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We present a Calderón preconditioning scheme for the symmetric formulation of the 
forward electroencephalographic (EEG) problem that cures both the dense-discretization 
and the high-contrast breakdown. Unlike existing Calderón schemes presented for the 
EEG problem, it is refinement-free, that is, the electrostatic integral operators are not 
discretized with basis functions defined on the barycentrically-refined dual mesh. In fact, 
in the preconditioner, we reuse the original system matrix thus reducing computational 
burden. Moreover, the proposed formulation gives rise to a symmetric, positive-definite 
system of linear equations, which allows the application of the conjugate gradient method, 
an iterative method that exhibits a smaller computational cost compared to other Krylov 
subspace methods applicable to non-symmetric problems. Numerical results corroborate 
the theoretical analysis and attest of the efficacy of the proposed preconditioning technique 
on both canonical and realistic scenarios.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Brain imaging techniques aim at fully determining the inner neural activity in terms of location, orientation, and intensity 
of the primary current, starting from some direct or indirect measurements of its correlated effects [50,9]. Among them, 
source localization algorithms based on electroencephalographic (EEG) data are widely appreciated because of their high 
temporal resolution [38,39] and of their compatibility with other imaging strategies, such as magnetoencephalography (MEG) 
[54], magnetic resonance imaging (MRI) [11,33], and positron emission tomography (PET) [55]. This technology aims at 
reconstructing the equivalent volume brain sources from the measurement of the resulting potential distribution at the 
scalp [34,47], which is known as the inverse EEG problem. Another inverse problem relying on EEG modeling is the one 
of inferring the electrical parameters of the biological tissues, that is, the electrical conductivity and the permittivity, from 
surfacic electroencephalographic measurements, known as electrical impedance tomography (EIT) [14].
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These problems are usually addressed through multiple iterative solutions of the forward EEG problem [27,19,24], which 
is the evaluation of the voltage function at the scalp resulting from a known electric activity inside the head [28,29]. It 
follows, on the one hand, that the accuracy achievable in the resolution of the inverse problem is strictly limited by the 
one of the forward EEG problem; on the other hand, the resolution time is also affected by the complexity of the numerical 
model describing the forward problem [4]. These considerations evidence the crucial importance of determining realistic 
source and head models and defining affordable and efficient numerical schemes for the approximation of the electrostatic 
potential.

As far as the source modeling is concerned, equivalent currents, formed by the superposition of the effects of a number 
of infinitesimal dipoles, are widely considered to be an adequate representation of the electric brain activity whose effects 
are observed from the scalp [21], so that the majority of available numerical schemes relies on this approximation [19]. 
Many disparate head models have instead been developed and are still under active investigation [19]. They can be subdi-
vided in two main categories. The methods of one of the categories assume that the electrical properties of the biological 
tissues constituting the head vary continuously so that a discretization of the full head volume is needed to numerically 
solve the problem; the formulations adopted in this case are both differential, traceable to the class of finite element method 
[7] or finite difference methods [13], and integral [49,30] in nature, and can easily handle heterogeneities and anisotropies 
of the head tissues conductivity profiles. Alternatively, the methods of the other category assume piecewise-homogeneity, 
which allows subdividing the overall head into N compartments, representing separate biological tissues with distinct char-
acteristics, such as, for example, the skin, the skull, the gray matter, and the white matter, and to approximate the above 
mentioned electrical properties as constant in each compartment [19]. By following this approach, there is no need for 
discretizing the full volumetric domain. Instead, a boundary element method (BEM) for the discretization of the integral 
formulation applied on the boundaries of the compartments only can be employed [36], allowing the reduction of the di-
mensionality of the problem by one. Moreover, boundary integral formulations applied to piecewise homogeneous head 
models can also handle anisotropies, as shown in [46]. The spherical head model (Fig. 3b), that is, the representation of the 
head as the union of constant conductivity nested layers with spherical boundaries, for which the analytic solution of the 
forward problem is available [20,66], and the realistic head model (Fig. 3c), where the compartments in which the physical 
parameters are assumed constant are of general shape, are two examples of head models falling into this last category.

An historical overview of the most commonly employed boundary element schemes employed to solve the forward EEG 
problem is available in [36]. The single- and double-layer approaches summarized there are based on a partial exploitation 
of the representation theorem [40,60]; the symmetric formulation instead, presented in [36], follows from a clever full use 
of the representation theorem and represents nowadays one of the most favorable choices for the numerical solution of the 
forward problem [19,64]. The symmetric formulation has been shown to provide a higher level of accuracy in its results 
when compared to the single- and double-layer approaches, especially for shallow sources approaching the boundaries 
of the compartments [36,64], which in turns leads to a higher reliability of the source localization algorithms based on 
it. This improvement comes at the cost of an higher computational complexity, that is, the linear system to be solved 
is approximately double in size with respect to the ones obtained from the single- and double-layer formulations. The 
increased cost is partially mitigated since the resulting interaction matrix becomes increasingly sparse when the number of 
compartments of the head model employed increases. Differently from the single- and double-layer formulations, which are 
second-kind integral equations, the symmetric formulation is of the first kind. As a consequence, its discretization results 
in a linear system whose conditioning worsens when the number of unknowns increases; this causes an increase of the 
solution time, a degradation of the solution accuracy, and, in some cases, prevents convergence altogether. This limitation 
actually prevents the application of the unpreconditioned symmetric formulation on complex realistic structures and opens 
the way of research toward efficient and effective preconditioning strategies, resulting in boundary integral formulations for 
the solution of the EEG forward problem that provide the same accuracy as the symmetric formulation and are immune to 
numerical instabilities.

In the last years, preconditioning strategies based on the Calderón identities have gained in popularity in the computa-
tional electromagnetics community [5]. They yield spectral equivalents of the inverse of the integral operators considered 
that are capable of preconditioning the formulation with respect to most sources of ill-conditioning, for example, denser 
discretization or lower frequencies. Calderón preconditioning has been successfully applied to full-wave vectorial electro-
magnetic problems, such as the scattering from metallic [6,8] and penetrable objects [10], as well as to scalar, acoustic 
problems [63,61]. A Calderón preconditioning strategy for the EEG symmetric formulation has also been proposed in [43]. 
The Calderón preconditioning approach yields well-conditioned formulations in all these cases, at the cost of building a dual 
form of the BEM interaction matrix. Most of these schemes require the evaluation of dense electromagnetic operators on 
dual basis functions defined on the dual mesh, constructed for example via a barycentric refinement of the primal mesh, 
which leads to a non-negligible computational burden.

Recently, a refinement-free Calderón preconditioning strategy for the electric field integral equation (EFIE) has been 
proposed [2], which avoids a second discretization of the electric field integral equation (EFIE) with dual basis functions by 
leveraging suitably modified graph Laplacians. It is not clear, however, if and how such an approach can be applied to the 
symmetric formulation since the overall operator is block structured. While the results in [2] imply that the Laplacian is 
suitable to precondition the single layer and the hypersingular operator, the effect of the preconditioner on the off-diagonal 
blocks containing the double-layer and the adjoint double-layer operator can jeopardize the preconditioning effect.
2
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In this work, we propose a Calderón-like preconditioning for the symmetric formulation without resorting to integral op-
erators discretized on the dual mesh, thereby reducing the computational cost compared with standard Calderón schemes 
such as [43]. The proposed formulation gives rise to a well-conditioned, symmetric, positive definite system of linear equa-
tions, amenable to fast iterative solvers, which remains stable under the different sources of ill-conditioning affecting the 
solution time of the non-preconditioned formulation. Inspired by[2], where graph Laplacians were used to precondition 
the EFIE, we obtain this by leveraging the Laplace-Beltrami operator in our preconditioning scheme, which can cheaply be 
discretized on the primal and on the dual mesh. In contrast to [2], special care needs to be taken in our theoretical frame-
work given that the underlying operator of the symmetric formulation is block structured and that the final formulation 
is required not only to be immune to the dense-discretization, but also to the high-contrast breakdown [43]. Moreover, 
a consistent deflation strategy is introduced to avoid the nullspace of the symmetric formulation and the Laplace-Beltrami 
operator, which was not needed in [43,2]. Numerical results demonstrate the effectiveness of our scheme, both for canonical 
and realistic head models. Preliminary results, devoid of the theoretical apparatus presented here, have been presented in 
the conference contribution [25].

This paper is organized as follows: in Section 2 we review the forward EEG problem and the symmetric formulation 
for its numerical solution, providing the background and notation necessary for the following developments. Section 3
focuses on the numerical analysis of the two main sources of ill-conditioning plaguing the symmetric formulation. The 
novel preconditioning strategy is presented in Section 4 following a step-by-step process: after the introduction of a proof-
of-concept preconditioning example, we first propose a deflation strategy to obtain a non-singular symmetric formulation, 
before finally outlining the proposed well-posed, well-conditioned formulation, whose favorable stability properties are 
proved in Section 4.4. Finally, Section 5 complements the theoretical analysis with a numerical study of the formulations 
under test, to illustrate the effectiveness of the preconditioning. This analysis is applied to both canonical spherical models, 
for which a comparison with analytic solutions is possible, and realistic models generated from magnetic resonance imaging 
(MRI) data. Moreover, source localization algorithms relying on the proposed formulation have been applied on the realistic 
head model, validating the use of this technology for neuroimaging purposes in biomedical applications.

2. Background and notation

In this section, we review the symmetric formulation for the solution of the forward EEG problem and set the notation 
for the elements needed to introduce the proposed formulation.

2.1. The forward EEG problem

The neural activity (i.e., the simultaneous activation of neurons situated in a region of the cortex) can be modeled by 
a primary current distribution, usually approximated as a combination of point dipoles [21]. The forward EEG problem 
consists in determining the potential induced by this current at the scalp.

Mathematically, the problem is described by Poisson’s equation, which is obtained from the Maxwell’s system in its 
quasi-static approximation [52]. This approximation is justified by the low frequency of the neural signals (mainly in the 
order of 1 Hz to 100 Hz [19]). Poisson’s equation

∇ · (σ∇V
) = ∇ · j (1)

describes the relation between the dipolar current inside the brain j (i.e., the source term of the problem) and the resulting 
potential distribution, V . In the forward problem, we are interested in solving the problem for spatial points r ∈ Γ :=
∂Ω , where Ω ⊂ R3 is an open set modeling the head, and the conductivity distribution σ(r) of the biological tissues is 
considered known.

Since the conductivity outside the head is zero, we have the Neumann boundary condition

σ∂n V = 0 for r ∈ Γ , (2)

where n is the outward unit normal vector field characterizing the boundary Γ of the head domain. Due to the Neumann 
boundary condition, V is determined up to a constant. This constant has no physical meaning, and, in order to obtain a 
unique solution, we require that V is mean-value free on the boundary, that is, 

∫
Γ

V dS(r) = 0.

2.2. The symmetric formulation

The symmetric formulation, which can be numerically solved in the BEM framework, relies on the piecewise-
homogeneity assumption mentioned above, that is, we model the head as a set of non-overlapping, homogeneous com-
partments, representing distinct biological tissues. Mathematically, we describe this by introducing a set of N nested, open 
subsets of Ω , denoted as {Ωi}N

i=1, with smooth boundaries, such that ∪N
i=1Ω̄i = Ω̄ and Ωi ∩ Ω j �=i = ∅. Furthermore, Γi

denotes the boundary defined by Γi := Ω̄i ∩ Ω̄i+1, on which ni is the unit-length normal vector directed towards Ωi+1, and 
ΩN+1 is the exterior of Ω , that is, ΩN+1 := R3\Ω̄ . The notation employed is represented in Fig. 3a. In this work, we will 
assume isotropic conductivity modeled by the piecewise constant function
3
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σ(r) =
N+1∑
i=1

σi 1Ωi (r) , (3)

where σi is scalar and 1Ωi (r) is the indicator function of Ωi

1Ωi (r) :=
{

1 if r ∈ Ωi ,

0 otherwise.
(4)

Under these conditions, the forward EEG problem can be rewritten as

σiΔV = ∇ · j in Ωi , (5)

[V ]Γi = 0 ∀i ≤ N , (6)

[σ∂ni V ]Γi = 0 ∀i ≤ N, (7)

where the symbol [·]Γi denotes the jump of a function at the interface Γi , as defined in [36]. Boundary conditions (6) and 
(7) enforce the continuity of the potential and of the current across compartments.

The problem described by (5)-(7) can be recast as an integral equation. One such integral equation is the symmetric 
formulation, which is derived by exploiting the representation theorem [40, Theorem 3.1.1] and expressing the complete 
solution V as the sum of an homogeneous solution accounting for the source term and an harmonic function chosen to 
satisfy the boundary conditions (6) and (7). The homogeneous solution in free space can be obtained by application of the 
potential theory. Let

G(r, r′) := 1

4π|r − r′| (8)

be the Green’s function associated with the Laplace equation [22] [60, Equation 5.7], then v(r) = − 
∫

(∇ · j(r)) G(r, r′)dr′
satisfies Δv = ∇ · j for all r ∈R3. Following [36], we define then the piecewise source function fΩi (r) := (∇ · j(r)) · 1Ωi (r)

and introduce

vΩi (r) := −
∫
Ωi

fΩi (r) G(r, r′)dr′ . (9)

In the symmetric formulation, the harmonic function is constructed as

uΩi :=
{

V − vΩi
σi

in Ωi ,

− vΩi
σi

elsewhere,
(10)

from which a system of 2N integral equations can be derived (see [36] for further details), reading⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∂n vΩi+1)Γi − (∂n vΩi )Γi = −D∗
i,i−1 pi−1 + 2D∗

ii pi −D∗
i,i+1 pi+1

+σiNi,i−1 V i−1 − (σi + σi+1)Nii V i + σi+1Ni,i+1 V i+1

σ−1
i+1(vΩi+1)Γi − σ−1

i (vΩi )Γi = Di,i−1 V i−1 − 2Dii V i +Di,i+1 V i+1

−σ−1
i Si,i−1 pi−1 + (σ−1

i + σ−1
i+1)Sii pi − σ−1

i+1Si,i+1 pi+1.

(11)

The unknowns of the system are V i := (V )Γi , denoting the restriction of V to Γi , and pi := σi[ ∂ni V ]Γi . The integral operators 
involved in equations (11) are defined as

Si j : H−1/2(Γi) → H1/2(Γ j), Si jψ(r) :=
∫
Γ j

G(r − r′)ψ(r′)dS(r′) (12)

Di j : H1/2(Γi) → H1/2(Γ j), Di jφ(r) := p.v.

∫
Γ j

∂n′
i
G(r − r′)φ(r′)dS(r′) (13)

D∗
i j : H−1/2(Γi) → H−1/2(Γ j), D∗

i jψ(r) := p.v.

∫
Γ j

∂n j G(r − r′)ψ(r′)dS(r′) (14)

Ni j : H1/2(Γi) → H−1/2(Γ j), Ni jφ(r) := f.p.

∫
Γ j

∂n j ∂n′
i
G(r − r′)φ(r′)dS(r′) (15)
4
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and are respectively named single-layer, double-layer, adjoint double-layer, and hypersingular operators. The definition of 
the Sobolev spaces Hs , s ∈ {−1/2, 1/2}, in the mapping properties above can be found in [60,53]. In the equations above, 
p.v. and f.p. indicate the Cauchy principal value and the Hadamard finite part. The subscript i j denotes that these operators 
act on a function defined on Γi and yield a function on Γ j ; if this subscript is omitted, i = j is implicitly assumed.

2.3. Discretization of the symmetric formulation

We employ the BEM to discretize and numerically solve the system of equations (11). To this end, a mesher triangulates 
the surfaces Γi resulting in a set of N meshes Γh,i , i = 1, . . . , N . In the following, the h subscript will be omitted in the case 
its meaning is already clear from the context. Each Γh,i is composed of NC,i triangular cells, {ci,n}NC,i

n=1, of area Ai,n , and NV ,i

vertices, {vi,m}NV ,1
m=1, and is characterized by the mesh refinement parameter hi that is defined as the average length of the 

edges of Γh,i . Over each Γh,i , we define a set of piecewise constant {πi,n}NC,i
n=1 patch functions and a set of piecewise linear 

{λi,m}NV ,i
m=1 pyramid functions as

πi,n(r) :=
{

1 for r ∈ ci,n,

0 elsewhere,
and λi,m(r) :=

⎧⎪⎨
⎪⎩

1 for r = vi,m,

0 for r = vi,p �=m,

linear elsewhere.

(16)

For the boundary element spaces spanned by these functions, Xπi :− span{πi,n}NC,i
n=1 and Xλi :− span{λi,m}NV ,i

m=1, we have Xπi ⊂
H−1/2(Γh,i), Xλi ⊂ H1/2(Γh,i) [60].

Following the standard Galerkin procedure, we expand the unknowns of the system in (11) as

V i ≈
NV ,i∑
m=1

li,mλi,m and pi ≈
NC,i∑
n=1

pi,nπi,n (17)

and we test with pyramid and patch functions resulting in the linear system of equations

Z

(
l
p

)
=

(
b
c

)
. (18)

The block matrix Z can be represented as

Z =
(
N D∗
D S

)
, (19)

where each block is another block matrix composed out of N2 blocks, whose position inside {N, D∗, D, S} will be identified 
by a block row index and a block column index. By denoting the blocks of {N, D∗, D, S} in block row x and block column 
y, for x, y = 1, ..., N , with the superscript xy , their definitions are

Nxy :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(σx + σx+1)Nxy if x = y

−σyNxy if x = y − 1

−σxNxy if x = y + 1

0 ·Nxy otherwise

, D∗xy :=

⎧⎪⎨
⎪⎩

−2D∗
xy if x = y

D∗
xy if x = y ± 1

0 ·D∗
xy otherwise

,

Dxy :=

⎧⎪⎨
⎪⎩

−2Dxy if x = y

Dxy if x = y ± 1

0 ·Dxy otherwise

, Sxy :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(σ−1
x + σ−1

x+1)Sxy if x = y

−σ−1
y Sxy if x = y − 1

−σ−1
x Sxy if x = y + 1

0 · Sxy otherwise

.

The matrices introduced in the previous equations are defined as

(Nxy)mn := (
λx,m,Nxyλy,n

)
L2(Γx)

, (20)

(D∗
xy)mn := (

λx,m,D∗
xyπy,n

)
L2(Γx)

, (21)

(Dxy)mn := (
πx,m,Dxyλy,n

)
L2(Γx)

, (22)

(Sxy)mn := (
πx,m,Sxyπy,n

)
L2(Γx)

. (23)

The blocks of the right-hand-side (RHS) vector in equation (18) can be written as
5
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Fig. 1. (a) Primal, (b) barycentrically refined, and (c) dual mesh, denoted respectively as Γh,i , Γ̄h,i , and Γ̃h,i . The vertices are in red, the cells are in green. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

b =

⎛
⎜⎜⎜⎝
b1
b2
...

bN

⎞
⎟⎟⎟⎠ , c =

⎛
⎜⎜⎜⎝
c1
c2
...

cN

⎞
⎟⎟⎟⎠ , (24)

where

(bi)m := (
λi,m, (∂n vΩi+1 − ∂n vΩi )

)
L2(Γi)

, (25)

(ci)n :=
(
πi,n, (σ

−1
i+1 vΩi+1 − σ−1

i vΩi )
)

L2(Γi)
. (26)

The blocks of the unknown vector in equation (18) can be written as

l =

⎛
⎜⎜⎜⎝
l1
l2
...

lN

⎞
⎟⎟⎟⎠ , p =

⎛
⎜⎜⎜⎝
p1
p2
...

pN

⎞
⎟⎟⎟⎠ , (27)

whose elements are simply (li)m := li,m and (pi)n := pi,n . The elements of li are the voltages at the vertices of Γh,i due to 
the interpolatory nature of the basis functions. As a final remark, the last block-row and the last block-column of the linear 
system in (18) need to be eliminated [36], as the exterior conductivity σN+1 is null.

2.4. Operators and dual basis functions needed for the new formulation

This section establishes further operators and basis functions needed for the new formulation. First, we barycentrically 
refine Γh,i resulting in Γ̄h,i . Using Γ̄h,i we obtain the dual mesh Γ̃h,i , where the vertices of Γh,i have become cells and the 
cells of Γh,i have become vertices (see Fig. 1). On Γ̃h,i , we define dual pyramid basis functions λ̃i,n , which are attached to 
the dual vertices ṽ i,n , defined by

λ̃i,n(r) :=
7∑

x=1

1

NoC(v̄ i,n,x)
λ̄i,n,x(r), (28)

where λ̄i,n,x is the pyramid function with domain on the barycentrically refined mesh Γ̄h,i , attached to the xth vertex of 
Γ̄h,i , {v̄ i,n,x}7

x=1, lying on the primal cell ci,n , and the function NoC(v̄ i,n,x) gives the number of primal cells connected to the 
vertex v̄ i,n,x. A graphical representation of the dual pyramid basis function is shown in Fig. 2b.

In the following, we will also need the identity I and the Laplace-Beltrami ΔΓi operators. They can be discretized 
through their application to a given set of expansion functions and the testing with a set of test basis functions. For the 
identity operator, the outcome of this operation is usually named Gram matrix, denoted in this work by Gi, f g , where 
f , g ∈ {π, λ, ̃λ} indicate the type of test and expansion functions employed in the discretization

(Gi, f g)mn := (
f i,m(r), gi,n(r)

)
L2(Γi)

. (29)

The discretization of the Laplace-Beltrami operator by means of pyramid and dual pyramid functions leads to the matrices

(Δi)mn := (∇Γi λi,m,∇Γi λi,n
)

L2(Γi)
, (30)

(Δ̃i)mn :=
(
∇Γi λ̃i,m,∇Γi λ̃i,n

)
L2(Γi)

, (31)
6
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Fig. 2. (a) Primal and (b) dual pyramid basis function representation. (c) Dual pyramid basis function support: the numbers denote the value of the function 
at the point.

where ∇Γi denotes the surface gradient operator [53, Equation 4.200]. The constant function along Γi , 1(r) := 1, is an 
eigensolution of the Laplace-Beltrami operator, that is ΔΓi 1 = 0. Hence, the one-dimensional nullspace of the Laplace-
Beltrami operator is spanned by the constant function, in symbols ker ΔΓi = span{1}. Due to our choice of basis and test 
functions, Δi and Δ̃i have, likewise, a non-trivial nullspace given by 1NV ,i and 1NC,i , where 1n denotes the all-one vector in 
Rn .

3. Analysis of the conditioning of the symmetric formulation

The ill-conditioning plaguing the symmetric formulation can be traced back to two distinct numerical effects: the dense-
discretization breakdown (i.e., the increase of the condition number for h → 0, where h := mini hi ) and the high-contrast 
breakdown (i.e. the increase of the condition number for an increasing conductivity contrast between adjacent compart-
ments).

The stability analysis proposed here aims at characterizing the discrete spectral behavior of the formulation, in particular 
through the estimation of the condition number of Z [48, Equation 2.1.25], cond(Z), given by the ratio between the highest 
and the lowest singular values of Z which is known to impact, for most iterative solvers, both the speed of convergence 
and the achievable accuracy (in finite precision arithmetic) [48].

3.1. Dense-discretization behavior

In this section, we will study the stability properties of the discrete symmetric formulation when h decreases. We base 
our analysis on the spherical harmonics decomposition of the operator; thus, we employ a spherical multi-compartment 
head model. We do not lose generality here, as realistic multi-compartment head models will have similar spectral prop-
erties since a smooth deformation of a geometry gives rise to a compact perturbation of the electrostatic operators under 
study [57,35]. The assumption of a smooth deformation is uncritical as human heads typically do not have sharp edges and 
corners.

We consider an head model characterized by N concentric, spherical boundaries {Γi}N
i=1 with radius {Ri}N

i=1. The operator 
under study

Z =
(
Nb D∗

b
Db Sb

)
(32)

is a block integral operator, where each block operator is another block operator composed of N2 blocks. By denoting the 
operator in block row x and block column y of {Nb, D∗

b , Db, Sb}, for x, y = 1, ..., N , with the superscript xy , we have

N xy
b :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(σx + σx+1)Nxy if x = y

−σyNxy if x = y − 1

−σxNxy if x = y + 1

0 ·Nxy otherwise

D∗xy
b :=

⎧⎪⎨
⎪⎩

−2D∗
xy if x = y

D∗
xy if x = y ± 1

0 ·D∗
xy otherwise

Dxy
b :=

⎧⎪⎨
⎪⎩

−2Dxy if x = y

Dxy if x = y ± 1

0 ·Dxy otherwise

Sxy
b :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(σ−1
x + σ−1

x+1)Sxy if x = y

−σ−1
y Sxy if x = y − 1

−σ−1
x Sxy if x = y + 1

0 · Sxy otherwise

.

7
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We begin our analysis by noting that due to the compactness of the double-layer operator Dxy (13) and its adjoint coun-
terpart D∗

xy (14) on smooth domains [17], the blocks Db , D∗
b are block operators, where each block is a compact operator; 

hence, Db , D∗
b are compact (see Appendix A for a proof). Moreover, the single-layer Si, j �=i (12) and the hypersingular op-

erators Ni, j �=i (15) are compact as their kernels are continuous provided the analyticity of the Green’s function evaluated 
in r far enough from r′ [53, Chapter 5.1.3], [16, Theorem 1.10]. Finally, the operator Z can be decomposed into the sum 
of a block operator involving only its diagonal blocks and another block operator, KZ , containing the off-diagonal, compact 
contributions,

Z = diag
(
(σ1 + σ2)N11, (σ2 + σ3)N22, ..., (σN + σN+1)NN N ,

(σ−1
1 + σ−1

2 )S11, (σ
−1
2 + σ−1

3 )S22, ..., (σ
−1
N + σ−1

N+1)SN N
) +KZ . (33)

The contribution KZ , a block operator with compact blocks, is compact, as proved in Appendix A. Since its eigenvalues 
accumulate at zero when increasing the number of degrees of freedom of the problem [16, Theorem 1.34], the dominant 
spectral properties of Z are determined by the ones of the first, non-compact, operator in the summation (33). Therefore, 
we have to study the eigenvalues of the first term in (33), given by the union of the sets of eigenvalues of each diagonal 
block. We obtain those eigenvalues by noting that the spherical harmonic function Ylm of degree l and order m with l ≥ 0
and |m| < l (for a formal definition, see [41, Definition 14.30.1]) is an eigenfunction of the single-layer and the hypersingular 
operator [32]

Sii Ylm = λl,Sii Ylm , (34)

Nii Ylm = λl,Nii Ylm , (35)

where the eigenvalues of the previous equations are

λl,Sii = Ri

2l + 1
, with multiplicity 2l + 1 (36)

λl,Nii = − l(l + 1)

Ri(2l + 1)
, with multiplicity 2l + 1 . (37)

Due to the definiteness property of the self-adjoint operators Sii , Nii , their singular values are simply obtained as σl,Sii =
λl,Sii and σl,Nii = −λl,Nii .

The resulting set of eigenvalues of (Z −KZ ) reads

eig(Z −KZ ) ={(σ1 + σ2)λl,N11 , (σ2 + σ3)λl,N22 , ..., (σN + σN+1)λl,NN N }∪
{(σ−1

1 + σ−1
2 )λl,S11 , (σ−1

2 + σ−1
3 )λl,S22 , ..., (σ−1

N−1 + σ−1
N )λl,S N−1,N−1} . (38)

Hence, we can recognize different branches of eigenvalues of (Z − KZ ): on one side, those associated to Nii , (σi +
σi+1) λl,Nii , diverging towards minus infinity with the order l of the corresponding eigenfunction, and, on the other side, 
those associated to Sii , (σ−1

i + σ−1
i+1) λl,Sii , converging toward 0 for l → ∞.

To obtain a statement on how the condition number grows in hi , we note that the maximum degree l supported by a 
mesh resolution hi behaves asymptotically as l = O(Rih

−1
i ) [3]. We then find

σl,Nii = −λl,Nii = O(R−1
i l) = O(h−1

i ) , (39)

σl,Sii = λl,Sii = O(Ril
−1) = O(hi), (40)

showing the ill-conditioned nature of the symmetric formulation and resulting in a condition number growth of its dis-
cretization by means of an L2-orthonormal basis as O(h−2).

3.2. High-contrast behavior

From the expression of the eigenvalues of (Z −KZ ) on a spherical head model (38), another source of ill conditioning 
can be verified, related to the conductivity contrast between different compartments of the head domain Ω . We define the 
conductivity ratio between the adjacent compartments Ωi and Ωi+1 as

CRi := max(σi, σi+1)

min(σi, σi+1)
, (41)

and can see that the condition number grows with increasing CRi by first considering that, asymptotically, CRi → ∞ corre-
sponds either to the condition (σi + σi+1) → ∞ when max(σi, σi+1) → ∞, or to (σ−1

i + σ−1
i+1) → 0 when min(σi, σi+1) → 0. 

Then, the absolute difference between the branch of eigenvalues (σi + σi+1) λl,Nii and the branch (σ−1
i + σ−1

i+1) λl,Sii grows 
when increasing the parameter CRi , leading to an increasing condition number. Therefore, we conclude that the instability 
8
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of the symmetric formulation is worsened in presence of high-contrast models. The high-contrast behavior, together with 
the dense-discretization ill-conditioning outlined in the previous Section 3.1, actually places a limit on the effective use of 
the symmetric formulation applied to realistic scenarios, where the head model is characterized by high-contrasts between 
the skull and the nearby tissues and the meshes are heavily refined, in order to capture small anatomical details since high 
condition numbers can lead to slowly or non-converging iterative solvers.

4. The new formulation

The preconditioning strategy proposed in this work makes the symmetric formulation immune to both the dense-
discretization and the high-contrast breakdowns. Differently from standard Calderón approaches, ours is obtained at contin-
uous level through the product of three operators. To clarify the ideas, before introducing the complete formulation, we will 
consider the regularization of the single-layer operator only as a proof of concept.

4.1. A proof of concept

The single-layer operator S11 : H−1/2(Γ1) → H1/2(Γ1), where Γ1 is smooth, is a pseudo-differential operator of order −1
[61]. From its boundedness and H−1/2−ellipticity [60, Equation 6.8], it follows that, for any f ∈ H1/2(Γ1), the solution of the 
equation Su = f is unique (Lax-Milgram theorem, [60, Theorem 3.4]). However, as can be seen from the spectral analysis 
in Section 3.1, this integral equation is first-kind in nature and its discretization gives rise to an ill-conditioned system 
of linear equations. As suggested in [61], a preconditioning operator for S can be constructed by explicitly evaluating 
the inverse of the principal symbol of S and by finding its associated self-adjoint, elliptic preconditioning operator, of 
pseudodifferential order 1. This strategy, better known as Calderón preconditioning, has a theoretical basis in the Calderón 
identity [40, Equation 3.1.45]

−NS = I
4

−D∗2, (42)

stating that the product of the hypersingular and the single-layer operator gives rise to a second kind operator.
Other possibilities exist, however. We consider for example the operator S11ΔΓ1S11, analyzed in [42], where the Laplace-

Beltrami operator ΔΓ1 : Hα(Γ1) → Hα−2(Γ1) is a pseudo-differential operator of order 2. The product S11ΔΓ1 : H−1/2(Γ1) →
H−3/2(Γ1) satisfies the condition of being of order 1, so it could give rise to a suitable left preconditioner for S11 . The 
favorable conditioning properties of S11ΔΓ1S11 have been shown in [42], where, by explicit expansion of the product, 
S11ΔΓ1S11 has been proved to be a second-kind integral operator, with its spectrum accumulating at 1/4,

S11ΔΓ1S11 = I
4

+KS11ΔΓ1S11 , (43)

where KS11ΔΓ1S11 is compact. It follows that the matrix G−1/2
1,ππ S11G

−1
1,λ̃π
Δ̃1G

−1
1,πλ̃
S11G

−1/2
1,ππ , discretizing the second kind 

operator SΔΓ1S by means of an orthonormal set of basis functions, is well-conditioned up to its nullspace and its spectrum 
accumulates at the point 1/4.

However, the discrete preconditioning presented above is in general not allowed, because of the one-dimensional 
nullspace of Δ̃1, which is spanned by the all-one vector. Indeed, the application of a singular preconditioner to a non-
singular system of linear equations causes a loss of information which prevents recovering the solution of the original prob-
lem. To overcome this issue, following the approach presented in [61], we introduce the operator Δ̂Γi : Hα(Γi) → Hα−2(Γi)

defined by the bilinear form(
v, Δ̂Γi w

)
L2(Γi)

:= (∇Γi w,∇Γi v
)

L2(Γi)
+ (1, w)L2(Γi)

(1, v)L2(Γi)
. (44)

The operator Δ̂Γi is invertible. Therefore, the unique solution of the problem

Δ̂Γi w = g (45)

is also a solution of the ill-posed problem

ΔΓi w = g (46)

if g satisfies the solvability condition 
∫
Γi

gdS = 0. The discretizations of Δ̂Γi by means of pyramid functions defined on Γi ,

Δ̂i :=Δi +GT
i,λλ1NV ,i 1

T
NV ,i
Gi,λλ , (47)

and the one by means of dual pyramid functions defined on Γ̃i ,

ˆ̃
Δi := Δ̃i +GT 1NC,i 1

T
N G ˜ ˜ , (48)
i,λ̃λ̃ C,i i,λλ

9
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are non-singular matrices. As in the case of S11ΔΓ1S11, it can be shown that S11Δ̂Γ1S11 is a second-kind integral operator 
accumulating at 1/4. Indeed, by expanding its weak form, following the steps in [42], one obtains

(S11Δ̂Γ1S11 v, w)L2(Γ1) = 1

4
(v, w)L2(Γ1) + (KS11ΔΓ1S11 v, w)L2(Γ1) − (1,S11 v)L2(Γ1)(1, w)L2(Γ1). (49)

Since the term (1, S11 v)L2(Γ1)(1, w)L2(Γ1) represents the bilinear form of a separable operator with finite dimensional range 
, S11Δ̂Γ1S11 is a second-kind operator and its strong form can be written as

S11Δ̂Γ1S11 = I
4

+KS11Δ̂Γ1S11
, (50)

where KS11Δ̂Γ1S11
is compact. Thus, given f ∈ H1/2(Γ1) and the vector of coefficients of its linear expansion in patch basis 

function f , the system of linear equations

S11G
−1
1,λ̃π

ˆ̃
Δ1G

−1
1,πλ̃
S11x = S11G

−1
1,λ̃π

ˆ̃
Δ1G

−1
1,πλ̃
f (51)

is non-singular and well-conditioned. Its unique solution coincides with the solution of the non-singular, but ill-conditioned, 
original problem S11x = f .

4.2. A non-singular symmetric formulation

As well-known from the literature [36], when the conductivity in ΩN+1 (the exterior region) is zero, as is customary in 
EEG scenarios, the symmetric formulation is not well-posed due to a one-dimensional nullspace. This characteristic reflects 
the indeterminacy of the electrostatic potential, defined from the relation E = −∇V up to a constant [36]. Specifically, we 
find the one-dimensional, non-trivial nullspace of matrix Z as the direction parallel to

ker(Z) =
[

1T
NV ,1

1T
NV ,2

... 1T
NV ,N

0T
NC,1

0T
NC,2

... 0T
NC,N−1

]T
, (52)

following from⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ni j1NV , j = 0NV ,i ,

Di−1,i1NV ,i = −Gππ,i−11NC,i−1 ,

Dii1NV ,i = − 1
2 Gππ,i1NC,i ,

Di+1,i1NV ,i = 0NC,i+1 ,

(53)

which are the discrete counterparts of the eigenrelations⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ni j1 = 0 ,

Di−1,i1 = −1 ,

Dii1 = − 1
2 1 ,

Di+1,i1 = 0 .

(54)

The first relation of system (53) identifies the non-trivial kernel of matrix Ni j discretizing the hypersingular operator applied 
to a function expanded in an interpolatory basis. The three last equations of (54) follow instead from a direct application 
of the representation theorem [40, Theorem 3.1.1]. Their validity can be shown for example by applying the representation 
formula in [40, Equation 3.1.7] to the scalar function u(r), defined as constant in the interior of Γi and null elsewhere.

A deflation strategy is needed to obtain a non-singular problem (i.e., admitting unique solution), whose application is 
physically equivalent to fixing a reference for the evaluation of the potential. To the purpose of its implementation, similarly 
to what done in the previous section, we use the operator N̂ii : H1/2(Γi) → H−1/2(Γi) defined in [61] by the bilinear form(

N̂ii v, w
)

L2(Γi)
:= (

Nii v, w
)

L2(Γi)
+ (

1, w
)

L2(Γi)

(
1, v

)
L2(Γi)

(55)

for all v, w ∈ H1/2(Γi). This modified hypersingular operator is bounded and H1/2−elliptic [60]. Moreover, the unique 
solution of

N̂ii v = g (56)

is also a solution of

Nii v = g, (57)
10
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provided that the solvability condition 
∫
Γi

gdS = 0 is satisfied, which is the case for any excitation if the total charge in each 
compartment is vanishing, for example, such as a dipole excitation: let i be a compartment, where a charge distribution ∇ · j
is located such that 

∫
Ωi

∇ · jdr = 0, then due to the divergence theorem, we also have 
∫
Γi−1

j ·(−ni−1)dS(r) +∫
Γi

j ·nidS(r) =
0. Since Γi−1 could be “removed”, the second integral must independently satisfy 

∫
Γi−1

j · (−ni−1)dS(r) = 0 and, hence, ∫
Γi

j · nidS(r). Thus, the compatibility condition is satisfied on every interface i for any excitation if the total charge in each 
compartment is vanishing. The discretization of N̂ii with pyramid functions as testing and expansion functions on Γi gives 
rise to the invertible matrix

N̂ii :=Nii +GT
i,λλ1NV ,i 1

T
NV ,i
Gi,λλ. (58)

Among the infinite deflation choices available, one of them allows to retrieve the solution corresponding to a mean-value 
free potential on the exterior layer, a favorable choice in terms of compatibility with the most common measurement 
setups [37] and based on theoretical justifications [12]. This is simply obtained by using N̂N N instead of NN N . Equivalently, 
by defining the vector

ζ :=
[

0T
NV ,1

0T
NV ,2

...
√

σN(GT
N,λλ1NV ,N )T 0T

NC,1
... 0T

NC,N−1

]T
, (59)

the unique solution of the linear system of equations

Ẑ

(
l
p

)
= (Z + ζζT)

(
l
p

)
=

(
b
c

)
(60)

is also a solution of

Z

(
l
p

)
=

(
b
c

)
. (61)

Moreover, V N is a mean-value free function, that is, we have

(GT
N,λλlN)T 1NV ,N = 0. (62)

The above statements follow from the existence of a solution of equation (61) satisfying condition (62) and from the unique-
ness of the solution of equation (60). In the next section, we will define a preconditioning strategy for the well-posed 
formulation in (60).

For the sake of completeness, it should be noted that an additional nullspace arises in the symmetric formulation in the 
high-contrast limit that corresponds to a finite number of isolated singular values in the spectrum of Ẑ . However, since it 
appears at very large, unrealistic values of contrast and does not impact the convergence of the solution method, we will not 
treat this regime further. This additional nullspace, in any case, could be easily handled by applying a standard multiplicative 
deflation strategy [23] to the matrix Ẑ , by defining the projector R :− I − ẐD(DTẐD)−1DT, where the columns of D are a 
basis of the (N − 1)-dimensional deflation subspace. Then, the preconditioned matrix(

R+ max
i

(CRi) (I −R)

)
Ẑ (63)

can be used in place of Ẑ to ensure the absence of isolated singular values.

4.3. Our preconditioned, non-singular symmetric formulation

The new formulation, resulting from the preconditioning of (60), for which we are going to prove the good conditioning 
properties, reads

Zp y :=MQẐQG P GTQẐQM y =MQẐQG P GTQ

(
b
c

)
. (64)

The solution of the original problem (60) is retrieved as(
l
p

)
=QM y . (65)

In the following, the matrices in (64) and a brief, intuitive explanation of their use in the formulation are introduced. The 
rigorous proof of the well conditioning of the formulation will be given in the next section.
11
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The matrix Q, introduced in [43], is defined as

Q := diag

(
qV ,1

√
R1 · INV ,1 ,qV ,2

√
R2 · INV ,2 , ...,qV ,N

√
R N · INV ,N ,

qC,1√
R1

· INC,1 ,
qC,2√

R2
· INC,2 , ...,

qC,N−1√
R N−1

· INC,N−1

)
, (66)

where In ∈Rn×n denotes the identity matrix, i.e. (In)xy = δxy , with δxy the Kronecker delta function. The scalar coefficients 
qV ,i , qC,i are defined as

qV ,i := max(σi, σi+1)
−1/2 (67)

qC,i := min(σi, σi+1)
1/2 (68)

and have been introduced in the formulation in order to cure the high-contrast breakdown identified in Section 3.2. Indeed, 
as shown in [43], the left and right multiplication of Ẑ by Q makes the symmetric formulation immune to this source of 
ill-conditioning.

If Γh,i discretizes a spherical surface, then we define Ri as the radius of the approximating sphere. Otherwise, Ri repre-
sents half of the characteristic length of the inner volume delimited by Γi .

The matrix P

P := diag

(
1

R2
1

· Δ̂−1
1 ,

1

R2
2

· Δ̂−1
2 , ...,

1

R2
N

· Δ̂−1
N , R2

1 · ˆ̃
Δ1, R2

2 · ˆ̃
Δ2, ..., R2

N−1 · ˆ̃
ΔN−1

)
(69)

is the core of our preconditioning strategy. The left multiplication of Ẑ by Ẑ and P provides the same preconditioning effect 
presented in Section 4.1 for the single-layer operator case, capable of overcoming the dense-discretization breakdown of the 
symmetric formulation. The purpose of the introduction of the coefficients Ri in the formulation is to make the spectra of 
the matrices QẐQ and P independent of the size of the geometry considered or, equivalently, independent of the unit of 
measure used for the definition of the mesh discretizing the head model.

Furthermore, we define the matrices

G := diag(INV ,1,NV ,1 , INV ,2,NV ,2 , . . . , INV ,N ,NV ,NG
−1
1,λ̃π

,G−1
2,λ̃π

, . . . ,G−1
N−1,λ̃π

) (70)

and

M := diag(G
−1/2
1,λλ , G−1/2

2,λλ , ...,G
−1/2
N,λλ ,G

−1/2
1,ππ ,G

−1/2
2,ππ , ..., G−1/2

N−1,ππ ) . (71)

The left and right multiplication of the entire inner block QẐQGPGTQẐQ by M results in a matrix spectrally equivalent 
to the one discretizing the continuous formulation with a set of orthonormal basis functions. One can be easily convinced 
of this by considering, for example, the simplifications leading to the equalities

G
−1/2
1,λλ N11Δ̂

−1
1 N11G

−1/2
1,λλ =

(
G

−1/2
1,λλ N11G

−1/2
1,λλ

)(
G−1/2

1,λλ Δ̂1G−1/2
1,λλ

)−1 (
G

−1/2
1,λλ N11G

−1/2
1,λλ

)
(72)

and

G
−1/2
1,ππ S11G

−1
1,λ̃π

ˆ̃
Δ1G

−1
1,πλ̃
S11G

−1/2
1,ππ =(

G
−1/2
1,ππ S11G

−1/2
1,ππ

)(
G

−1/2
1,λ̃λ̃
G1,λ̃π G−1/2

1,ππ

)−1 (
G

−1/2
1,λ̃λ̃

ˆ̃
Δ1G

−1/2
1,λ̃λ̃

)(
G

−1/2
1,λ̃λ̃
G1,λ̃π G−1/2

1,ππ

)−1 (
G

−1/2
1,ππ S11G

−1/2
1,ππ

)
(73)

where the matrices(
G

−1/2
1,λλ N11G

−1/2
1,λλ

)
,

(
G

−1/2
1,ππ S11G

−1/2
1,ππ

)
,

(
G

−1/2
1,λ̃λ̃
G1,λ̃π G−1/2

1,ππ

)
,

(
G−1/2

1,λλ Δ̂1G−1/2
1,λλ

)
, and

(
G

−1/2
1,λ̃λ̃

ˆ̃
Δ1G

−1/2
1,λ̃λ̃

)
are spectrally equivalent to the discretizations of the hypersingular operator, the single-layer operator, the identity and the 
modified Laplace-Beltrami operator in orthonormal bases.

It is worth noticing at this moment that, although the direct evaluation of matrix M could be expensive—indeed, it 
requires the square root decomposition of non-diagonal matrices, which can be expansive —it can easily be avoided. For 
example, by using a simple similarity transformation, we have [56]

eig
(
MQẐQGPGTQẐQM

)
= eig

(
MMQẐQGPGTQẐQ

)
, (74)

where the symbol eig(Z) denotes the set of eigenvalues of Z . When the preconditioned conjugate gradient method [56] is 
employed to solve the system, the similarity transformation will not change the convergence behavior, thus, preserving the 
favorable convergence properties of the original system in (64).
12
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Proposition 1. The coefficient matrix of the proposed formulation (64) is symmetric, positive-definite.

Proof. The matrix P can be written as P = P T
sqrtPsqrt by virtue of its symmetric, positive-definiteness. Moreover, the matri-

ces M , Q, Z are symmetric and invertible. Therefore, we have the decomposition

MQẐQGPGTQẐQM =
(
PsqrtG

TQẐQM
)T (
PsqrtG

TQẐQM
)

(75)

ensuring the symmetric, positive-definiteness of the proposed formulation. �
Before moving to the analysis of the conditioning properties of the new formulation, it is worth noting that the 

numerical scheme in (64) is refinement-free, that is, its implementation does not require the evaluation of integral op-
erators on the dual mesh. Avoiding this operation sidesteps the computational burden of numerical integrations over 
the dual—and thus barycentrically refined mesh—leading to a significant advantage in terms of time required to build 
the formulation itself. In fact, in the proposed formulation (64) dual functions are only involved in the Gram matrices 
(Gi,λ̃π )mn = (Gi,πλ̃)nm =

(
λ̃i,m,πi,n

)
L2(Γi)

and in the Laplacian(Δ̃i)mn =
(
∇Γi λ̃i,m∇Γi λ̃i,n

)
L2(Γi)

, for which we have, unlike the 

system matrices stemming from integral operators, analytic expressions allowing a rapid evaluation (see [2] and Appendix B
for these expressions).

As a final remark, we notice that the setup of the proposed formulation does not require the evaluation of any further 
dense matrix with respect to the symmetric formulation. The additional computational burden only consists in the evalua-
tion of sparse Gram matrices and modified graph Laplacians, which can be built starting from geometrical information of the 
mesh, and in their inversion (matrices P , G , and M2). Therefore, the proposed preconditioning scheme can be integrated 
into existing codes for the solution of the symmetric formulation without significant efforts.

4.4. Proof of well-conditioning

In this section, we want to analyze the conditioning properties of the proposed formulation with respect to the two 
sources of instability identified in Section 3, that are dense-discretization and high-contrast.

For proving the high-contrast stability, we note that cond(QẐQ) = O(1) for CR := maxi (CRi) → ∞ directly follows from 
the discussion of the high-contrast spectral properties of QZQ in [43], where the symbol cond(·) denotes the effective 
condition number as defined in [23]. Then, we use the submultiplicativity of the condition number of matrix products

cond(Zp) ≤ (cond(M))2
(

cond(QẐQ)
)2

cond(GPGT) , (76)

which follows from the submultiplicativity of the Euclidean norms in the definition of condition number employed. Next, 
we study the limit limCR→∞

lim
CR→∞ cond(Zp) ≤ lim

CR→∞ (cond(M))2
(

cond(QẐQ)
)2

cond(GPGT). (77)

Since the limits limCR→∞ cond(M), limCR→∞ cond(QẐQ), and limCR→∞ cond(GPGT) are finite, the resulting limit (77), 
given by the product of them [51, Theorem 4.4], is finite, that is cond(Zp) = O(1) as CR → ∞, which concludes the proof 
of the high-contrast stability of our formulation.

For proving the dense-discretization stability of Zp, we will leverage a spectral analysis of the matrix in (64), first in the 
one-compartment case, then in the general N−compartment setup. The study is held on a spherical multi-compartment 
model, but, as before (Section 3), it can be extended to any geometry characterized by smooth boundaries without loss of 
generality.

4.4.1. One-compartment case
The matrix for which we are going to prove the dense-discretization stability reads

Zp =
(

α1G
−1/2
1,λλ N̂11Δ̂

−1
1 N̂11G

−1/2
1,λλ ε1G

−1/2
1,λλ N̂11Δ̂

−1
1 D

∗
11G

−1/2
1,ππ

ε1G
−1/2
1,ππD11Δ̂

−1
1 N̂11G

−1/2
1,λλ γ1G

−1/2
1,ππD11Δ̂

−1
1 D

∗
11G

−1/2
1,ππ

)

+
⎛
⎝β1 R2

1G
−1/2
1,λλ D

∗
11G

−1
1,λ̃π

ˆ̃
Δ1G

−1
1,πλ̃
D11G

−1/2
1,λλ η1 R1G

−1/2
1,λλ D

∗
11G

−1
1,λ̃π

ˆ̃
Δ1G

−1
1,πλ̃
S11G

−1/2
1,ππ

η1 R1G
−1/2
1,ππ S11G

−1
1,λ̃π

ˆ̃
Δ1G

−1
1,πλ̃
D11G

−1/2
1,λλ δ1G

−1/2
1,ππ S11G

−1
1,λ̃π

ˆ̃
Δ1G

−1
1,πλ̃
S11G

−1/2
1,ππ

⎞
⎠ (78)

with the scalings
13
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α1 := q4
V ,1(σ1 + σ2)

2 , β1 := 4(qV ,1qC,1)
2 ,

ε1 := − 2

R1
q2

V ,1(qV ,1qC,1)(σ1 + σ2) , δ1 := q4
C,1(σ

−1
1 + σ−1

2 )2 ,

γ1 := 4

R2
1

(qV ,1qC,1)
2 , η1 := −2q2

C,1(qV ,1qC,1)(σ
−1
1 + σ−1

2 ) .

For the reasons presented in Section 4.1, the matrix G−1/2
1,ππ S11G

−1
1,λ̃π

ˆ̃
Δ1G

−1
1,πλ̃
S11G

−1/2
1,ππ , discretizing the second kind oper-

ator S11Δ̂Γ1S11 = I
4 +KS11Δ̂Γ1S11

, is well-conditioned and its spectrum accumulates at 1/4. An accurate study is needed to 
understand the nature of all the other blocks.

Proposition 2. The matrix G−1/2
1,λλ N̂11Δ̂

−1
1 N̂11G

−1/2
1,λλ is well-conditioned and its spectrum accumulates at 1/4.

Proof. From the Calderón relations, by expanding the products SN̂ and N̂S , we obtain that

−SN̂ = I
4

+KSN̂ (79)

−N̂S = I
4

+KN̂S , (80)

where KSN̂ , KN̂S are compact operators. By exploiting these relations for simplifying the product SΔ̂Γ SN̂ Δ̂−1
Γ N̂ , it is 

found that N̂ Δ̂−1
Γ N̂ is a second kind operator with accumulation point at 1/4. Indeed

SΔ̂Γ SN̂ Δ̂−1
Γ N̂ = −SΔ̂Γ

(
I
4

+KSN̂

)
Δ̂−1

Γ N̂

= −1

4
SN̂ − SΔ̂Γ KSN̂ Δ̂−1

Γ N̂

= I
16

+ 1

4
KSN̂ − SΔ̂Γ KSN̂ Δ̂−1

Γ N̂ , (81)

where SΔ̂Γ KSN̂ Δ̂−1
Γ N̂ is compact as the product of compact and of bounded linear operators is compact [16, Theo-

rem 1.5]. Therefore, equation (81) implies N̂ Δ̂−1
Γ N̂ = I/4 +KN̂ Δ̂−1

Γ N̂ . The discretization of this second-kind operator with 

an orthonormal set of basis functions, as in G−1/2
1,λλ N̂11Δ̂

−1
1 N̂11G

−1/2
1,λλ , results thus in a well-conditioned matrix with its 

eigenvalues accumulating at 1/4. �
From a spherical harmonic analysis held on a sphere of radius R1, we recognize that the eigenvalues of the operator 

D∗ΔΓ D are the product of the eigenvalues of D∗ , ΔΓ , and D,

1

R2
1

1

2(2n + 1)
n(n + 1)

1

2(2n + 1)
= 1

R2
1

n2 + n

16 n2 + 16 n + 4
, (82)

since the operators D∗ , ΔΓ , and D have the same eigenvectors [32,18]. Therefore, by analyzing the limit of (82) for n →
∞, it is possible to state that D∗ΔΓ D is a second-kind operator with accumulation point 1/(16 R2

1). Hence, since the 

modified operator Δ̂Γ provides similar spectral properties to ΔΓ , the discretized form R2
1G

−1/2
1,λλ D

∗
11G

−1
1,λ̃π

ˆ̃
Δ1G

−1
1,πλ̃
D11G

−1/2
1,λλ

on spherical geometries is well-conditioned and its spectrum accumulates at 1/16.
Similarly, the expression of the eigenvalues of the two operators D∗ΔΓ S and SΔΓ D is given by

− 1

R1

1

2(2n + 1)
n(n + 1)

1

2n + 1
= − 1

R1

n2 + n

8 n2 + 8 n + 2
, (83)

from which we deduce that D∗ΔΓ S and SΔΓ D are second-kind operators with eigenvalues accumulating at −1/(8 R1) and 
the matrices R1G

−1/2
1,λλ D

∗
11G

−1
1,λ̃π

ˆ̃
Δ1G

−1
1,πλ̃
S11G

−1/2
1,ππ and R1G

−1/2
1,ππ S11G

−1
1,λ̃π

ˆ̃
Δ1G

−1
1,πλ̃
D11G

−1/2
1,λλ discretizing the operators on a 

sphere are well-conditioned with spectra accumulating at 1/8. Since a smooth variation from a spherical geometry only 
results in a compact perturbation [35,57], the results mentioned above hold true also for non-spherical, smooth geometries, 
such as the ones considered in this work.

Proposition 3. The matrices G−1/2
1,λλ N̂11Δ̂

−1
1 D

∗
11G

−1/2
1,ππ , G−1/2

1,ππD11Δ̂
−1
1 N̂11G

−1/2
1,λλ , and G−1/2

1,ππD11Δ̂
−1
1 D

∗
11G

−1/2
1,ππ discretize compact 

operators, that is, their spectra accumulate at 0.
14
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Proof. The operators N̂ Δ̂−1
Γ D∗ , DΔ̂−1

Γ N̂ , and DΔ̂−1
Γ D∗ are compact, as they can be written as the product of second kind 

and compact operators [16, Theorem 1.5], as

N̂ Δ̂−1
Γ D∗ = N̂ Δ̂−1

Γ N̂ N̂−1D∗,

DΔ̂−1
Γ N̂ = DN̂−1N̂ Δ̂−1

Γ N̂ ,

DΔ̂−1
Γ D∗ = DN̂−1N̂ Δ̂−1

Γ N̂ N̂−1D∗,

where N̂−1D∗ and DN̂−1 are compact operators, composed out of bounded operators, where at least one is compact [16, 
Theorem 1.5]. Therefore, their discretization results in ill-conditioned matrices with vanishing spectra. �

Given the considerations above, matrix (78) can be written as(
(α1 + β1/4)/4 INV ,1,NV ,1 η1/8 INV ,1,NC,1

η1/8 INC,1,NV ,1 δ1/4 INC,1,NC,1

)
+

(
KNV ,1,NV ,1 KNV ,1,NC,1

KNC,1,NV ,1 KNC,1,NC,1

)
, (84)

where Km,n ∈ Rm×n represents the discretization of a compact operator. As is clear from their expression, α1 and β1 are 
positive scalar coefficients, so that the principal part of the top-left block of (78) cannot be canceled. The second term in the 
summation (84) is the discretization of a block operator with compact blocks, and thus is compact (proof in Appendix A), 
with singular values accumulating at zero when increasing the number of degrees of freedom of the system, and as a 
consequence it does not influence the spectral properties of the system asymptotically. Therefore, in order to analyze the 
boundness of the condition number of the system away from singularities, it is sufficient to study the spectral behavior of 
the principal part in (84). This can be established by the analytical evaluation of the eigenvalues of the principal term in 
(84), performed by means of a Schur analysis [62]. In particular, in the case NC,1 ≥ NV ,1 it is found that

λ1 = δ1

4
, with multiplicity NC,1 − NV ,1 (85)

λ2 = 1

32

(
4α1 + β1 + 4δ1 −

√
(4α1 + β1 − 4δ1)2 + 16η2

1

)
, with multiplicity NV ,1 (86)

λ3 = 1

32

(
4α1 + β1 + 4δ1 +

√
(4α1 + β1 − 4δ1)2 + 16η2

1

)
, with multiplicity NV ,1; (87)

in the case NC,1 < NV ,1 instead, the eigenvalues are

λ1 = 4α1 + β1

16
, with multiplicity NV ,1 − NC,1 (88)

λ2 = 1

32

(
4α1 + β1 + 4δ1 −

√
(4α1 + β1 − 4δ1)2 + 16η2

1

)
, with multiplicity NC,1 (89)

λ3 = 1

32

(
4α1 + β1 + 4δ1 +

√
(4α1 + β1 − 4δ1)2 + 16η2

1

)
, with multiplicity NC,1. (90)

Hence, the condition number of the principal part of Z , that is symmetric, positive-definite, is given by

max(λ1,λ2,λ3)/min(λ1,λ2,λ3),

independent of mesh refinement. Therefore, the condition number of the overall matrix Z when asymptotically increasing 
the number of degrees of freedom of the system is bounded and the proposed system is well-conditioned with respect to 
dense discretizations.

Moreover, given the asymptotic behaviors

α1 = O(1) , β1 = O(CR−1
1 ) ,

|ε1| = O(CR−1/2
1 ) , δ1 = O(1) ,

γ1 = O(CR−1
1 ) , |η1| = O(CR−1/2

1 ) ,

valid in the limit CR1 → ∞, we observe that the condition number of the principal part of Z tends to unity in the high-
contrast regime, as α1 approaches δ1, that is (max(λ1,λ2,λ3)/min(λ1,λ2,λ3)) − 1 =O(CR−1/2

) for CR1 → ∞.
1
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4.4.2. N−compartment case
For the generic, N−layered geometry, the matrix Zp in (64) can be written as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

(α1 + β1/4)/4 INV ,1,NV ,1 η1/8 INV ,1,NC,1

. . .
. . .

(αN + βN/4)/4 INV ,N ,NV ,N ηN/8 INV ,N ,NC,N

η1/8 INC,1,NV ,1 δ1/4 INC,1,NC,1

. . .
. . .

ηN/8 INC,N ,NV ,N δN/4 INC,N ,NC,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+K (91)

where the scaling coefficients are

αn := q4
V ,n(σn + σn+1)

2 , δn := q4
C,n(σ

−1
n + σ−1

n+1)
2 ,

βn := 4(qV ,nqC,n)
2 , ηn := −2q2

C,n(qV ,nqC,n)(σ
−1
n + σ−1

n ) ,

with subscript n = 1, . . . , N . The matrix K is a (2N × 2N)−block matrix, discretizing a compact, block operator (see Ap-
pendix A). Indeed, each block of K is a linear combination of matrices discretizing compact operators, either in the form,

N̂i jΔ̂
−1
Γ j

D∗
jk, Di jΔ̂

−1
Γ j

N̂ jk, Di jΔ̂
−1
Γ j

D∗
jk, (92)

whose compactness has already been discussed in the proof of Proposition 3, or in the form

N̂i jΔ̂
−1
Γ j

N̂ jk, Si j
ˆ̃

ΔΓ jS jk, D∗
i j

ˆ̃
ΔΓ jD jk, D∗

i j
ˆ̃

ΔΓ jS jk, Si j
ˆ̃

ΔΓ jD jk, (93)

with i �= j or j �= k, resulting from the product of bounded and compact operators [16, Theorem 1.5].
As in the one-compartment case, the analytic spectral analysis of the principal part of (91), when fixing the number 

of compartments N , is useful to determine the asymptotic spectral behavior of the overall matrix Zp when increasing the 
number of unknowns. In the general case, we can argue that, since the coefficients αn , βn , δn , and ηn are independent from 
the refinement parameter h, also the condition number of the principal part of (91) is h−independent.

In addition, we can perform an asymptotic analysis of the principal part of (91) for the contrast ratio going to infinity, 
providing some insights in the spectral behavior of the proposed formulation in the high-contrast and dense-discretization 
limit. We can assume, for example, an N−compartment structure (with N odd) with conductivities σ1+2n = σhigh and 
σ2+2n = σlow, for n running from 0 to (N − 1)/2, satisfying CR = σhigh/σlow → ∞. Then, the behavior of the scalar scalings is

αi = O(1) , βi = O(CR−1) ,

|ηi | = O(CR−1/2) , δi = O(1) ,

resulting in the behavior of the condition number of the principal part of Zp as 
(
cond(Zp −K) − 1

) = O(CR−1/2) as CR →
∞.

5. Numerical results

The numerical results reported in this section showcase the efficacy of the proposed formulation and offer a comparison 
with the standard symmetric formulation. To this end, we first apply the numerical schemes to the canonical, spherical, 
head model, for which the analytic solution is available as a benchmark [20,66]. Then, we move on to a more realistic head 
model, extracted from magnetic resonance imaging data, over which we solve the inverse EEG problem. In both cases, point 
electric dipoles are used to model the generators of the primary cerebral activity.

5.1. The spherical head model

A three-compartment head model is considered in this section, delimited by the spherical surfaces Γ1 , Γ2, and Γ3 with 
radii R1 = 8.7 cm, R2 = 9.2 cm, and R3 = 10 cm. In this first set of experiments, the source employed is a single dipole, 
placed inside Ω1 at a distance of 4.2 cm from Γ1 and radially directed. The conductivities of the three layers, modeling the 
brain, the skull and the scalp, have been set to σ1 = 1

3 S/m, σ2 = 1
240 S/m, and σ3 = 1

3 S/m, as typical in these models.
As first assessment, we verify the convergence rate of our new formulation, similar as in the unpreconditioned symmetric 

formulation case with same accuracy levels as shown in Fig. 4.
Next we assess the efficacy of our preconditioner, in comparison with the Calderón stabilization scheme proposed in 

[43]. In Fig. 5a, the variation of the condition number as a function of the inverse refinement parameter 1/h is reported for 
the three formulations considered. The efficacy of the preconditioning strategy is demonstrated by the constant conditioning 
in refinement, while the condition number of the symmetric formulation grows with the discretization as O(h−2). A similar 
16



V. Giunzioni, J.E. Ortiz G., A. Merlini et al. Journal of Computational Physics 491 (2023) 112374
Fig. 3. (a) Schematic representation of the geometry under study. (b) The spherical and (c) the realistic, MRI-obtained head models. The three-compartments 
represent the brain, the skull and the skin.

Table 1
CPU time results. Setup, solution, and total time for different head models: comparison between the symmetric formulation (SF), the Calderón precondi-
tioned symmetric formulation (CSF), and this work.

Head model Formulation Setup time [s] Solution time [s] Number of MVPs Total time [s]

Spherical model SF 7.01 0.100 410 7.11
of Section 5.1, CSF 92.84 0.035 152 92.87
2526 unknowns This work 16.30 0.032 124 16.33

Realistic model SF 95.33 145.18 8996 240.51
of Section 5.2, CSF 1532.80 2.44 176 1535.24
10076 unknowns This work 145.47 4.48 449 149.95

behavior is reflected in Fig. 6a, where the number of iterations to solve the system up to a fixed level of accuracy is 
reported for the three formulations. The iterative method employed to solve the system in the three cases is the conjugate 
gradient-squared (CGS) solver [58].

The linear system arising from the preconditioning scheme presented in this work can also be solved by means of a 
preconditioned conjugate gradient (PCG) scheme [31,59], by virtue of its symmetric, positive, definiteness properties. The 
preconditioning matrix is M2, as explained in Section 4.3. The number of matrix-vector products required for the solution, 
corresponding to the number of iterations, is shown in Fig. 6b. This can be compared with the number of matrix-vector 
products (two per iteration) required to solve the symmetric formulation, the Calderón-stabilized (CSF) formulation, and 
the proposed preconditioned formulation by means of the conjugate gradient squared solver, at the same level of accuracy, 
shown in the same figure.

In Fig. 9 we also show the eigenvalue clustering of the proposed scheme in comparison with the original symmetric 
formulation and its Calderón-stabilized version applied to the spherical head model as described above. The eigenvalues 
relative to the proposed scheme, differently from the others reported in the Figure, are real positive numbers, attesting of 
its symmetric, positive-definiteness properties.

The efficacy of the proposed preconditioning has to be tested also for different values of conductivity contrasts between 
adjacent compartments. Experimental evidences from in vivo measurements have shown that the conductivity ratio between 
brain, skull, and scalp range between (1:1/15:1) and (1:1/80:1) [26,65,15]. So, we evaluated the stability of our formulation 
for conductivity ratios spanning from (1:1/10:1) to (1:1/100:1). Fig. 5b and Fig. 7a, showing respectively the condition 
number of the formulations and the number of iterations of the CGS solver as a function of the conductivity contrast ratio, 
give evidence of the preconditioning effect obtained. The number of matrix-vector products required to solve the proposed 
formulation by means of the conjugate gradient scheme is also shown in Fig. 7b and compared with the one required for 
solving the symmetric formulation, the Calderón-stabilized (CSF) formulation, and the proposed scheme by means of the 
CGS solver.

In Fig. 8 we analyze the behavior of the proposed formulation as a function of the source position. Consistently with 
what already reported in [36, Figure 4], Fig. 8 illustrates the increasing inaccuracy of the original symmetric formulation for 
sources approaching the boundary, and, as a consequence, of its preconditioned version proposed here.

In conclusion, in Table 1 we report characteristic timing results relative to the solution of the forward problem. The 
reader should note that, should a fast solution strategy be used, a fast Calderón-preconditioned formulation (CSF) would 
perform better than a fast unpreconditioned symmetric formulation (SF) [42]. We do expect moreover that also our new 
formulation presented here would greatly benefit by a fast solution strategy, because of the necessity of compressing only 
one dense matrix. Such a fast scheme, however, is outside the scope of this work and will be the topic of future investiga-
tions.
17
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Fig. 4. Relative error between the numerical solution and the analytic solution for the potential on Γ3 against the inverse mesh refinement parameter 1/h: 
comparison between the symmetric formulation (SF) and this work.

Fig. 5. (a) Condition number as a function of the inverse mesh refinement parameter 1/h for the spherical model characterized by radii R1 = 0.087, R2 =
0.092, and R3 = 0.1 (in normalized units) and conductivity ratio 80 and (b) condition number as a function of the conductivity ratio CR for the spherical 
model characterized by radii R1 = 0.87, R2 = 0.92, and R3 = 1 (in normalized units) discretized at 1/h � 8.02: comparison between the symmetric 
formulation (SF), the Calderón preconditioned symmetric formulation (CSF), and this work.

Fig. 6. (a) Number of iterations and (b) number of matrix-vector products (MVP) as a function of the inverse mesh refinement parameter 1/h: comparison 
between the symmetric formulation (SF), the Calderón preconditioned symmetric formulation (CSF), and this work.

5.2. The MRI-obtained head model

Subsequently, a realistic three-compartment head model obtained from MRI data has been considered. The boundaries 
of the geometry have been discretized by means of the meshes Γ1, with NC,1 = 3684, NV ,1 = 1844, Γ2, with NC,2 = 2334, 
NV ,2 = 1169, and Γ3, with NC,3 = 2086, NV ,3 = 1045. The conductivities of the tissues have been set at σ1 = 1

3 S/m, 
σ2 = 1

150 S/m, and σ3 = 1
3 S/m. The neural source has been modeled by a point dipole placed inside the inner compartment 

at a distance of approximately 3.5 cm from Γ1. Fig. 10a shows the resulting potential distribution on the exterior layer. 
Moreover, the absolute difference of this result with respect to the one obtained from the unpreconditioned symmetric 
formulation is reported in correspondence of the position of 65 electrodes placed on the scalp. The linear system of 10076 
equations arising from the proposed formulation has been solved iteratively by means of the PCG solver in 449 iterations, 
18
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Fig. 7. (a) Number of iterations and (b) number of matrix-vector products (MVP) as a function of the conductivity ratio CR: comparison between the 
symmetric formulation (SF), the Calderón preconditioned symmetric formulation (CSF), and this work at 1/h � 80.2 m−1.

Fig. 8. Relative error as a function of the dipole position along the radial coordinate (the geometrical model is the spherical one described in Section 5.1): 
comparison between the symmetric formulation (SF) and this work. The mesh refinement is non-uniform and the number of unkwowns of the system is 
3938.

Fig. 9. Representation of the eigenvalues of the interaction matrix relative to the spherical head model described in Section 5.1) at 1/h � 35.9 m−1 in the 
complex plane: comparison between the symmetric formulation (SF), the Calderón preconditioned symmetric formulation (CSF), and this work.

to be compared with the 4498 iterations needed to solve the symmetric formulation by means of the CGS solver and by 
imposing an identical tolerance.

Given the excellent agreement in the results from the two formulations, the proposed scheme can clearly be employed in 
the evaluation of the lead-field matrix needed for the solution of the inverse EEG problem, at a reduced cost compared with 
the non-preconditioned one, with a saving in terms of computational time approximately proportional to the one relative 
to the forward problem solution. The outcome of this test is shown in Fig. 10b, where the neural source reconstructed from 
EEG measurements is represented. In particular, this has been obtained by applying the sLORETA inversion algorithm [44]
to a lead-field matrix G ∈RNE ×ND , where NE = 65 is the number of measurement points (corresponding to the number of 
electrodes) and ND = 19279 is the number of test dipoles uniformly placed inside Ω1.
19
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Fig. 10. (a) Scalp potential distribution and error at the electrodes with respect to the symmetric formulation solution. (b) Reconstructed epileptogenic 
source.
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Appendix A. Proof of compactness of a block operator with compact blocks

This section will provide a proof for the compactness of a 2 ×2 block operator with compact blocks, that is, whose blocks 
are compact operators, rearranged from [45]. As a corollary, the compactness of a N × N block operator with compact blocks 
is shown.

Given the normed spaces X1, X2, ..., XN , their Cartesian product, denoted as X1
⊕

X2... 
⊕

XN , equipped with the norm

||(x1, x2, ...,nN )||⊕N
i=1 Xi

:=
(

N∑
i=1

||xi||2Xi

)1/2

, (A.1)

is their direct sum normed space [1], needed in the following derivations.

Proposition 4. Given the compact operators K11 : X → X and K22 : Y → Y , the block operator

Kd :=
(
K11 0

0 K22

)
: X

⊕
Y → X

⊕
Y (A.2)

is compact.
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Proof. Let {un} = {(xn, yn)} be a bounded sequence in X
⊕

Y , that is, there exists a real positive constant c such that

||un||2X ⊕
Y = ||xn||2X + ||yn||2Y ≤ c. (A.3)

This implies that {xn} and {yn} are bounded in X and in Y . Therefore, by virtue of the compactness of K11, the sequence 
{K11xn} contains a convergent subsequence [16, Theorem 1.2], denoted by {K11xni }. Due to the boundness of {yn}, also {yni }
is bounded. Hence, {K22 yni } contains a convergent subsequence, denoted as {K22 ynik

}. Clearly, also {K11xnik
} is convergent, 

as subsequence of a convergent subsequence.
In symbols, ∀ε > 0, ∃K such that ∀k > K

||K11xnik
− lx||X < ε and ||K22 ynik

− l y||Y < ε. (A.4)

It follows that the application of the operator Kd to the bounded sequence {un}, reading

{Kdun} = {(K11xn,K22 yn)} (A.5)

contains the convergent subsequence {Kdunik
} = {(K11xnik

, K22 ynik
)}. Indeed, ∀k > K

||Kdunik
−

(
lx

ly

)
||X

⊕
Y =

(
||K11xnik

− lx||2X + ||K22 ynik
− l y||2Y

)1/2 ≤ √
2ε = ε′, (A.6)

which concludes the proof. �
Proposition 5. Given the compact operators K12 : Y → X and K21 : X → Y , the block operator

Kod :=
(

0 K12
K21 0

)
: X

⊕
Y → X

⊕
Y (A.7)

is compact.

Proof. We follow similar steps as in the proof of Proposition 4. Let {un} be a bounded sequence as above. Given the 
compactness of K12, the sequence {K12 yn} contains a converging subsequence, denoted by {K12 yni }. Then, we notice that 
the compact operator K21 applied to the bounded subsequence xni contains a converging subsequence, noted as xnik

. Finally, 
∀ε > 0, ∃K ′ such that ∀k > K ′

||K12 ynik
− l′x||X < ε and ||K21xnik

− l′y||Y < ε. (A.8)

Therefore, the sequence {Kodun} contains a converging subsequence, denoted by {Kodunik
}. Indeed, ∀k > K ′ ,

||Kodunik
−

(
l′x
l′y

)
||X

⊕
Y =

(
||K12 ynik

− l′x||2X + ||K21xnik
− l′y||2Y

)1/2 ≤ √
2ε = ε′, (A.9)

hence Kod is compact. �
Theorem 1. Given the compact operators K11 : X → X, K12 : Y → X, K21 : X → Y , and K22 : Y → Y , the block operator

K =
(
K11 K12
K21 K22

)
: X

⊕
Y → X

⊕
Y (A.10)

is compact.

Proof. The operator K can be written as the sum of two operators involving the diagonal and the off-diagonal terms, named 
respectively Kd and Kod,

K =
(
K11 0

0 K22

)
︸ ︷︷ ︸

Kd

+
(

0 K12
K21 0

)
︸ ︷︷ ︸

Kod

. (A.11)

The two operators Kd and Kod are compact, as shown in Proposition 4 and Proposition 5. Therefore, K is compact as the 
sum of compact operators [16, Theorem 1.4]. �
Corollary 1. Any block operator whose blocks are compact operators is compact.
21
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Proof. A N × N block operator whose blocks are compact can be decomposed as the summation of (2N −1) block operators, 
each of them null apart one diagonal (principal or not), equal to the same diagonal of the original operator. For example, in 
the case N = 3,

K =
⎛
⎝K11 K12 K13
K21 K22 K23
K31 K32 K33

⎞
⎠

=
⎛
⎝ 0 0 0

0 0 0
K31 0 0

⎞
⎠+

⎛
⎝ 0 0 0
K21 0 0

0 K32 0

⎞
⎠+

⎛
⎝K11 0 0

0 K22
0 0 K33

⎞
⎠+

⎛
⎝0 K12 0

0 0 K23
0 0 0

⎞
⎠+

⎛
⎝0 0 K13

0 0 0
0 0 0

⎞
⎠ . (A.12)

Then, the compactness of K can be shown by induction, Indeed, since each term in this summation is compact for the 
same reasons outlined to prove the compactness of Kd and Kod in the 2 × 2 operator case, the N × N block operator K is 
compact. �
Appendix B. Analytic expression of the primal and dual Laplacian matrices

We provide here the analytic expression of the elements of the matrices Δi and Δ̃i discretizing the Laplace-Beltrami 
operator by means of pyramid and dual pyramid functions as an implementation aid. In the following, we omit the subscript 
i that indicates the reference surface mesh Γh,i , its barycentric refinement Γ̄h,i , or its dual counterpart Γ̃h,i and that is 
applied to matrices, basis functions, and geometrical entities of the mesh, to simplify the notation.

By analytic evaluation of (∇Γ λm,∇Γ λn)L2(Γh) , the expression

(Δ)mn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
c∈Adj(vm)

|ec,vm |2
4|c| if m = n∑

c∈Adj(emn)

|ec,vm ||ec,vn |
4|c| cos(θc,mn) if vm, vn are connected by emn

0 otherwise

(B.1)

is retrieved, where Adj(vm) is the set of cells adjacent to the vertex vm , Adj(emn) is the set of cells adjacent to the edge emn

connecting vertex vm and vertex vn , |ec,vm | is the length of the edge of cell c opposed to vertex vm , |c| denotes the area of 
cell c. As a general remark, the geometrical entities introduced up to now are elements of the primal mesh Γh , in symbols 
vm ∈ Γh , ec,vm ∈ Γh , emn ∈ Γh , and c ∈ Γh . The angle θc,mn is defined as

θc,mn := θc,m + θc,n , (B.2)

where θc,m is the interior angle of cell c at vertex vm . In particular, given the length of the edges of c, it can be evaluated 
as

θc,m = angle
(|emn|, |ec,vn |, |ec,vm |) , (B.3)

where

angle (|e1|, |e2|, |e3|) := arccos

( |e1|2 + |e2|2 − |e3|2
2|e1||e2|

)
, (B.4)

returns the interior angle of a triangle opposed to its edge e3 with |e1|, |e2|, and |e3| denoting the length of the three sides 
of the triangle. The notation employed in equation (B.1) is shown in Fig. 11.

To define an analytic formula for the dual Laplacian matrix Δ̃, we express its elements as linear combinations of

(Δ̄)mj,nk = (∇Γ λ̄m, j,∇Γ λ̄n,k
)

L2(Γ̄h)
(B.5)

resulting in

(Δ̃)mn =
7∑

j=1

7∑
k=1

1

NoC(v̄m, j)

1

NoC(v̄n,k)
(Δ̄)mj,nk, (B.6)

where the notation applied is the same as in Section 2.4 (without the mesh index subscript i ). The analytic expression of 
(Δ̄)mj,nk is known from equation (B.1), as
22
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Fig. 11. A primal cell in Γh with the notation for the definition of (Δ)mn (equation (B.1)).

Fig. 12. Seven vertices of Γ̄i lie in the cell cm ∈ Γi (the numbering is randomly assigned).

Fig. 13. A cell in the barycentrically refined mesh Γ̄h with the notation for the definition of (Δ̄)mj,nk (equation (B.7)).

(Δ̄)mj,nk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
c̄∈Adj(v̄m, j)

|ēc̄,v̄m, j
|2

4|c̄| if m = n and j = k ,

∑
c̄∈Adj(ēmj,nk)

|ēc̄,v̄m, j
| |ēc̄,v̄n,k

|
4|c̄| cos(θc̄,mj,nk) if v̄m, j , v̄n,k are connected by ēmj,nk ,

0 otherwise.

(B.7)

As above, the geometrical entities belonging to the barycentrically refined mesh Γ̄h are denoted with an upper bar. In 
particular Adj(v̄m, j) is the set of cells of Γ̄h adjacent to the vertex v̄m, j , Adj(ēmj,nk) is the set of cells of Γ̄h adjacent to the 
edge ēmj,nk ∈ Γ̄h connecting the vertices v̄m, j , and v̄n,k , ēc̄,v̄m, j ∈ Γ̄h is the edge of cell c̄ ∈ Γ̄h opposed to v̄m, j ∈ Γ̄h , |c̄| is the 
area of cell c̄ ∈ Γ̄h . The angle θc̄,mj,nk is

θc̄,mj,nk := θc̄,mj + θc̄,nk, (B.8)

where θc̄,mj is the interior angle of the cell c̄ at the vertex v̄m, j .
All the quantities introduced in equation (B.7) are known from the geometrical properties of the primal mesh Γh . For ex-

ample, by denoting as c ⊂ Γh the cell containing c̄ ⊂ Γ̄h , we recognize that |c̄| = |c|/6, directly following from the properties 
of the barycentric refinement. Moreover, the expression of the edge length |ēc̄,v̄ | reads
m, j
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Fig. 14. Notation for the definition of |ēc̄,v̄m, j | (equation (B.9)) and θc̄,mj (equation (B.10)).

|ēc̄,v̄m, j | =

⎧⎪⎨
⎪⎩

1
2 |ec̄| if NoC(v̄m, j) = 1 ,
2
3 |mc̄,vert| if NoC(v̄m, j) = 2 ,
1
3 |mc̄,side| otherwise,

(B.9)

where ec̄ is the side of c ⊃ c̄ with an infinite set of points in common with c̄ . We denote by mc̄,vert the median of c ⊃ c̄
such that the intersection mc̄,vert ∩ c̄ contains infinite points, including a vertex of c. The variable mc̄,side denotes the median 
of c ⊃ c̄ such that the intersection mc̄,side ∩ c̄ contains infinite points, but not including a vertex of c. Finally, the angle θc̄,mj

can be retrieved as

θc̄,mj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

angle
(

2
3 |mc̄,vert|, 1

3 |mc̄,side|, 1
2 |ec̄|

)
if NoC(v̄m, j) = 1 ,

angle
(

1
3 |mc̄,side|, 1

2 |ec̄|, 2
3 |mc̄,vert|

)
if NoC(v̄m, j) = 2 ,

angle
(

1
2 |ec̄|, 2

3 |mc̄,vert|, 1
3 |mc̄,side|

)
otherwise.

(B.10)

Figs. 12, 13, and 14 represent the notation employed.
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