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Abstract—Deep neural networks are increasingly used in a
wide range of technologies and services, but remain highly
susceptible to out-of-distribution (OOD) samples, that is, drawn
from a different distribution than the original training set.
A common approach to address this issue is to endow deep
neural networks with the ability to detect OOD samples. Several
benchmarks have been proposed to design and validate OOD
detection techniques. However, many of them are based on far-
OOD samples drawn from very different distributions, and thus
lack the complexity needed to capture the nuances of real-world
scenarios. In this work, we introduce a comprehensive benchmark
for OOD detection, based on ImageNet and Places365, that
assigns individual classes as in-distribution or out-of-distribution
depending on the semantic similarity with the training set.
Several techniques can be used to determine which classes should
be considered in-distribution, yielding benchmarks with varying
properties. Experimental results on different OOD detection
techniques show how their measured efficacy depends on the
selected benchmark and how confidence-based techniques may
outperform classifier-based ones on near-OOD samples.

Index Terms—Out-of-Distribution Detection, Deep Learning,
Convolutional Neural Networks, Open-World recognition

I. INTRODUCTION

Deep convolutional networks (CNNs) are powerful classi-
fiers when tested on in-distribution (ID) images sampled from
the same distribution the network was trained on. However,
being trained under a closed-world assumption, they may fail
by producing overconfident and wrong results when faced with
out-of-distribution (OOD) samples, such as images belonging
to classes previously unseen by the model. There is a strong
interest in making CNN classifiers more robust by endowing
them with the capability to separate samples drawn from a
given distribution (also known as inliers, in-distribution or
ID samples) from the others (also denoted as outliers, out-
of-distribution, OOD, anomalies, novelties, or out-of-domain
samples) [1, 2, 3, 4].

As a motivating example, let us consider the automatic tag-
ging of images from social media platforms such as Facebook
or Instagram, with applications in social sciences [5], digital
humanities [6, 7], marketing [8], etc. Researchers may want
to exploit readily available, pre-trained models for automatic
classification and tagging, which however entails operating
under an open-world assumption. Hence, it is necessary to
detect OOD samples that may lead to overconfident and wrong

predictions. In the following, we will refer to the task of scene
classification as our primary case study.

Several methods were proposed in the literature for OOD
detection [1]. However, their experimental comparison is com-
plicated by the broad definition of OOD and the wide variety
of settings under which they were tested. The performance
of an OOD detector intrinsically depends on the experimental
setting and its underlying assumptions. For instance, distance-
based methods were shown to yield better performance than
those based on prediction scores depending on whether the
OOD samples are far away or close to the decision boundary
between classes [9].

One of the fundamental aspects that differentiate OOD
benchmarks is the semantic and visual distance between ID
and OOD samples. Many works in literature have drawn ID
and/or OOD samples from small, low-resolution datasets such
as CIFAR10, CIFAR100 or SVHN [10, 11, 12, 13, 14, 15, 16].
This choice is not representative of real applications, such as
social media tagging, where the difference between ID and
OOD samples is expected to be more nuanced and depen-
dent on the underlying class semantics. Other authors have
used inter- and intra-dataset comparison in order to construct
more realistic benchmarks: for instance, in [17], Roady and
colleagues proposed both inter-dataset comparison (e.g., using
ImageNet as ID and Places365 as OOD or viceversa) and intra-
dataset comparison (e.g., using a subset of ImageNet as ID and
another subset as OOD).

Both options, however, have conceptual or practical draw-
backs: inter-dataset comparison ignores or under-estimates
semantic overlap between different datasets, whereas intra-
dataset comparison modifies the training set and thus cannot
be applied as is to existing pre-trained models. A clarifying
example is shown in Figure 1, in which two images from Ima-
geNet belonging to classes alp and mountain tent, respectively,
are classified by a scene classifier pre-trained on Places365
as mountain and campsite, respectively (Figure 1). Although
the classes are distinct and would technically be considered
OOD according to conventional inter-dataset approaches, the
predictions would be still deemed acceptable from a practi-
cal standpoint by the end-user. Instead, for the intra-dataset
scenario, consider the classes dressing room, beauty saloon,
and closet from the Place365 dataset. These three classes
may have overlapping features such as lighting, color scheme,



Fig. 1. Examples of predictions generated by a classifier pretrained on
Places365 (right) on samples drawn from the ImageNet dataset (left). The
predicted classes, although different from the ImageNet labels, are highly
semantically correlated.

and furniture arrangement, which can lead to confusion for
the model during training and inference. As a result, the
performance of the model on these classes may be lower than
expected due to the limited ability to differentiate between
them. Benchmarks for OOD detection should be aligned with
the ultimate goal of rejecting unknown samples and avoiding
high-confidence predictions, regardless of the specific dataset
they are drawn from. Hence, we argue that the decision of
whether a sample should be considered ID or OOD cannot be
based on the source dataset alone, but rather should take into
account the semantic content of the class/image.

In this paper, a benchmark for OOD detection is constructed
based on Places365 (selected as ID) and ImageNet (from
which OOD samples are drawn). ImageNet classes were sorted
based on their semantic affinity with Places365 classes in
order to classify them as either ID, near-OOD, or far-OOD.
To this aim, different techniques, including automatic and
manual tagging, were compared. Then, different methods for
OOD detection were evaluated on the proposed benchmark,
showing that more realistic benchmarks affect the ranking of
OOD detection methods. The proposed datasets are available
for download 1.

The rest of the paper is organized as follows. A detailed
examination of related work, including various techniques
employed to detect OOD samples and relevant datasets used to
test these methods is reported in Section II. Then, Section III
delves into the problem definition for OOD detection. Sec-
tion IV illustrates the proposed datasets designed to test the
efficacy of different OOD detection strategies under diverse
conditions. Section V presents some initial findings from our
investigations. Finally, Section VII showcases the outcome
of our experimental study, offering valuable insights into
strengths and weaknesses of different techniques.

II. RELATED WORK

A. OOD Detection

OOD detection has attracted much attention and several
efforts have been made to solve this problem. While many

1https://huggingface.co/datasets/GrainsPolito/FACETS Datasets

OOD detection techniques are general and can be in principle
applied to any type of machine learning model or classifier,
we focus here in particular on the task of image classification.
For other input data and machine learning models, the reader
is referred to existing surveys and benchmarks [18, 19].

Existing OOD detection methods generally fall into two
broad categories: classifier-based approaches and generative
techniques. While the latter explicitly model the target dis-
tribution to reject samples that are not consistent with it,
the former attempt to increase the robustness of an existing
model or pair it with an external classifier for OOD detection.
Classifier-based methods are a large family of discriminative
approaches. Among those, confidence-based techniques strive
to generate a numerical score by directly exploiting the
classifier predictions. The softmax and the logit functions are
popular options for this metric.

The seminal work by Hendrycks and Gimpel [20] intro-
duced the concept of OOD detection and proposed a first
benchmark and evaluation metrics. Despite prior interest in
related problems throughout the 1990s, their work was the
foundation for subsequent advancements in the field. Specifi-
cally, they employed the maximum softmax probability (MSP)
as the scoring metric for detecting OOD samples. Liang et al.
proposed an enhanced variant of the MSP called ODIN (OOD
detector for Neural Networks) [21]. ODIN was designed to in-
crease the discriminatory power between ID and OOD samples
by using a temperature scale factor (T), applied to the softmax
output, and calculating the final score after perturbing the input
image by a constant magnitude, established based on the loss
function gradient. Generalized ODIN [22] further improves by
removing explicit reliance on OOD data to determine suitable
values for the temperature T and the perturbation magnitude.
It achieves this objective by switching temperature scaling for
a function of the input and setting the perturbation magnitude
value that maximizes the softmax for ID samples.

Conventional OOD identification algorithms face challenges
when dealing with large semantic spaces, as pointed out by
Huang and Li [23] when proposing the Minimum Others
Score (MOS) method, which groups categories together to
reduce complexity. As a result, the decision boundary between
known and unknown samples becomes less challenging for the
classifier assigned to each group, improving its OOD detection
abilities. Replacing the softmax function with raw logits as the
OOD detection score is another way of tackling the issue of a
large semantic space.The method known as Maximum Logit
Value (MLV) [24] effectively reduces the dispersion of proba-
bility mass among classes with similar features. According to
Bendale and Boult [25], OpenMAX could replace the softmax
function for the purpose of OOD detection. The approach
leverages the intrinsic relationship among the activations of
multiple classes, collectively denoted as an Activation Vector
(AV). The position of a Mean Activation Vector (MAV) for
each class in relation to the AV of an input image is then
employed for OOD detection. More recently, Meinke and Hein
[26] presented Certified Certain Uncertainty (CCU), which
exhibits high predictive confidence across a wide range of

https://huggingface.co/datasets/GrainsPolito/FACETS_Datasets


TABLE I
USAGE STATISTICS FOR THE 10 MOST POPULAR DATA SOURCES

DESIGNATED AS EITHER ID OR OOD IN EXPERIMENTAL EVALUATION OF
OOD DETECTION TECHNIQUES.

CIFAR-10 CIFAR-100 SVHN MNIST TinyImageNet
Popularity 87% 57% 57% 56% 38%

ID 55 26 20 32 13
OOD 39 24 34 29 21

LSUN Fashion-MNIST Gaussian Noise Textures Places365
Popularity 37% 19% 22% 17% 17%

ID 0 9 1 0 1
OOD 23 9 14 11 11

input variations outside of the training distribution.

B. OOD Datasets

In previous studies, the most common benchmarking
method used was to designate one dataset as an ID, while
several additional datasets were designated as OOD. The
choice of datasets is often similar among studies and driven
by the ease of collecting or processing established research
benchmarks. Therefore, this method facilitates comparison
with other techniques that have been tested on the same
benchmark.

To gather information on the prevalent options for ID and
OOD datasets, we examined a collection of 63 research articles
published from 2015 to 2021. We illustrate the 10 most
frequently chosen datasets in Table I. The popularity of each
dataset is indicated by the number of publications wherein the
dataset has been employed as either ID or OOD data source.
Toy datasets such as CIFAR-10 [27], CIFAR-100, MNIST
[28], and Fashion-MNIST [29], featuring a modest number
of classes and low-resolution images, are quite popular as
they enable rapid experimentation. These simple yet effective
datasets continue to be favored by the community. CIFAR-10,
in particular, features prominently in 87% of the examined
publications. This dataset comprises a vast collection of low-
resolution images belonging to 10 distinct categories. Other
widely employed datasets are CIFAR-100 and SVHN, used in
57% of publications, followed by MNIST. The utilization of
Fashion-MNIST [29] as a substitute for MNIST has gained
increasing popularity, accounting for 19% of the examined
publications. This dataset comprises 10 categories of clothing
items and features 60,000 training low-resolution, grayscale
images. Its creation aimed to offer a more demanding bench-
mark problem compared to MNIST while preserving similar-
ities in sample and dataset sizes.

TinyImageNet [30] and LSUN [31] are used in less than
half of the publications surveyed. With 200 and 10 classes,
respectively, these datasets present an increasing complexity
compared to the previous ones. Specifically, TinyImageNet is
a reduced set of ImageNet of 100,000 images, whereas LSUN
consists comprises images from 10 distinct scene categories.

The Gaussian Noise and Textures benchmarks [32] account
for only 22% and 17% of the papers examined. Typically, they
are employed to assess the resilience of ML algorithms against
noise or texture modifications. The former comprises images
sourced from the ID datasets with varying degrees of Gaussian

noise superimposed, whereas the latter includes 5,640 images
representing 47 distinct texture classes, such as brick or grass.
Finally, the Places365 dataset [33], which encompasses more
than 1.8 million images across 365 diverse scenes, appears in
just 17% of the papers surveyed.

Interestingly, some datasets have been utilized more fre-
quently as OOD sources rather than ID. For instance, datasets
such as Gaussian Noise and Places365, which were employed
as ID sources in just one publication each, are commonly
utilized as OOD sources. Likewise, datasets such as Textures
and LSUN, while never used as ID sources, were widely
employed as OOD sources. These findings suggest that many
researchers use distinct datasets as ID and OOD data.

There has been limited exploration in combining OOD
detection techniques across diverse datasets. Recently, Roady
et al. [17] presented a benchmark suite that evaluates the ca-
pacity of OOD detection algorithms to scale. Specifically, they
assessed the performance of OOD detection approaches using
two widely-used image classification datasets, i.e., ImageNet-
1K and Places-434. They created three separate OOD settings
of varying difficulty. For the first one, labeled Noise, synthetic
images were generated from a Gaussian distribution ensuring
that the resulting images reflected the normalization used for
both the training and test images. The second one, called Inter-
Dataset, is of intermediate difficulty and involves testing each
method’s ability to detect OOD samples drawn from another
large-scale dataset. The last one, Intra-Dataset, is designed to
identify novel classes within a specific dataset. The researchers
used the same training set and models for all three settings,
only varying the testing set. Ten thousand ID instances from
each class in the validation set are randomly chosen to create
the latter. Additionally, ten thousand outliers from the OOD
classes within each dataset validation set are also selected.
This approach however ignores or underestimate the semantic
overlap between classes from both datasets, since it relies on
exact name correspondence to determine overlapping classes.
Conversely, the intra-dataset comparison has its shortcomings
because it directly influences the training set and cannot be
straightforwardly applied on available pre-trained models.

III. METHODOLOGY

A. Problem Definition

Let DI be the probability distribution of ID samples,
including KI different classes, and DO = {Di

O}∞i=1 the set
of distributions of OOD samples. In the most general setting,
at training time a dataset T = TI ∪ TO is available, where

TI = {(xi, yi, zi)}NI
i=1,

with xi ∼ DI , yi ∈ {1, . . . ,KI}, zi = 0

is the set of ID training samples and

TO = {(xi, yi, zi)}NO
i=1,

xi ∼ Dj
O ∈ DO, yi ∈ {1, . . . ,Kj

O}, zi > 0, j ∈ {1, . . . , J}



is the set of OOD training points. In particular, each xi is
a training image drawn from a distribution, yi is the corre-
sponding class index, Kj

O is the number of classes modeled
by distribution Dj

O, J the number of OOD distributions
represented in TO, and zi the ground truth label for OOD
detection (henceforth referred to as OODness) for the i-th
sample, which is 0 if the sample is ID and 1 if the sample
is OOD. Within this general formulation, several settings are
possible. Some methods assume that OOD samples are not
available at training time (TO = {}). Other assumes that OOD
samples are available, although not necessarily drawn from the
same distribution/classes observed at inference time, which are
generally unknown in real-world applications.

The classifier or machine learning model is then defined as
a vector function

f : Rd → RKI ,x 7→ l,

where x is a d-dimensional input and l the vector of class
scores, referred to as logits. The model f is composed of L
concatenated layers, whose output li is calculated as

li = f i(x), i ∈ {1, . . . , L},

having defined f i as the composition of layers 1, . . . , i. The
whole classifier f then coincides with fL, and the logits vector
l with lL. Class scores l are converted to class probabilities p
via the application of the softmax function

pi = S(l)i =
eli∑KI

j=1 e
lj

≈ P[y = i|x = x],

where l = f(x) and y is the true label for input x. The
predicted class c is then chosen to be the one for which
the assigned probability is the highest: c = argmax(p). The
network is usually trained by minimizing the cross-entropy
loss LCE between the predicted probabilities and the one-hot-
encoded vector y representing the ground truth. The ability to
reject undesired inputs is provided by an additional function s
that returns the OOD score o = s(x) for sample x. This score
is then discretized by selecting a suitable threshold, in order
to obtain a binary prediction as either ID or OOD sample.

One of the main differences among research works lays in
the choice of the scoring function s, which can be obtained
by extracting some internal network outputs, by means of
an additional classifier or by explicit density estimation. The
threshold θ is usually selected with the aim of optimizing a
relevant metric for the specific task and dataset.

B. Scoring Methods for OOD Detection

Although OOD detection approaches that exploit OOD sam-
ples during training have shown to be effective, the wide range
of potential unobserved distributions or classes constitute a
fundamental limitation to their effectiveness. These techniques
generally model OOD detection by using a predefined col-
lection of OOD distributions, and increasing their diversity
may not necessarily improve performance when exposed to
new samples at inference time. In addition, post-hoc scoring

methods, that do not require costly training procedures, are
advantageous when the classifier f is pre-trained. We will thus
here focus on OOD detection methods that do not require
a large number of OOD samples at training time, and in
which the use of OOD samples is mainly limited to parameter
selection.

Among these methods, the MSP [20] is one of the standard
approaches in the current literature. This technique harnesses
the output of the softmax function to estimate an OOD
probability for each predicted sample.

MLV [24] represents a more recent improvement using
raw network outputs instead of the normalized ones used
by MSP. This has been helpful in cases in which applying
the softmax function significantly changes the class scores.
An entire dataset can be scored in a single pass through the
network.

ODIN [21] is a simple but effective method that enhances
MSP by slightly altering the model workflow. It proposes
two different strategies, temperature scaling and input pre-
processing that are combined, while the softmax is chosen
as the scoring function. Temperature scaling involves dividing
the logits by a positive integer constant T before applying
the softmax, which increases the gap between in and OOD
points. Input preprocessing, inspired by adversarial attacks,
involves adding a small perturbation to a sample x. Each
sample is propagated through the network, and the sign of the
loss gradient with respect to x is computed and added to the
original point, scaled by a positive constant ϵ. This trick should
move input points closer to a peak of the softmax, increasing
the gap between those that were already nearby (ID) and the
remaining ones (OOD). The final score for sample x is given
by:

Finally, OODL [12] avoids the expensive retraining of the
original model, but does not exploit its confidence scores in
order to predict the OODness value. Instead, it leverages an
external one-class-classifier to decide whether a point is ID or
OOD. Aiming to reuse as much as possible the existing model
and keep the external classifier simple, the latter does not act
on raw samples but rather precomputed features extracted from
one of the layers of the original model and then compressed
to reduce their dimensionality. The resulting vector is then fed
to the OOD detector, which outputs the final score. Following
the official OODL implementation2 a One-Class SVM can
be used as an OOD Detector. This method requires setting
a few hyperparameters including, among others, the kernel
approximation function (RBF or Nystroem), the fraction of
allowed training errors ν, and the network layer from the
features are extracted.

IV. DATASETS

In this section, we introduce the proposed benchmarks for
OOD detection methods, which include both typical settings
from the current OOD literature and a set of novel ones based
on a measure of per-class semantic affinity.

2https://github.com/vahdat-ab/OODL



TABLE II
COMPOSITION OF THE BASELINE DATASET. SVHN SAMPLES ARE

GENERALIZED TO A SINGLE CLASS, E.G. ”NUMBER”, INSTEAD OF THE
USUAL 10 DIGITS. THIS CHOICE WAS MADE BECAUSE MULTIPLE

NUMBERS ARE PRESENT IN SOME IMAGES. FURTHERMORE, THE PRIMARY
INTEREST IN THIS CONTEXT IS WHETHER OOD SAMPLES CAN BE
SUCCESSFULLY REJECTED, REGARDLESS OF THE SPECIFIC DIGIT.

Baseline Dataset (val/test)
ID classes OOD classes ID samples OOD samples

Places365-Standard (val) 365 0 18,250 0
SVHN (train) 0 1 0 16,701
SVHN (test) 0 1 0 1,549

Total 365 2 18,250 18,250

The development of the proposed benchmark stemmed
from the FACETS (Face Aesthetics in Contemporary e-
Technological Societies) project, and in particular the
FRESCO research line (Face Representations in E–Societies
through Computational Observation), which aims at analyzing
large collections of profile pictures from social networks
through deep learning tools [7]. Thus, the proposed benchmark
mimics a pretrained image tagging model that needs to operate
on social media images, and thus implicitly under an open-
world assumption. Specifically, a scene classification task was
selected as the target application, and the Places365 dataset
served as the ID set for the benchmark. This choice departs
from the mainstream OOD literature, in which ImageNet is
typically selected as ID and Places365 as OOD. Although
the proposed configuration may be less practical, given that
Imagenet pretrained models are more abundant, it also ad-
dresses issues that may not emerge when focusing solely
on object-centric datasets. For instance scene classifiers may
implicitly rely on object detection to perform classification
[34], sometimes leading to undesirable outcomes.

First, we define a Baseline dataset that reflects the most
basic level of complexity in OOD recognition, based on related
works as discussed in Section II. We chose the validation
split of Places365-Standard as the ID data, consisting of 100
labeled images per class from the 365 classes. For the OOD
data, we opted for the SVHN in its multi-resolution version
due to its semantic difference compared to Places365 and its
widespread use in previous studies on similar OOD tasks. To
ensure consistency in sample size, we randomly sampled a
subset of images from the SVHN test set, resulting in a total of
33,500 OOD images for training the OOD detection Table II.

The second dataset used, called Inter-Dataset OOD Detec-
tion, is inspired by the work by Roady et al.[17]. In this setting,
the objective is to discriminate between two distinct datasets
where the OOD samples come from a complex and diverse
object-centric dataset, namely ImageNet-1K, which consists of
over 1 million training images and 50,000 validation images,
covering 1,000 classes. To create a challenging OOD scenario,
we removed the 32 common classes between ImageNet-1K
and Places365-Standard. The validation split of Places365 was
used as the ID dataset, while the OOD samples were collected
through stratified random sampling on all remaining classes of
ImageNet-1K excluding those present in Places365 Table III.

We argue that the standard inter-dataset evaluation protocol,

TABLE III
COMPOSITION OF THE INTER-DATASET BENCHMARK. IN THIS SETTING

THE OOD DETECTION TASK CONSISTS OF DISCRIMINATING AMONG THE
TWO DATASETS; THEREFORE, ONE OF THEM IS CONSIDERED ENTIRELY ID

AND THE OTHER AS OOD. COMMON CLASSES WERE REMOVED.

Inter-Dataset (val/test)
ID classes OOD classes ID samples OOD samples

Places365-Standard (val) 365 0 18,250 0
ImageNet (train) 0 968 0 18,108

Total 365 968 18,250 18,108

which considers all classes from ImageNet-1K as OOD for
a model trained on Places365, is too simplicistic and does
not fully capture the underlying relationships between these
datasets. Although it is true that there are significant differ-
ences between the two datasets in terms of their data collection
process, coverage, and label set, some classes from ImageNet-
1K and Places365 can be highly correlated from a semantic
point of view, and therefore should not consider as separate
distributions. For example, an image of an empty room can
still be classified as a bedroom if the room’s design, wall color,
and other contextual signs are typical of a bedroom. However,
the bed object will almost always be visible inside a bedroom
scenario. By extension, the same picture may be classified as a
bed in ImageNet and a bedroom in Place365, both of which are
acceptable predictions. In contrast, in the typical Inter-dataset
arrangement, the bed class would be classified as OOD and
the bedroom class as ID. Thus, it is reasonable to consider
some classes from ImageNet-1K as part of the ID set when
evaluating models on Places365.

One important aspect of selecting a suitable split for com-
paring models trained on different datasets involves establish-
ing a (ideally) reliable and objective measure of similarity
between classes. To achieve this goal, we used the WordNet
lexicon 3, which provides a framework for linking classes from
various datasets based on semantic relationships. WordNet
organizes nouns, verbs, adjectives, and adverbs into cognitive
synonym sets (synsets), representing distinct concepts related
by various semantic connections.

Computing similarity metrics between ImageNet-1K classes
and Places365 classes required establishing a correspondence
between these classes and WordNet synsets. While ImageNet
class labels are derived from WordNet synsets, Places365
labels consist of words rather than synsets, and hence a single
ID class could be associated with more than one WordNet
concept. Although much of the mapping was automatic, man-
ual intervention was needed for scene labels that did not fit
neatly into a WordNet synset. After obtaining said mapping,
we employed a distance metric between semantic concepts. An
average of three path-based metrics, Path (a baseline metric
equal to the inverse of the shortest path between two concepts),
Leacock-Chodorow [35], and Wu-Palmer [36], was used as the
final similarity metric to account for all with a single score.
Different thresholds can then be selected to determine which
classes should be considered OOD. The resulting datasets are

3https://wordnet.princeton.edu/



TABLE IV
COMPOSITION OF THE WORDNET IMAGENET DATASETS

WordNet ImageNet T40 (val/test)
ID classes OOD classes ID samples OOD samples

Places365-Standard (val) 365 0 18,250 0
ImageNet (train) 56 944 2,800 21,332

Total 421 944 21,050 21,332
WordNet ImageNet T45 (val/test)

ID classes OOD classes ID samples OOD samples
Places365-Standard (val) 365 0 18,250 0

ImageNet (train) 90 910 4,500 22,750
Total 455 910 22,750 22,750

WordNet ImageNet T50 (val/test)
ID classes OOD classes ID samples OOD samples

Places365-Standard (val) 365 0 18,250 0
ImageNet (train) 140 860 7,000 25,560

Total 505 860 25,250 25,560

described in Table IV.
Lastly, as an alternative to automatic path-based metrics,

we manually annotated classes from the the ImageNet and
SUN397 [37] datasets. Our ultimate goal was to determine
whether each class in these datasets should be labeled as ID or
OOD relative to the source distribution of Places365. Since the
validation split of the Places365-Standard dataset was consid-
ered the most reliable reference for ID samples, it was retained
for this purpose. On the other hand, SUN397 was included in
the design of the last two datasets for both ID and OOD data.
It has a strong connection with Places365, with 294 classes
shared between the two datasets, and others being similar. The
inclusion of SUN397 allowed for the acquisition of additional
samples, from a different data source, for ID classes. This
choice allowed us to differentiate between the semantic shift
due to the occurrence of different classes between OOD and
ID samples, from the domain shift that may be introduced
by the process of dataset collection. However, not all non-
overlapping classes can unequivocally be designated as OOD.
As a result, manual inspection is necessary to recognize and
pair similar classes. We assigned each class an OODness score
ranging from 0 to 3 based on the following criteria:

0) classes from Place365 that appear with exact labels.
1) classes that are semantically related to a class from

Place365.
2) classes that usually contain features characteristic of one

or more ID classes.
3) the remaining classes.

The availability of fine-grained labelling enables experimen-
tation with different dataset configurations. Two main versions
of the dataset were investigated (Table V): T1, in which
classes labelled as 0 or 1 are considered ID while 2 and 3
are considered OOD, and T2, where 0, 1 and 2 classes are
considered ID and classes labelled as 3 are considered OOD.
In contrast, each class in ImageNet-1K is manually given a
binary OODness label of 0 or 1, with classes that appear
in Places365 or represent objects typically associated with a
scene from the target dataset being assigned the label 0 (ID), 1
(OOD) otherwise. The choice of the threshold for the classes

TABLE V
COMPOSITION OF THE FACETS OOD DETECTION DATASET

FACETS OOD Detection T1 (val/test)
ID classes OOD classes ID samples OOD samples

Places365-Standard (val) 365 0 18,250 0
SUN397 319 78 46,851 7,530

ImageNet (val) 356 644 8,900 16,100
ImageNet (train) 0 644 0 50,232

Total 1,040 1,366 74,001 73,862
FACETS OOD Detection T2 (val/test)

ID classes OOD classes ID samples OOD samples
Places365-Standard (val) 365 0 18,250 0

SUN397 351 46 49,827 4,554
ImageNet (val) 356 644 8,900 16,100

ImageNet (train) 0 644 0 56,606
Total 1,072 1,334 76,977 77,260

drawn from SUN does not affect the way ImageNet classes
are considered.

The selected OOD detection method do not necessarily
require the availability of OOD samples during training.
However, both ID and OOD samples may be necessary for
hyperparameter tuning. Separate validation and test sets for
each setup were established to properly assess OOD detection
performance and prevent any potential data leakage.

V. PRELIMINARY ANALYSIS

The primary focus of OOD detection should not merely
revolve around the ability to distinguish images drawn from
ImageNet-1K or Place365, but to discriminate inaccurate or
deceptive outputs compared to plausible predictions, irrespec-
tive of the specific set of labels used for dataset annotation.
As an initial step to obtain a better understanding of the
behavior of a typical scene classifier (Resnet50 pre-trained on
Places365), an analysis of network predictions was performed.
The objective was to ascertain whether any consistent patterns
of misclassification emerged. This analysis was carried out on
the FACETS OOD Detection T1 dataset.

Although the prevalent metric for evaluating Places365 is
top-5 accuracy, a different approach is necessary to evaluate
predictions on OOD samples due to the mismatch in class
labels. The present analysis addresses the question of ”how
closely does the predicted class align with a correct one?”
To tackle this question, a strategy similar to the labeling
methodology employed for the WordNet-ImageNet datasets is
adopted, utilizing the semantic similarity between class labels.

Similarly to the mapping technique elucidated in Section IV,
both the SVHN and SUN397 datasets were mapped to Word-
Net synsets to ensure methodological uniformity. For SVHN
a manual mapping to digit.n.01 was performed. Regarding
SUN397, the mappings were conducted partially automati-
cally, employing the same procedure adopted for Places365.
The significant overlap in classes between the two datasets
facilitated this process, allowing reuse of 294 out of the
397 required mappings, since these classes are shared with
Places365. The similarity score between the ground truth class
and the predicted class was computed as the average of the
Wu-Palmer and the Path similarity metrics. Other similarity



Fig. 2. Average semantic similarity between the ground truth class and the
predicted ID labels, as computed on the validation split of the FACETS
OOD Detection T1. SUN ground truth labels (sun prefix) were generally
semantically similar to the predicted ID class if compared to ImageNet ground
truth labels (in prefix).

metrics were disregarded due to their unbounded nature, which
could lead to dominate those bounded between 0 and 1.

The same scoring function was utilized to perform ag-
gregated measurements to assess the behavior of the pre-
trained model. Figure 2 presents the average similarity be-
tween the ground truth labels of each sample from the original
dataset and the predicted classes from the classifier trained
on Places365. It should be noted that none of the classes in
the Places365 validation set are included among the top 10
best performing classes, indicating a substantial semantic sim-
ilarity between the SUN and Places365 classes. On the other
hand, ImageNet classes generally exhibit poorer performance
because of the typically limited semantic similarity between
objects and their backgrounds.

Similarly, Figure 3 showcases the 10 best/worst ID classes
(derived from the Places365 dataset) based on the average
similarity between the predicted ID label and the ground
truth. For example, the conference room class from Places365
exhibits a high similarity with the ground truth labels of
the samples assigned to that class, indicating that the model
assigns a category that is semantically close to the actual class
for OOD samples. In general, it appears that indoor and man-
made environments are more prone to receive plausible labels,
whereas the same does not hold for natural scenes. Various ex-
planations can account for this phenomenon: artificial settings
tend to have less ambiguity in terms of labeling compared to
landscapes, where multiple classes may be present, such as
hills, skies, or forests.

To explore the network’s behavior beyond the previ-
ously mentioned similarity metric, an alternative visualization
method involves representing relationships as a directed graph.
Each class is depicted as an individual node, and the presence
of an edge from node a to node b indicates that at least one
image of class a was predicted as class b. The resulting graph
structure enables the identification of overarching trends in
the classification process. To incorporate the frequency and

Fig. 3. Average semantic similarity between the OOD ground truth class and
the predicted ID labels, as computed on the validation split of the FACETS
OOD Detection T1. Man-made environments seems to be less ambiguous and
predicted classes are most likely to be semantically similar to the respective
OOD ground truth class.

significance of each association, the weight of each edge in
the graph shows the strength of the connection between the
respective nodes.

The complete graph for FACETS OOD Detection T1, es-
tablished by utilizing MSP as the OOD detection score, is
quite large, encompassing 1, 760 nodes and 41, 397 edges.
Several pruning procedures were implemented to eliminate
redundant and noisy information. Self-loops, which represent
accurate classifications but do not contribute to OOD detection
insights, were removed. Similarly, links between evidently
ID samples were discarded. Associations between classes
sharing identical names, such as sun:/f/fountain, in:fountain,
and places:/f/fountain, were also removed. Furthermore, edges
originating from Places365 (val) were eliminated, resulting in
the remaining edges connecting classes from different datasets.
Edges with low weights, which likely offered minimal infor-
mative value while complicating the graph’s structure, were
also pruned. The nodes with a resulting degree of zero were
finally removed. The pruned graph has a more manageable
scale, consisting of 989 nodes and 1022 edges. To enable
easier navigation, the graph will be released along with the
dataset.

Within this refined representation, distinctive isolated clus-
ters that suggest the presence of independent semantically
related groups were identified. Furthermore, numerous high-
weight edges were observed, highlighting connections that
were overlooked by the basic algorithm employed for class
name matching. It should be noted that subtle variations such
as the presence of an underscore instead of a white space or
a different word order were sufficient to classify two classes
as distinct entities (Figure 4).

Several other clusters exemplify meronym-holonym or
scene-object relationships, which are not adequately captured
by widely used WordNet similarity metrics. As an example, a
prominent cluster comprises classes representing animals. No-
tably, the nodes that attract a significant number of connections
are veterinarian office and underwater/ocean deep, indicating



places:/s/shoe_shop

places:/h/home_theater

places:/c/carrousel

places:/o/office_cubicles

places:/h/home_office

sun:/o/office

sun:/c/cubicle/office

in:television

in:screen

in:running shoe

in:home theater

in:monitor

in:Loafer

in:clog

in:carousel

in:plane

in:desktop computer

in:cowboy boot

in:shoe shop

in:desk

in:sandal

Fig. 4. Examples of strong edges between classes representing the same con-
cepts with slightly different names. The underscore prevented shoe shop and
home theater to be paired with their counterparts, whereas different wording
or spelling were responsible for mismatches in the case of cubicle/office and
carrousel.

terrestrial and aquatic species, respectively. Other classes fre-
quently assigned as outputs for animal classification include
aquarium, field/wild, watering hole, lawn, kennel/outdoor,
pet shop, tundra, and rainforest. Although these scenes are
generally acceptable for animals, and the species often align
with their habitats, the strength of certain associations suggests
potential network biases. For instance, the fact that most dogs
and domestic species are associated with veterinarian office or
kennel, instead of their typical environments such as a house
or a garden, implies that the model may classify scenes with
pets without adequately considering the background. This bias
could be attributed to the significantly higher occurrence of
pets in the veterinarian office class compared to other classes
in Places365. Finally, undesirable behaviour emerge from
clusters of unrelated concepts, that are very likely originated
by visual rather than semantic similarity: for instance, towers,
lighthouses and telescopes are all classified bank vault due to
their round shape.

VI. RESULTS

The effectiveness of the chosen OOD detection methods
is shown in Table VI, and the best score for each dataset
is highlighted in bold. The differences across datasets are
evident: most approaches are successful when dealing with the
Baseline, but struggle when the complexity increases. Moving
to InterDataset OOD Detection causes the first noticeable drop
as the ID and OOD distribution become closer. As observed
by the model’s worse performance on the WordNet ImageNet
datasets, the requirement for discrimination based on the
semantic content also impairs its capacity to identify outliers.
That becomes even more evident when more classes and
data sources are included, such as FACETS OOD Detection
datasets. The drop in performance is particularly evident for
OODL, which among the tested approaches is the only one
that relies on a decision function explicitly trained on each
dataset.

Although MSP is effective as a baseline, more advanced
methods often deliver better results. Techniques based on
input perturbation, specifically, ODIN and IP TS MLV fail
to outperform their baseline alternatives, TS and MLV. In
terms of AUROC, OODL appears to be a better choice for
less complex datasets. However, classifier-based measures like
TS and MLV generally surpass SVM on the FACETS OOD
Detection datasets, achieving higher scores even on simpler
benchmarks like WordNet and ImageNet.

The difference with respect to the adopted method could
be due to the difficulties faced by SVMs when the required
decision boundary becomes very complex, while the one with
respect to WordNet datasets is likely to be a consequence of
the manual labelling: it is possible that some of the labels
pander to existing network biases, rewarding it for its mistakes
rather than applying penalties. such as incorrect labeling of
certain animal categories in ImageNet. These errors can lead to
false positives in OOD detections, where test images featuring
these animals in unfamiliar settings were incorrectly labeled
as ID but received high scores from softmax and logit-based
methods. This misclassification inflates performance metrics
but is an outcome of both the ground truth label and classifier
output being incorrect.

The last aspect investigated was the dependability and
robustness of the OOD detection metric in identifying mis-
classified examples in the ID dataset Table VII. This is crucial
as it affects how well the approach can identify incorrect
classification results. Although MSP did not perform optimally
in OOD detection, it emerged as the best option among those
tested in terms of identifying misclassified samples. In this
context, the softmax approach gains an advantage due to the
absence of unfamiliar classes, consistent with the key ”closed
world assumption”. During the normalization process, the
total probability of the output classes must equal 1, resulting
in higher confidence levels for correctly classified instances
while reducing the ability to detect outliers. Outlier detection
techniques such as OODL do not achieve high performance in
this task, as expected given the way in which the additional
classifier is trained on the ID distribution.

VII. CONCLUSION

With a focus on the semantic content of the images, the
present study focuses on the problem of OOD identification
in neural networks by considering as the main case study a
scene CNN classifier that was pre-trained on the Places365
dataset. Several OOD detection techniques were analyzed.
However, in contrast to previous experimental comparison,
we sought to design a benchmark that better reflects practical
applications. Consequently, instead of popular toy datasets like
CIFAR10, CIFAR100, or TinyImageNet, we leveraged higher
resolution images from ImageNet and Places365 to design
a more realistic and challenging benchmark comprising both
far-OOD and near-OOD samples. Similar to previous studies
[38, 39], our benchmark emphasizes OOD classification as a
measure of semantic similarity by assigning each individual
class as ID or OOD based on the semantic content, rather



TABLE VI
OOD DETECTION RESULTS: THE BEST SCORE IS HIGHLIGHTED IN BOLD. SPECIFICALLY, FOR EACH DATASET, THE OOD DETECTION TECHNIQUES THAT

SCORE THE SMALLEST FPR@95%TPR, THE SMALLEST DETECTION ERROR, AND THE LARGEST AUROC ARE HIGHLIGHTED. IF MULTIPLE TECHNIQUES
HAVE EQUAL PERFORMANCE, BOTH SCORES ARE HIGHLIGHTED IN BOLD.

FPR@95%TPR ↓ / Detection Error ↓ / AUROC ↑

MSP [20] TS [21] MLV [24] ODIN [21] IP TS MLV [21] OODL [12]

Baseline 22.36/13.68/94.79 4.50/ 4.75/99.02 4.50/ 4.74/99.02 10.34/ 7.67/97.82 10.34/ 7.67/97.82 0.37/ 1.61/99.81

InterDataset OOD Detection 86.85/45.91/64.40 79.69/42.34/69.79 79.67/42.33/69.79 84.43/44.72/65.73 84.46/44.72/65.74 80.83/42.92/71.30

WordNet ImageNet T40 87.22/46.11/63.99 81.28/43.14/68.91 81.27/43.14/68.91 85.27/45.13/64.84 85.26/45.13/64.85 82.06/43.53/70.93

WordNet ImageNet T45 87.64/46.32/63.44 82.16/43.58/68.05 82.15/43.58/68.05 86.44/45.72/63.80 86.43/45.71/63.81 83.19/44.09/70.24

WordNet ImageNet T50 88.66/46.83/62.28 85.30/45.15/66.29 85.30/45.15/66.29 88.14/46.56/62.30 88.14/46.56/62.30 85.37/45.18/69.54

FACETS OOD Detection T1 82.64/43.82/69.56 74.19/39.60/75.87 74.19/39.59/75.87 79.11/42.05/72.39 79.10/42.05/72.40 82.24/43.62/67.49

FACETS OOD Detection T2 82.44/43.72/69.83 74.01/39.51/76.38 74.02/39.51/76.38 78.92/41.96/72.70 78.93/41.96/72.70 81.49/43.25/68.43

TABLE VII
MISCLASSIFICATION DETECTION RESULTS ON PLACES365-STANDARD

(VAL)

FPR@95%TPR ↓ / Detection Error ↓ / AUROC ↑
MSP [20] TS [21] MLV [24] ODIN [21] IP TS MLV [21] OODL [12]

76.33/40.66/77.74 81.92/43.45/70.84 81.91/43.45/70.84 81.83/43.41/71.23 81.84/43.41/71.23 96.40/49.97/47.24

than simply rely on the dataset of origin. To this aim, we
compared manual and automatic labelling. For the latter,
we leveraged the WordNet database and computed similarity
based on concepts, resulting in the creation of three WordNet-
ImageNet datasets.

Several experimental decisions were guided by practical
considerations or limitations. For example, our choice to con-
centrate on OOD detection approaches that did not necessitate
re-training the classifier was prompted by the availability of
pre-trained models provided by third-party sources. Hence,
there is ample room for further advancements. Using a single
ID distribution and model is a limitation of the current study.
Likewise, the present study could be extended by experiment-
ing with additional OOD detection strategies and investigating
an ensemble of metrics.

During the development of the datasets, efforts were made
to create a finer OOD label assignment, in which each class,
rather than dataset, was designated as ID or OOD. Although
this is a positive step forward, it is still far from being
optimal, especially when handling object-centric datasets in
which images belonging to the same category may depict
vastly differing scenes, requiring some to be categorized as
ID and others as OOD. Manual inspection of every image
is impractical, hence the operation must be automated. At
the class level, enhancing the semantic distance metric would
also improve the labeling of the WordNet-ImageNet datasets,
and facilitate a more accurate comparison between concept
proximity and output OOD scores.
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