝜎𝑦𝑦 (b), and 𝜎𝑧𝑧 (c) over the matrix of hex-packed RVE when 𝜀𝑥𝑧 is applied.

Fig. 13. Distribution of 𝜎𝑥𝑧 over the cross-section of hex-packed RVE with 1% of voids (a), 3% of voids (b), and 5% of voids (c) when 𝜀𝑥𝑧 is applied, MPa.

Fig. 14. Void distributions over the RVE with randomly distributed fibers: 1% (a) and 5% (b), with a magnification of void dispersion.
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Fig. 15. Application of PBC on the random RVE on both the cross-section and the
nodes in the 𝑦-direction.

FN is a 3 × 3 matrix composed by

𝒌𝜏𝑠𝑖𝑗 =
⎡

⎢

⎢

⎢

⎣

𝑘𝑥𝑥𝜏𝑠𝑖𝑗 𝑘𝑥𝑦𝜏𝑠𝑖𝑗 𝑘𝑥𝑧𝜏𝑠𝑖𝑗
𝑘𝑦𝑥𝜏𝑠𝑖𝑗 𝑘𝑦𝑦𝜏𝑠𝑖𝑗 𝑘𝑦𝑧𝜏𝑠𝑖𝑗
𝑘𝑧𝑥𝜏𝑠𝑖𝑗 𝑘𝑧𝑦𝜏𝑠𝑖𝑗 𝑘𝑧𝑧𝜏𝑠𝑖𝑗

⎤

⎥

⎥

⎥

⎦

(12)

Similarly, the external force work can be obtained as follows:

𝛿𝐿ext = 𝛿𝒖𝑠𝑗𝒑𝑠𝑗 (13)

𝒑𝑠𝑗 is the external load vector. By iterating indices 𝜏, s, i, j, the global
stiffness matrix and global load vector are built. For the sake of brevity,
the explicit expression of FN are not reported here, but can be found
in Carrera et al. (2014).

3. Micromechanics framework

The reference frame adopted to describe the micromechanical
framework is shown in Fig. 3. This work involves different types of
representative volume elements, the beam model is used along x1,
while L9 defines the displacement fiend over the x2–x3 plane. Periodic
boundary conditions (PBC) are employed (Xia et al., 2003) as follows:

𝑢𝑗+𝑖 (𝑥, 𝑦, 𝑧) − 𝑢𝑗−𝑖 (𝑥, 𝑦, 𝑧) = �̄�𝑖𝑘𝛥𝑥
𝑗
𝑘

𝛥𝑥𝑗𝑘 = 𝑥𝑗+𝑘 − 𝑥𝑗−𝑘
(14)

j+ and j− indicate the positive and negative x𝑘-directions. �̄�𝑖𝑘 is the
applied macroscopic strain. The homogenized strain (�̄�𝑖𝑗) and stress
(�̄�𝑖𝑗) can be evaluated by volume averaging the microscopic strain (𝜀𝑖𝑗)
and stress (𝜎𝑖𝑗) (Sun and Vaidya, 1996),

�̄�𝑖𝑗 =
1
𝑉 ∫𝑉

𝜀𝑖𝑗 𝑑𝑉 (15)

�̄�𝑖𝑗 =
1
𝑉 ∫𝑉

𝜎𝑖𝑗 𝑑𝑉 (16)

By introducing the homogenized material matrix C̄𝑖𝑗𝑘𝑙, the constitutive
relation can be expressed as follows:

�̄�𝑖𝑗 = C̄𝑖𝑗𝑘𝑙 �̄�𝑖𝑗 (17)

More details concerning the CUF micromechanics framework can be
found in Kaleel et al. (2017).

Voids are modeled by randomly selecting a set of Gauss points
within the matrix domain and assigning them low elastic moduli, as
previously done in Carrera et al. (2020) and Nagaraj et al. (2021). The
computation of the FE matrices employs the Gauss–Legendre quadra-
ture, and the void sites’ Gauss points concur to the integrals with
modified elastic moduli. The random selection of matrix Gauss points
as void sites is carried out to reach a given void volume fraction is
reached. This process generates voids with a domain size equal to the
volume associated with the selected Gauss point, not the entire element,
and distinct sets of Gauss point combinations can provide the same
6

total void volume fraction. In the computation of the FE matrices,
Gauss points that are void sites are considered with modified elastic
properties. Fig. 4 presents an illustrative case of different Gauss point
selections with a void volume fraction of 5%.

4. Statistical analysis

The novelty proposed in this article involves the extension of the
effect of voids on composites that also exhibit a plastic behavior.
For each void volume fraction, 50 defect distributions were randomly
generated. The number of distributions was chosen as a reasonable
compromise between the computational cost of non-linear elastoplastic
analysis and the need for sufficient results to perform statistical analy-
sis (Carrera et al., 2020). The aim of this Section is the introduction
of statistical parameters used in this paper to investigate the effect
of random void distributions on the mechanical response of the RVE.
Absolute maximum and minimum of each mechanical quantity for each
distribution of results were considered. Furthermore, the mean value
and standard deviation (s) were considered,

𝑠 =

√

√

√

√
1

50 − 1

50
∑

𝑖=1

|

|

𝑥𝑖 − �̄�|
|

(18)

x𝑖 is a given mechanical quantity and �̄� is the mean value of each
distribution. Also, the analysis considered the first, second and third
quartiles. As well-known, the second quartile q2 is the median; the first
quartile q1 is the median of the bottom half and the third quartile q3 is
the median of the top half (Langford, 2006). For the sake of clarity, a
graphic representation of statistical parameters was used via boxplots
in which quartiles, the notch extremes and the outliers can be observed.
The notch extremes represent interval endpoints and they are computed
as follows:

𝑞𝐿 = 𝑞2 − 1.57
𝑞3 − 𝑞1
√

50
(19)

𝑞𝑈 = 𝑞2 + 1.57
𝑞3 − 𝑞1
√

50
(20)

q𝐿 is the lower endpoint, and q𝑈 the upper one. Values exceeding the
endpoints are the outliers,

𝑞 < 𝑞𝐿 & 𝑞 > 𝑞𝑈 (21)

5. Numerical results

Numerical results considered two RVE architectures, hex-packed
and randomly distributed fibers, and the influence of various param-
eters, such as the void volume fraction and the depth of the RVE.
Void volume fractions from 1 to 5% were considered. As a matter of
clarity, implementing a fiber-dispersed RVE does not contrast with the
conceptualization of periodicity. Real composite microstructures are
rarely structured; consequently, classical periodic unit cells (PUC) may
not provide precisely the microstructural parameters (Li et al., 2018). In
addition, microstructure conditions, such as the dimensions, geometry,
spatial distribution, and material properties, strongly influence the
interactions between the constituents and thus play a decisive role in
the performance of these composites at a multiscale level (Li et al.,
2018; Park et al., 2019). Therefore, a random packaging of fibers results
in more attractive detection of the local response of composites. In
addition, the material nonlinearity was considered for the matrix using
the J2 flow theory as detailed in Carrera et al. (2019). The flow theory,
referred to as the von Mises plasticity model, is based on the hypothesis
that an isotropic material yields when the J2 stress deviator reaches the
critical value. The following equation states an isotropic hardening case

𝑓 = 𝑞 𝝈 − 𝜎
(

�̄�
)

(22)
( ) 𝑦 𝑝
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Fig. 16. Boxplots of maximum 𝜎𝑥𝑥 over the fiber (a) and in matrix (b) of random RVE when 𝜀𝑥𝑥 is applied.

Fig. 17. Boxplots of maximum 𝜎𝑥𝑧 over the fiber (a) and matrix (b) of random RVE when 𝜀𝑥𝑧 is applied.

Fig. 18. Boxplots of maximum 𝜎𝑦𝑧 over the fiber (a) and matrix (b) of random RVE when 𝜀𝑦𝑧 is applied.

Fig. 19. Distribution of PEEQ over the cross-section of random RVE with 3% of voids when 𝜀𝑥𝑥 (a), 𝜀𝑥𝑧 (b), and 𝜀𝑦𝑧 (c) are applied.
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r

Fig. 20. Probability density function of VM in the random RVE with 3% of voids when 𝜀𝑥𝑥 (a), 𝜀𝑥𝑧 (b), and 𝜀𝑦𝑧 (c) are applied.
Fig. 21. Macroscopic stress–strain response (a) and comparison between nonlinear and linear curves with 5% of voids (b) for the random RVE when 𝜀𝑥𝑥 is applied.
Fig. 22. Comparison of the nonlinear homogenized stress–strain response for the
andom RVE with 5% of void under different load conditions.

Fig. 23. Effect of voids on normalized macroscopic response for the random RVE.
8

where 𝑓 is the von Mises locus, 𝜎𝑦 is the yield stress, �̄�𝑝 is the isotropic
hardening parameter and 𝑞 (𝝈) is the von Mises stress, composed by

𝑞 (𝝈) =
√

3𝐽2 =
√

1
2

[

(

𝜎𝑥𝑥 − 𝜎𝑦𝑦
)2 +

(

𝜎𝑦𝑦 − 𝜎𝑧𝑧
)2 +

(

𝜎𝑧𝑧 − 𝜎𝑥𝑥
)2 + 6

(

𝜎2
𝑥𝑦 + 𝜎2

𝑥𝑧 + 𝜎2
𝑦𝑧

)]

(23)

where 𝐽2 is the second invariant of the deviatoric stress. In the present
framework, a rate-independent isotropic hardening is employed. It is
included in the formulation by defining the yield stress as a function
of the accumulated plastic strain, as shown in Eq. (22). This corre-
sponds to a uniform expansion of the initial yield locus. The strain
hardening approach is also utilized in the current framework to address
the isotropic hardening behavior. The framework accommodates data
points that approximate the arbitrarily nonlinear hardening curve. A
linear interpolation is employed between data points to enable the
direct use of the experimental hardening curve within the simulation.
The constitutive model implemented within the CUF framework is
based on (Neto et al., 2008).

5.1. Statistical analysis on hex-packed RVE

The aim of this section is the statistical analysis of local stress
components through dehomogenization on a hex-packed RVE with 60%
of fiber volume fraction. The mechanical properties of fibers and matrix
are listed in Table 1, and the nonlinear behavior of the matrix is
described using a plasticity curve, as illustrated in Fig. 5. The cross-
section has 920 L9 elements, whereas 2 B4 elements were used along
the 𝑦-direction, as shown in Fig. 6. The number of L9 and B4 elements
was chosen according to the convergence analysis carried out in Carrera
et al. (2020). Axial and shear strains equal to 0.005 were applied, as
shown in Fig. 7. Fig. 8 shows the void distributions adopted.
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Fig. 24. Boxplots of maximum 𝜎𝑥𝑥 in the fiber of random RVE with variable thickness when 𝜀𝑥𝑥 (a) and 𝜀𝑥𝑧 (b) are applied.
Fig. 25. Boxplots of maximum 𝜎𝑥𝑧 in the fiber of the random RVE with variable thickness when 𝜀𝑥𝑥 (a) and 𝜀𝑥𝑧 (b) are applied.
Fig. 26. Mean VM (a) and PEEQ (b) in the random RVE for various thickness values.
Table 1
Elastic mechanical properties of constituent materials - elastic and shear moduli in GPa.
Fiber E11 E22 E33 G12 G13 G23 𝜈12 𝜈13 𝜈23

276.00 16.00 16.00 5.00 5.00 5.00 0.28 0.28 0.31

Matrix E 𝜈
3.50 0.35
The statistical analysis uses the parameters defined in Section 4
or each void distribution. Considering the axial strain as the load
ase, Table 2 presents the statistical parameters for maximum stress
omponents for different void volume fractions Fig. 9 shows boxplots
oncerning the von Mises stress (VM), equivalent plastic strain (PEEQ),
nd maximum 𝜎𝑥𝑥 over the matrix. Table 3 presents statistical pa-
ameters concerning stress and strain components over the matrix,
hereas Fig. 10 shows the distributions of 𝜎𝑥𝑥 and von Mises stress
9

over the cross-section with 5% of void volume fraction. Shear strain is
then considered, and boxplots related to the maximum normal stress
over the fiber and the matrix are shown in Figs. 11 and 12. Table 4
contains the statistical parameters concerning VM and PEEQ over the
matrix for each void volume fraction. Furthermore, Fig. 13 compares
the final distribution of local 𝜎𝑥𝑧 over the cross-section for increasing
void percentages. The results show that:
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Table 2
Statistical parameters of stress components (MPa) over the fiber of hex-packed RVE when 𝜀𝑥𝑥 is applied.

�̄� s min max q1 q2 q3 Voids [%]

𝜎𝑚𝑎𝑥
𝑥𝑥

85.211 3.385 81.068 101.582 82.777 84.494 86.841 1
87.640 4.325 81.376 102.303 84.741 86.942 88.618 2
88.639 4.426 82.017 104.892 85.624 87.588 89.992 3
91.100 6.540 82.066 115.349 86.632 89.261 95.073 4
93.109 7.652 82.118 117.803 87.653 90.346 97.089 5

𝜎𝑚𝑎𝑥
𝑦𝑦

33.260 1.474 30.860 36.344 31.998 33.274 34.317 1
35.710 2.354 32.174 41.451 34.176 35.000 37.011 2
37.207 3.440 32.815 48.407 34.478 36.783 38.430 3
37.519 2.759 32.396 44.224 35.381 36.832 39.837 4
39.338 3.410 33.620 46.777 36.945 38.989 42.155 5

𝜎𝑚𝑎𝑥
𝑧𝑧

41.858 2.950 38.196 53.227 39.855 41.398 42.937 1
43.890 4.062 38.559 54.474 40.959 42.609 45.246 2
46.194 3.400 40.244 54.712 44.111 45.842 48.301 3
47.766 6.319 40.247 71.726 43.747 46.070 50.173 4
48.493 4.499 42.231 60.163 45.136 47.673 50.055 5
(
m
i
R

Fig. 27. Square-packed architecture 1D model using CUF.

Fig. 28. Plasticity curves for the 8552 matrix (Chamis et al., 2013) and for the
376C (O’Higgins, 2007).

• Almost all stress and strain components increase as the void
volume fraction grows. The impact of the void volume fraction
is higher on the matrix than the fiber.

• The shear load case leads to a more severe increment of von
Mises stress and equivalent plastic strain with increasing voids
compared to the axial case.
10
• The presence of voids can alter the stress distributions signifi-
cantly, with variations in mean values of stress components larger
than 10%.

5.2. Statistical analysis on RVE with randomly distributed fibers

The second RVE architecture, based on the work of Pineda et al.
(2013), has a random distribution of fibers and a volume fraction of
47%, with properties provided in Table 1 and the elastoplastic behavior
of the matrix is detailed in Fig. 5. Two B4 elements along the 𝑦-
direction and 277 L9 over the cross-section were used as previously
done in Nagaraj et al. (2021). The magnitude of applied strains is 0.02.
In addition, voids were dispersed within the matrix, as shown in Fig. 14
for two void volume fractions, and the application of PBC on the RVE
is discernible in Fig. 15.

Figs. 16–18 show the boxplots of axial and shear transverse stresses.
Table 5 presents mean values of normal stresses, VM, and PEEQ.
Table 6 shows the variation of the mean value as compared to the
minimum and maximum, e.g., 𝜎𝑥𝑥 mean value when 𝜀𝑥𝑥 is applied
is 18.4% higher than the minimum value and 14.7% lower than the
maximum. Table 7 presents the maximum values of shear stresses.
Fig. 19 compares the distribution of PEEQ over the section for various
loading conditions and 3% of voids, and Fig. 20 shows the probability
density function (Haynes, 2013) of VM. Finally, homogenization is
performed to obtain the macroscopic behavior of the RVE, and Fig. 21
illustrates the macroscopic stress–strain curve for the RVE loaded in
the 𝑥-direction with increasing void volume fractions, also exhibiting
a comparison between the linear and nonlinear response of the RVE.
In Fig. 22, the homogenized stress–strain curves are presented for the
random RVE that comprises 5% of void under (i) axial strain 𝜀𝑥𝑥;
ii) shear strain 𝜀𝑥𝑧; (iii) shear strain 𝜀𝑦𝑧. Furthermore, assuming the
acroscopic stress determined at 1% of voids as the reference, Fig. 23

llustrates the influence that voids have on normalized stress for the
VE loaded with shear strains 𝜀𝑥𝑧 and 𝜀𝑦𝑧.

The results suggest that:

• As in the previous Section, an increase in void fraction leads to
higher stresses.

• The range of stress values at a given void fraction is around 30%.
• Ranging from 1 to 5% of voids, the VM mean value increases by

some 5%–10%.
• The presence of voids has a relevant effect also on the macro-

scopic response of the RVE. Specifically, higher void fractions lead
to a decrease in the macroscopic stress.
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Fig. 29. Nonlinear homogenized stress–strain response for the pristine square-packed RVE and with void content from 1 to 5% and comparison with reference benchmark (Chamis
et al., 2013) of IM7-8552 material system.
Fig. 30. Nonlinear homogenized stress–strain response for the pristine square-packed RVE and with void content from 1 to 5% and comparison with reference benchmark (McCarthy
et al., 2010) of HTA-6376C material system.
5.3. Influence of the RVE thickness on stress and plastic strain distributions

This section investigates the influence of the RVE thickness along
the fiber direction on the micromechanical response. As the defects are
randomly located within the matrix (Mehdikhani et al., 2019), their
distribution through the thickness of the RVE may induce significant
variations in the peaks of the local stress and strain. The void volume
fraction is 4% for all cases, and the thickness varies from 0.1 to 3 mm;
all other properties are as in Section 5.2. Figs. 24 and 25 show boxplots
for 𝜎𝑥𝑥 and 𝜎𝑥𝑧, whereas, Fig. 26 compares mean von Mises stress and
EEQ when the thickness varies from 0.1 to 3.0 mm. The results show
hat:

• Higher thickness values lead to higher 𝜎𝑥𝑥 and 𝜎𝑥𝑧, and VM.
• The variation of VM is in the range 5%–10% if considering 0.1

and 3 mm thickness values. The same variation is very low if the
11

thickness changes from 1.5 to 3 mm.
5.4. Influence of voids on the homogenized response

The current section investigates voids’ influence on composites’
macroscopic stress–strain response. The selected architecture is a
square-packed RVE under a shear strain 𝜀𝑥𝑦. The discretization consists
of 216 L9 elements for the cross-section, while 2 B4 elements act along
the fiber direction, as shown in Fig. 27. The accuracy of CUF findings
compared to the experimental references has been assessed in Kaleel
et al. (2018a), where no voids were considered. This work compares
the results of the current micromechanical model to some experimental
benchmarks with a pristine RVE. After that, the investigation focuses
on the macroscopic response with void content ranging from 1 to 5%.
The current assessment involves two different material systems, namely
(i) IM7-8552 with a 60% of fiber volume fraction (Chamis et al., 2013),
(ii) HTA-6376C with a 62% of fiber volume fraction (O’Higgins, 2007;
McCarthy et al., 2010). The material properties of the constituents are
listed in Table 8, whereas Fig. 28 presents the plasticity curves for the
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Table 3
Statistical parameters of stress (MPa) and strain components over the matrix of hex-packed RVE when 𝜀𝑥𝑥 is applied.

�̄� s min max q1 q2 q3 Voids [%]

𝜎𝑚𝑎𝑥
𝑥𝑥

141.737 11.330 122.317 173.051 134.401 141.080 147.609 1
161.398 14.053 137.267 192.493 151.342 159.667 173.113 2
177.801 19.021 151.964 249.867 165.521 171.407 185.255 3
197.592 29.211 157.275 320.815 180.166 191.493 212.010 4
206.194 16.934 180.313 248.496 191.924 203.469 216.301 5

𝜎𝑚𝑎𝑥
𝑦𝑦

94.719 9.971 77.610 122.005 87.862 94.132 99.723 1
111.920 12.046 90.939 139.048 102.965 110.674 121.943 2
126.130 16.587 103.782 189.439 115.842 120.507 132.349 3
143.406 25.658 107.763 251.565 127.674 137.509 156.491 4
150.898 14.798 128.256 188.180 138.909 149.439 159.479 5

𝜎𝑚𝑎𝑥
𝑧𝑧

88.838 9.388 71.600 113.499 82.347 87.788 94.303 1
106.108 12.530 83.451 135.423 95.672 103.491 115.861 2
119.343 16.434 95.155 184.986 107.710 114.347 125.966 3
137.292 26.006 92.805 243.959 120.776 131.662 148.482 4
144.129 15.227 117.327 183.753 134.000 140.873 152.880 5

VM

52.345 2.293 49.118 58.800 50.702 51.564 53.771 1
55.417 2.162 51.682 60.772 54.040 55.005 56.433 2
57.905 2.527 52.479 63.785 56.038 57.684 59.624 3
60.688 3.916 54.125 73.422 58.087 59.472 63.835 4
62.674 3.091 57.217 70.881 60.288 62.238 64.829 5

PEEQ × 103

2.905 1.469 0.773 7.032 1.861 2.411 3.819 1
4.871 1.383 2.486 8.303 3.991 4.606 5.518 2
6.464 1.625 2.995 10.282 5.266 6.316 7.563 3
8.280 2.574 4.045 16.846 6.573 7.465 10.315 4
9.573 2.056 6.018 15.141 7.991 9.252 10.978 5
Table 4
Statistical parameters of von Mises stress (MPa) and equivalent plastic strain components over the matrix of hex-packed RVE when 𝜀𝑥𝑧 is applied.

�̄� s min max q1 q2 q3 Voids [%]

VM

74.814 3.430 69.736 89.510 72.745 74.308 76.545 1
77.689 2.896 73.451 87.416 75.491 77.098 79.608 2
79.328 4.496 71.179 92.059 76.050 78.479 82.311 3
80.370 4.091 73.370 91.922 77.422 79.846 82.935 4
81.582 3.602 74.663 94.649 79.267 81.358 83.314 5

PEEQ × 103

17.879 2.465 14.382 28.728 16.376 17.478 19.076 1
19.932 2.124 16.866 27.139 18.322 19.483 21.329 2
21.152 3.325 15.338 30.836 18.721 20.498 23.328 3
21.913 3.038 16.808 30.722 19.721 21.505 23.790 4
22.806 2.702 17.731 32.946 21.079 22.623 24.072 5
Table 5
Mean values of normal stresses, VM and PEEQ in the random RVE with 4% of voids (MPa).

�̄�𝑚𝑎𝑥
𝑥𝑥 �̄�𝑚𝑎𝑥

𝑦𝑦 �̄�𝑚𝑎𝑥
𝑧𝑧 VM PEEQ × 103

Fiber
𝜀𝑥𝑥 292.152 214.943 140.808 – –
𝜀𝑥𝑧 60.846 69.204 93.633 – –
𝜀𝑦𝑧 21.111 88.128 40.543 – –

Matrix
𝜀𝑥𝑥 374.541 293.848 268.780 122.720 60.035
𝜀𝑥𝑧 152.948 132.924 168.218 139.905 83.716
𝜀𝑦𝑧 52.585 55.886 64.776 165.242 170.154
Table 6
Variation of mean normal stress in the random RVE with 4% of void volume fraction compared to minimum
and maximum values.

𝜀𝑥𝑥 𝜀𝑥𝑧
% min % max % min % max

Fiber
𝜎𝑚𝑎𝑥
𝑥𝑥 18.4% −14.7% 26.2% −30.0%

𝜎𝑚𝑎𝑥
𝑦𝑦 32.0% −28.5% 45.1% −47.4%

𝜎𝑚𝑎𝑥
𝑧𝑧 10.4% −19.0% 18.7% −19.8%

Matrix
𝜎𝑚𝑎𝑥
𝑥𝑥 11.0% −22.0% 19.0% −16.4%

𝜎𝑚𝑎𝑥
𝑦𝑦 20.2% −19.4% 24.5% −28.7%

𝜎𝑚𝑎𝑥
𝑧𝑧 16.0% −24.6% 17.0% −23.4%
12
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Table 7
Minimum and maximum values of shear stresses in the random RVE with 4% of void volume fraction (MPa).

�̄�𝑚𝑎𝑥
𝑥𝑧 �̄�𝑚𝑎𝑥

𝑦𝑧 �̄�𝑚𝑎𝑥
𝑥𝑦

min max min max min max

Fiber
𝜀𝑥𝑥 35.188 54.992 15.502 33.487 30.185 65.342
𝜀𝑥𝑧 101.056 110.854 14.159 36.133 15.925 49.321
𝜀𝑦𝑧 9.041 27.087 90.876 120.552 18.726 29.926

Matrix
𝜀𝑥𝑥 29.597 50.818 17.802 31.130 23.717 38.086
𝜀𝑥𝑧 74.387 86.757 9.676 23.732 10.639 23.972
𝜀𝑦𝑧 9.033 21.745 91.202 98.685 31.251 38.442
Table 8
Elastic mechanical properties of constituent materials for the IM7-8552 and the HTA-6376C - elastic and shear moduli in GPa.

Fiber E11 E22 E33 G12 G13 G23 𝜈12 𝜈13 𝜈23
IM7 (Chamis et al., 2013) 272.50 15.50 15.50 29.00 29.00 7.00 0.20 0.20 0.30
HTA (O’Higgins, 2007) 223.00 23.00 23.00 32.00 32.00 32.00 0.28 0.28 0.28

Matrix E 𝜈
8552 (Chamis et al., 2013) 4.10 0.29
6376C (O’Higgins, 2007) 3.70 0.20
matrix. Fig. 29 illustrates the homogenized stress–strain response of
the IM7-8552 RVE. The effect of voids on the homogenized response of
HTA-6376C is shown in Fig. 30.

The results suggest that:

• Regarding both material systems, the CUF framework shows a
good agreement of the homogenized stress–strain curves with
experimental benchmarks.

• The presence of voids induces a significant decrease in the ho-
mogenized stress.

6. Conclusions

This work has investigated the influence of void volume fraction
and RVE thickness on the micromechanical response of composites.
A micromechanical framework has been used based on the Carrera
Unified Formulation (CUF) and the Component Wise (CW) approach.
Three different RVE architectures have been considered: a hex-packed
RVE, an RVE with randomly distributed fibers, and a square-packed
RVE. Normal and shear strains have been used as loading conditions,
and void volume fractions from 1 to 5% and thickness values from 0.1
to 3 mm have been considered. Statistical analyses have been carried
out by considering random distributions of voids. The numerical results
have shown that:

• Increments of void fractions and thickness lead to higher stress
values.

• The choice of the RVE architecture does not affect the maximum
stresses significantly.

• The analyses showed the same results when the second RVE was
taken into consideration.

• For the considered ranges of void volume fractions, the variation
of mean stress values is about 5%–10%.

• For a given void volume fraction, different distributions of voids
can lead to differences between maximum stress values of about
30%.

• A slight but considerable difference arises between the macro-
scopic linear and nonlinear responses. A micromechanical frame-
work involving progressive failures would make nonlinearities
more pronounced.

• A significant increase in stress has been observed by changing the
RVE thickness from 0.1 to 3 mm.

• Void content has a significant effect on the homogenized stress–
strain response of composite, compared to pristine architectures.
13
Future investigations will incorporate the effect of voids on a multiscale
framework, where the constitutive response at a material point inter-
acts with a lower scale through explicit heterogeneous definitions via
homogenization, also including the crack nucleation and propagation
at the microscale level. Furthermore, the explicit modeling of voids
for more detailed localized stress distributions will be considered, and
the CUF framework for micromechanical analysis of textile composites
will be investigated. Another extension will focus on the thermome-
chanical analysis and the effects of voids on thermal properties. The
effect of voids on the failure onset and its propagation is also under
investigation.
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