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Abstract

Deep Learning (DL) is a special class of Artificial Intelligence (AI) algo-
rithms, studying the training of Deep Neural Networks (DNNs). Thanks to the
modularity of their structure, thesemodels are effective in a variety of problems
ranging from computer vision to speech recognition. Particularly in the last few
years, DL has achieved impressive results. Nonetheless, the excitement around
the field may remain disappointed since there are still many open issues. In
this thesis, we consider the learning from constraints framework. In this setting,
learning is conceived as the problem of finding task functions while respecting
a number of constraints representing the available knowledge. This setting al-
lows considering different types of knowledge (including, but not exclusively,
the supervisions) and mitigating some of the DL limits. DNN deployment, in-
deed, is still precluded in those contexts where manual labelling is expensive.
Active Learning aims at solving this problem by requiring supervision only on
few unlabelled samples. In this scenario, we propose to take consider domain
knowledge. Indeed, the relationships among classes offer away to spot incoher-
ent predictions, i.e., predictions where themodel maymost likely need supervi-
sion. We develop a framework where first-order-logic knowledge is converted
into constraints and their violation is checked as a guide for sample selection.
Another DL limit is the fragility of DNNs when facing adversarial examples,
carefully perturbed samples causing misclassifications at test time. As in the
previous case, we propose to employ domain knowledge since it offers a nat-
ural guide to detect adversarial examples. Indeed, while the domain knowl-
edge is fulfilled over the training data, the same does not hold true outside this
distribution. Therefore, a constrained classifier can naturally reject predictions
associated to incoherent predictions, i.e., in this case, adversarial examples.

While some relationships are known properties of the considered environ-
ments, DNNs can also autonomously develop new relation patterns. Therefore,
we also propose a novel learning of constraints formulation which aims at un-
derstanding which logic constraints are present among the task functions. This
also allow explaining DNNs, otherwise commonly considered black-box clas-
sifiers. Indeed, the lack of transparency is a major limit of DL, preventing its
application in many safety-critical domains. In a first case, we propose a pair of
neural networks, where one learns the relationships among the outputs of the
other one, and provides First-Order Logic (FOL)-based descriptions. Different
typologies of explanations are evaluated in distinct experiments, showing that
the proposed approach discovers new knowledge and can improve the clas-
sifier performance. In a second case, we propose an end-to-end differentiable
approach, extracting logic explanations from the same classifier. Themethod re-
lies on an entropy-based layer which automatically identifies the most relevant
concepts. This enables the distillation of concise logic explanations in several
safety-critical domains, outperforming state-of-the-art white-box models.
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Chapter 1

Contribution

In this thesis, I resume the most important works that I conducted with my supervi-
sor and other colleagues during the PhD studies. The leitmotif is the idea ofmerging
symbolic reasoning, generally represented by logic rules, with machine perception,
usually a neural network. The creation of a hybridmodel allows tackling some of the
most critical issues of deep learning. Among several possible choices, in theseworks
we followed the approach of representing First-order-Logic (FOL) rules as logic con-
straints. In this way, we can exploit available domain knowledge to enhance neural
networks within the paradigm of learning from constraints. On the other side, when
no knowledge is available, we can extract it from a deep neural network by analysing
which logic constraints are satisfied, following a learning of constraints approach.

This thesis is organized as follows. In Chapter 2, we briefly summarize what is
Deep Learning with its strengths, and most importantly, its issues. A formal back-
ground on how to combine it with logic constraints is given in Chapter 3. The fol-
lowing chapters focus on the learning from constraints approach and how it can be
exploited to tackle two different deep learning issues. Chapter 4 presents a way
to minimize the number of supervisions required to train a model, in the context
of active learning. Chapter 5 describes how we can defend a neural network from
adversarial attacks by enforcing logic constraints and checking their violation. In
the second part of the thesis, we show two possible approaches to learning of con-
straints. The first focuses on explaining a given classifier by means of another net-
work (see Chapter 6). The latter introduces a novel neural layer which allows build-
ing explainable-by-design networks (see Chapter 7). A resume of the experimental
chapters is provided in Chapter 8 together with possible future works. Appendix
A.1 and A.4 contain extra results of the experiments. Finally, a complete list of the
works produced during the doctorate is available in Appendix B. These have been
published (or submitted) in journals like Neural Networks, IEEE TNNLS, Artificial
Intelligence, Neurocomputing and IEEE TPAMI, or international conference such as
IJCAI, AAAI, IJCNN and ECML.
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Chapter 2

Deep Learning: Strengths and Issues

In this chapter we introduce Deep Learning (DL), with its strengths and issues. In
Section 2.1 we briefly cover DeepNeural Networks (DNNs) structure, the problems
in which they are typically employed and the way they are trained. In Section 2.2,
we report some of the most important achievements of DL, only considering 2020.
Finally, in Section 2.3 we analyse the remaining limits of DL, focusing on those cov-
ered in this thesis.

2.1 Introduction to Deep Learning
Deep Neural Networks are a special type of machine learning classifiers composed
of several layers of neurons. When equipped with a sigmoid activation function,
each of these neurons can be regarded as a logistic regressor, whose output mod-
els the probability distribution of a certain event. Their computational capability
is summed up in a deep neural network to predict very complex phenomena. In
Figure 2.1, an example of a deep neural network is reported.

DNNs are commonly employed in different learning problems, ranging from
supervised learning (both in classification and regression tasks) to unsupervised
learning but also as generative models, by means of the adversarial learning para-
digm. For instance, DNNs are capable to generate images of fictional persons that
are undistinguishable from real ones1. In this thesis, we will mainly encounter clas-
sification tasks, therefore, in the followingwewill deepen this learning setting. Neu-
ral networks are trained through a stochastic optimization process, which iteratively
compares the prediction of the network f (x) with an available ground-truth label
y. Their distance is usually computed by means of a Cross-Entropy Loss calculated
either directly on the output of the network (in case of binary or multi-label clas-
sification), or after applying a softmax normalization (in case of mutually exclu-
sive multi-class classification). At each iteration, the optimization process is gener-

1https://thispersondoesnotexist.com/
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10 Deep Learning: Strengths and Issues

Figure 2.1: Deep Neural Network structure. Image from Nielsen (2015).

ally conducted on sub-portions of the whole training set (mini-batch) though the
Stochastic Gradient Descent (SGD) algorithm (or a variant). The optimizer calcu-
lates the gradient of the loss for the single batch of data approximating the loss
computed over all the training set2. The weights and the biases of the whole net-
work are afterward updated by means of the Backpropagation algorithm, which
computes the loss function gradient with respect to each neural network parameter.

Neural architectures may differ significantly according to the type of input data.
Feed-Forward Networks (FFNs) are used when the input data is structured, i.e.,
when each feature has a meaning per se, and it can be stored in a precise field of
a database. As an example we may consider the gender of a person or its age, in
problems like loan allocation or insurance estimation. Different type of networks
are instead required when we deal with unstructured data. Convolutional Neural
Networks (CNNs) are commonly used when the input data are images in problems
like face recognition or traffic sign detection. On the contrary, when sequential input
data are given (such as voice sample or over-time records), we commonly employ
Recurrent Neural Networks (RNNs), in problems ranging from speech understand-
ing to spamdetection and stock trading. The activation function of the output nodes
mostly depends on the learning task. In classification, the most common activation
is the sigmoid, which returns a [0, 1] probability for each class. Forwhat concern hid-
den neurons, instead, the most common activation function is the Rectified Linear
Unit (ReLu), which has been proved to significantly reduce the vanishing gradient
problem of deep neural networks (mainly due to the saturation of the previously
employed functions, hyperbolic tangents and sigmoids).

2This is mainly done to reduce the computational burden required to store the gradients with
respect to each parameter of a deep neural network. Just to give an idea, the commonly employed
ResNet50 model has ∼ 2.3× 105 parameters.
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2.2 Deep Learning Achievements in 2020
By quoting the famous paper Marcus (2018) “In principle, given infinite data, deep
learning systems are powerful enough to represent any finite deterministicmapping
between any given set of inputs and a set of corresponding outputs”. And every year
we can see the extent of this statement, with remarkable progresses in very different
fields. In the following, we will analyse some of the most important breakthroughs
of Deep Learning, only considering the 2020.

InNatural Language Processing (NLP), the release of the Generative Pre-trained
Transformer 3 (GPT-3) (Brown et al., 2020) significantly raised the level of machine
natural language understanding. In order to get an idea of the capability of this
model, it is sufficient to know that it is capable of writing a newspaper article3,
which is difficult to distinguish from one written by a human. To be more precise,
the model has written an article talking about why humans should not fear robots,
starting from a short introduction given by the Guardian which also edited the out-
put. However, by quoting the editor’s note: “Editing GPT-3’s op-ed was no different
to editing a human op-ed. We cut lines and paragraphs, and rearranged the order
of them in some places. Overall, it took less time to edit than many human op-eds.”

In the field of protein-structure prediction, DeepMind has developed AlphaFold
(Jumper et al., 2021). This model is capable to determine the 3D shapes of proteins
from its amino-acid sequence. The potentiality of this breakthrough is described in
a Nature article,4 stating: “The ability to accurately predict protein structures from
their amino-acid sequence would be a huge boon to life sciences and medicine. It
would vastly accelerate efforts to understand the building blocks of cells and enable
quicker and more advanced drug discovery.”

During the last year Covid-19 pandemic, Artificial Intelligence (AI) has demon-
strated how it can detect efficiently COVID-19 pneumonia. In particular, in Harmon
et al. (2020) the authors show how an AI model can be nearly as accurate as a physi-
cian, with up to 90 percent accuracy in detecting COVID-19 pneumonia from com-
puted tomography (CT) scans. Even though the result may not seem surprising, the
challenge of detecting COVID-19 pneumonia from this type of scans is not an easy
task5. Indeed, the pneumonia needs to be both detected and distinguished from one
related to influenza, a task in which also good physicians struggle.

Lastly, Ichnowski et al. (2020) demonstrated how the employment of DL meth-
ods significantly improve robots performances andhow thismay revolutionizeware-
house environments. Last year, the rising popularity of online shopping has in-
creased the demand for robots. Indeed, intelligent robots could help employees in
fulfilling the orders inwarehouse environments. And in thiswork, the authors show

3https://amp.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3.
4https://www.nature.com/articles/d41586-020-03348-4
5https://www.sciencedaily.com/releases/2020/09/200930144426.htm

https://amp.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3.
https://www.nature.com/articles/d41586-020-03348-4
https://www.sciencedaily.com/releases/2020/09/200930144426.htm
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how combining neural networks with motion planning software allows robots to
grasps and move objects faster and more fluently. More precisely: “When applied
to grasp-optimized motion planning, the results suggest that deep learning can re-
duce the computation time by two orders of magnitude (300×), from 29 s to 80 ms,
making it practical for e-commerce warehouse picking.”(Ichnowski et al., 2020).

2.3 The Limits of Deep Learning
However, notwithstanding the incredible achievements we have seen only during
2020, it may still be possible that the great excitement around DL may remain dis-
appointed (as also suggested in Marcus (2018) and Sabour et al. (2017)). This is
mainly due to the fact that the statement at the beginning of Section 2.2 is hardly
ever valid in a real-world scenario. We live in a world with finite data in which DL
models not only have to correctly interpolate training data, but more importantly
they need to generalize to unseen data which may significantly differ. In Marcus
(2018), the author identifies 10 DL issues which are strictly connected with this last
statement, but also with the intrinsic nature of deep learning, which can be only
thought as a mapping between some pre-defined input data and a set of categories.
He states that DL is data hungry, it has limited capacity to transfer, it has no natural
way to deal with hierarchical structure, it struggles with open-ended-inference, it is
not sufficiently transparent, it is not well integrated with prior knowledge, it cannot
distinguish causation from correlation, it presumes a stable world, it cannot be fully
trusted (i.e., it is susceptible to adversarial attacks) and it is difficult to engineer
with. Many of these issues are correlated, as for example the fact that DL presumes
a stable world is one of the reason it is susceptible to adversarial attacks. Still, these
are all valid issues and unless in the next few years the research community will be
able to devise some solutions, DL will not be able to meet its expectations.

Starting from this assumption, in this thesis we focus on combining prio r knowl-
edge with DL to overcome the data hungry and the adversarial attack issues and on
extracting prior knowledge fromDL to solve the transparency one. In the following,
we will cover in more detail the issues that this work aims to mitigate.

2.3.1 DL is data hungry
In the last few years, most of the research in the DL field has focused on improving
model performances, while little attention has been paid to reduce the huge amount
of data required to train deep learning algorithms. As also shown in Figure 2.2, deep
neural networks needmanymore labelled data to be effective and avoid the common
over-fitting problem, when compared to standard machine learning algorithms and
shallow neural networks.
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Figure 2.2: An illustration showing how DNNs are efficient only when large collec-
tion of labelled data are available. Figure from Agrawal (2019).

With the advent of Big Data, sample collection does not represent an issue any
more. Nonetheless, the number of supervised data in some contexts is limited, and
manual labelling can be expensive and time-consuming (Yu et al., 2015). There-
fore, a common situation is the unlabelled pool scenario (McCallumzy andNigamy,
1998), wheremany data are available, but only some are annotated. Historically, two
strategies have beendevised to tackle this situation: semi-supervised learningwhich
focus on improving feature representations by processing the unlabelled data with
unsupervised techniques (Zhu and Goldberg, 2009); active learning in which the
training algorithm indicates which data should be annotated to improve themost its
performances. Nowadays, the latter seems the most promising field in deep learn-
ing research to tackle the data hungry issue. In Chapter 4, we will see an example of
an active learning strategy which exploit the available knowledge to select the data
in the unlabelled pool on which the network is more mistaken.

2.3.2 DL is susceptible to adversarial attacks
Despite the impressive results reported in many application domains, neural net-
works have been shown to be easily misled by adversarial examples, i.e., carefully
perturbed input samples that cause misclassifications at test time (Szegedy et al.,
2014a; Biggio et al., 2013). In Figure 2.3, the very famous example of Szegedy et al.
(2014a) is reported. In this, a network which confidently predicted a bus in the
image (left), get completely fooled when imperceptible noise is added (centre and
right), to the point that it classifies the bus as an ostrich.

In the last few years, a growing number of studies on the properties of adver-
sarial attacks and of the corresponding defences have been produced by the scien-
tific community (Papernot et al., 2016a; Goodfellow et al., 2018; Carlini et al., 2019)
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Figure 2.3: An example of an adversarial attack from Szegedy et al. (2014a).

(see Miller et al. (2020) for an in-depth review on this topic). Most of the existing
approaches either propose methods for improving classifier robustness by modify-
ing the learning algorithm to explicitly account for the presence of adversarial data
perturbations (Goodfellow et al., 2015; Papernot et al., 2016b), or developing spe-
cific detectionmechanisms for adversarial examples (Carlini andWagner, 2017a;Ma
et al., 2018; Miller et al., 2020). These approaches are developed against a specific
class of attacks and usually are not robust against adversarial examples generated
with different techniques (Araujo et al., 2020).

In Chapter 5 we report a method to make DNNs more robust to adversarial at-
tacks by leveraging a given domain knowledge. More in detail, we will show how
it is possible to detect adversarial examples at test time by checking logic constraint
violation, with an almost null computational cost. We will also see how this de-
fence is effective against a variety of attacks in the black-box context, and it is under-
mined only when we suppose that the attacker is equipped with the same domain-
knowledge.

2.3.3 DL models are black-box
The lack of transparency in the decision process of some machine learning mod-
els, such as neural networks, limits their application inmany safety-critical domains
(EUGDPR, 2017). For this reason, eXplainable Artificial Intelligence (XAI) research
has focused either on explaining black box decisions (Zilke et al., 2016; Ras et al.,
2018; Ying et al., 2019) or on developing machine learning models interpretable by
design (Breiman et al., 1984; Letham et al., 2015; Molnar, 2020). However, while in-
terpretable models engender trust in their predictions (Doshi-Velez and Kim, 2017;
Samek et al., 2020; Rudin et al., 2021), only black box models, such as neural net-
works, provide state-of-the-art task performances. Therefore, research to address
this imbalance is urgently needed for the deployment of cutting-edge technologies.

Most of the techniques explaining black boxes focus on finding or ranking the
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Figure 2.4: The explanation in terms of pixel importance of an image predictionwith
the LIME algorithm, as shown in Ribeiro et al. (2016).

most relevant features used by themodel tomake predictions (Simonyan et al., 2013;
Ribeiro et al., 2016; Selvaraju et al., 2017). An example of this type of explanation
is given in Figure 2.4, where the LIME algorithm proposed in Ribeiro et al. (2016)
explain the predictions of a network in terms of the most important super-pixels for
each classification.

Such feature-scoringmethods are very efficient andwidely used, but they cannot
explain how neural networks compose such features to make predictions (Kinder-
mans et al., 2019). Indeed, a key issue of most explaining methods is that the expla-
nations are given in terms of input features (e.g., pixel intensities) that do not corre-
spond to high-level categories that humans can easily understand (Kim et al., 2018b;
Su et al., 2019). To overcome this issue, concept-based approaches have become in-
creasingly popular as they provide explanations in terms of human-understandable
categories (i.e., the concepts) rather than raw features (Kim et al., 2018b; Yeh et al.,
2020; Koh et al., 2020). However, fewer approaches are able to explain how such
concepts are leveraged by the classifier and even less provide concise logic expla-
nations whose validity can be assessed quantitatively (Ribeiro et al., 2016; Guidotti
et al., 2018a; Das and Rad, 2020).

InChapters 6 and 7,wewill see twodifferent approaches to this type of problems.
The first introduces an explaining method which show how the output concepts are
correlated for a certain prediction and describes them through First-Order Logic
(FOL) rules. The latter propose an explainable-by-design neural network, which is
capable of explaining its own predictions in terms of the input concepts by means
of a first layer assessing feature importance.





Chapter 3

Learning with Constraints

In this chapter we introduce the learning principles used in the thesis, aiming at
combining logic constraints with neural networks. In Section 3.1, we first define the
common notation. In Section 3.2, we cover the learning from constraints approach,
which converts domain-knowledge in the form ofmathematical constraints, and en-
ables its employments in the learning problem. Finally, in Section 3.3 we introduce
the learning of constraints approach, which aims at extracting FOL rules from a given
neural network. Some principles reported in this chapter have been published in the
work (Ciravegna et al., 2020b), which we presented at the AAAI 2020 conference to-
gether with some colleagues from the University of Siena.

In this thesis, we explore a learning paradigm simulating the behaviour of in-
telligent agents that interact in the environment in which they live. Agents acquire
sensory information, and they interpret it by means of task functions. While some
of the relationships among tasks are usually known proprieties of the considered
environment, agents can also autonomously develop new relation patterns that are
not known in advance. In this multi-task learning setting, we distinguish among the
problem of learning task functions f in the input space, subject to given constraints φ,
that implement the available knowledge on the problem at hand, and the problem
of learning “new” constraints ψ in the task space to which the task functions belong.
Both the already available constraints and the newly devised ones belong to what
we refer to as the rule space, as sketched in Fig. 3.1 (a). Learning is the outcome
of a developmental process in which our intelligent agents progressively learn task
functions in the input space and, at the same time, they learn how the task functions
are related in the task space.

Also, in this thesis we consider the generic framework of learning from constraints
(Gnecco et al., 2015), that nicely generalizes the most popular learning settings by
means of the unifying notion of “constraint” (see Table 4 in (Gnecco et al., 2015) for
a list of examples). Learning is conceived as the problem of finding those task func-
tions that are subject to a number of constraints that represent the available knowl-
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(a) (b) (c)

Figure 3.1: (a) Input, task, and rule spaces are associated to input data x, task func-
tions fi(x), i=1. . . ,r, and constraints φj( f (x)) = 0, j = 1, . . . , k, and ψz( f (x)) = 0,
z = 1, . . . , m, respectively. (b) Learning task functions from constraints φj( f (x)) = 0.
(c) Learning task functions while also learning of constraints ψz( f (x)) = 0, with
m = 4.

edge on the considered problem (Fig. 3.1 (b)). The optimal solution is the one that
is the most parsimonious (regular, smooth), making the problem well-posed. A
key feature of such a framework is that symbolic knowledge, unambiguously ex-
pressed by means of First-Order Logic formulas, can be converted into constraints
among the task functions and enforced on a subset or on all the training set (being
it supervised or not) (Diligenti et al., 2017). Supervisions can also be represented
as a simple form of pointwise constraint, i.e. fi(xh) − yh = 0,1 where (xh, yh) is a
supervised pair and fi is a certain task function.

While it is pretty common to search for solutions that are consistent with a given
set of constraints (and some nice applications are reported in Chapter 4 and 5),
learning new constraints to adapt to the environment is still an open challenge.
Therefore, in this thesis, we also propose a novel approach to learning of constraints
in the task space. The basic idea consists in understanding which logic constraints
(further than those already available) are present among the task functions (Fig. 3.1
(c)). This can be done byminimizing a loss function (e.g., theMutual Information),
which transfer information from the task space to the rule space where another set
of learnable functions live. Several possible loss functions and more information
about how this can be practically obtained are reported in Chapter 6. Another ap-
proach consist in physically enumerating all the possible combinations of concepts
(i.e., symbolic data or tasks). Even though it may seem unfeasible, in Chapter 7
we show that we can achieve it by means of an entropy-based input layer. This
not only allows to explain another neural network, but also to create an explainable-

1Or also, employing the standard cross-entropy loss, −log( fi(xh)) · yh = 0.
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by-design network when working on structured input data (i.e., data that can be
already regarded as symbolic concepts). Both processes yield the discovering of
new constraints among the tasks, that are fulfilled in different portions of the task
space. Such newly devised knowledge is not immediately explainable using formal
descriptions. For this reason, we need to devise a simple procedure that can explain
the learned constraints in terms of FOL formulas, thus extracting symbolic knowl-
edge on the relationships between the original tasks. This procedure is generally
based on the idea of reducing the number of paths in the networks that implement
the new constraints (e.g, by exploiting an L1 regularization) and allows producing
compact FOL formulas.

3.1 Notation
Formally, in this thesis we will consider a multi-task learning environment com-
posed of r task learnable functions, f1, . . . , fr, compactly represented by the vectorial
function f = [ f1, . . . , fr], where f : X ⊂ Rd → Y ⊂ Rn. The perceptual information
x ∈ X is processed by the agent, and it is mapped to the task space by f (x) (Fig 3.1
(b)). Each function fi is responsible for implementing a specific task on the input
domain X.2 In a classification problem, the function fi predicts the membership
degree of x to the i-th class. Moreover, when we restrict the output of fi to [0, 1],
we define fi as the fuzzy logic predicate that models the truth degree of belonging
to class i. The same also holds for structured features, i.e., when we map feature
xj in the [0, 1] interval, we can define with xj the logic predicate associated to it,
determining the presence (or activation) of that feature.

By considering each logic predicate fi, First-Order Logic (FOL) becomes the nat-
ural way of describing relationships between data and classes or only among the
classes. Let us illustrate this with an example of the first case,

∀x ∈ X, x1(x) ∧ x2(x)⇒ f(x), (3.1)

where x1(x), x2(x) respectively represent the logic predicates associated to the first
and second feature, andmeaning thatwhen both features are present also the output
function f(x) needs to be true. Now, let us provide an example for the second case,

∀x ∈ X, fv(x) ∧ fz(x)⇒ fu(x), (3.2)

for some v, z, u, meaning that the intersection between the v-th and the z-th class
is always included in the u-th one. Finally, we also assume to have a discrete col-
lection of n data X = {x1, . . . , xn : xk ∈ X}, of task-specific knowledge (i.e.,
supervisions y) on some of the available data, and of other knowledge that is about

2We could also easily extend it to the case in which task functions operate in different domains.
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the environment in which the system operates, such as relationships among the task
functions. For a complete list of the symbols and of the notation used in this chapter
and throughout the thesis, please refer to Tab. 3.1.

3.2 Learning from Constraints
Several ad-hoc solutions can be considered to inject the available knowledge into the
learning process that yield the fi’s. The framework of Learning from Constraints
(Gnecco et al., 2015; Diligenti et al., 2017) follows the idea of converting domain
knowledge into constraints on the learning problemand it studies, amongst a variety
of other knowledge-oriented constraints (see, e.g., Table 2 in Gnecco et al. (2015)),
the process of handling FOL formulas so that they can be both injected into the
learning problem or used as a knowledge verification measure (Gori and Melacci,
2013). Such knowledge is implemented using a number of constraints that involve
(a subset of) the logic predicates, and they are represented with3:

φj( f (x)) = 0, j = 1, . . . , c, (3.3)

where φ = [φ1, . . . , φk], φ : Y ⊂ Rr → Z ⊂ Rk, being k the number of constraints.
Going into more detail, the FOL formulas representing the domain knowledge

are converted into numerical constraints using the Triangular Norms (T-Norms,
(Klement et al., 2013)). These binary functions generalize the conjunction opera-
tor ∧ and offer a way to mathematically compute the satisfaction level of a given
rule. Following the previous example, ∀x ∈ X, x1(x) ∧ x2(x) ⇒ f(x) is converted
into a bilateral constraint that, by employing the product T-Norm, is:

1− x1(x)x2(x)(1− f(x)) = 0 (3.4)

It is pretty common to embed each φj into a non-negative penalty function that
we indicate with φ̂j( f (x)). In the simplest case (the one followed in this paper) such
loss is φ̂( f (x)) = 1− φ( f (x)), which measures the level of satisfaction of the given
constraints and has its minimum value in zero. Again, recalling the previous exam-
ple, the associated loss function would be φ̂j( f (x)) = x1(x)x2(x)(1− f(x)), which
indeed is satisfied when either x1(x) or x2(x) are zeros or f(x) is approximately
one. The quantifier ∀x ∈ X is translated by enforcing the constraints on a discrete
dataset of samples X ⊂ X. The loss function ϕ( f ,K,X ) associated to all the avail-
able knowledge K is obtained by aggregating the losses of all the corresponding
constraints in X :

ϕ( f ,K,X ) = ∑
φ̂j∈K

∑
xk∈X

φ̂j( f (xk)), (3.5)

3Inequality constraints could be available as well, but we focus on equality constraints since in-
equality constrains φj( f (x)) ≤ 0 can be also converted into an equality by max

(
0, φj( f (x)

)
= 0.
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As previously introduced, the loss function ϕ( f ,K,X ) can be employed as a knowl-
edge verification measure in several contexts. In this thesis, it is used to find the test
data on which the network is more mistaken in Chapter 4, and to detect adversarial
examples in Chapter 5.

However, Eq. 3.5 can be also optimized during the learning problem, to train
f over a subset of the input space. If Xφj ⊆ X are the data points belonging to
each subset for which some knowledge is available, then we aim at minimizing the
penalties together with a parsimony index that enforces smoothness. Formally,

f ? = arg min
f

U( f ,K,X ) = arg min
f

 ∑
φ̂j∈K

∑
xk∈Xφj

φ̂j( f (xk)) + λ f ‖ f ‖

 , (3.6)

where the generic regularization term based on the norm of f is weighed by λ f > 0.
This formulation is particularly useful whenwe face a non fully-supervised learning
problem, with a limited number of labelled samples S ⊂ X , defined as:

S =
|Ks|⋃

i

Xφi , (3.7)

where we indicate with | · | the cardinality operator and being Ks the knowledge
associated to the supervisions. Indeed, we may also be given other knowledge K f

valid on all the input samples (
⋃|K f |

j Xφj = X ), regarding the relation of some input
feature and the output classes or between the classes. Optimizing this second set of
constraints allows the network to acquire information also over the unlabelled data,
resulting in more robust and accurate networks, as we show in Chapter 5.

3.3 Learning of Constraints
Enforcing the given constraints φj( f (x)) = 0, results in enforcing regularities in the
task space that are dictated by φ. Learning new constraints ψz( f (x)) = 0, corre-
sponds with discovering regularities in the task space, modelled by the vectorial
function ψ = [ψ1, . . . , ψm], with ψ : Y ⊂ Rr → Z ⊂ Rm, where m is the number of
learnable constraints. We propose to implement ψ using a feed-forward neural net-
work with m output neurons, each of them associated to a component of ψ (Fig. 3.1
(c)). Such network is not the only element that the system is expected to learn,
since also the subsets of data on which each constraint is enforced are unknown
and must be estimated. We indicate with Xψz ⊆ X the subset associated to ψz, and
Xψ = {Xψz , z = 1, . . . , m}.
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We can define a problem similar to Eq. 3.6, where the variables to be optimized
are ψ and Xψ, that is,4,

ψ?,Xψ
? = arg min

ψ,Xψ

D(ψ,Xψ, f ) = arg min
ψ,Xψ

 m

∑
z=1

∑
xk∈Xψz

ψ̂z( f (xk)) + γψ‖ψ‖

 , (3.8)

where γψ > 0. This problem is clearly ill-posed, being it solved byψ constantly equal
to 0, or by m equivalent constraints. Moreover, we are posing no conditions on the
portion of X covered by each Xψ, so that several not-useful solutions are possible.

In order to devise a valid formulation of Eq. 3.8, we have to optimize either
an unsupervised or a supervised criterion that allow to precisely define both the
constraints ψ and their supports Xψ. Indeed, the relations among the tasks may
be unknown in advance, and we simply want to discover the most frequent co-
occurrences. Among other possibilities, we follow the intuition that ψ should max-
imize the information transfer from the task space to the rule space, to capture the
regularities of the task space itself. On the other side, wemaywant to extract specific
relations of the tasks space, as for example the co-occurrences of some tasks with re-
spect to a given one. In this case, a possible solution is to train a ψ model to exactly
mimic the activation of a certain task. For further details on both approaches, please
refer to Chapter 6.

The latter intuition is further analysed in Chapter 7. Indeed, if we are capable to
explain the activation of a neural network w.r.t. a certain task (and we will better
see how in the above-mentioned Chapter), we can also explain the prediction of a
neural networkw.r.t. the input data, in case they can be treated as symbolic concepts
(i.e., when we are working with structure data). As in the previous case, this can
be used to explain another classifier. However, it also paves the way to create an
explainable-by-design neural network.

4In order to simplify the notation, here and in the rest of the thesis we will not make explicit
the dependence of the objective function D on the data on which it is evaluated X , but only on the
support Xψ it has to define.
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Table 3.1: List of the main symbols used through out the thesis.

Notation Description

x ∈ X ⊆ Rd Input sample living in a d-dimensional input space.

xj(x) Value of the predicate associated to the j-th feature

x1, x2, . . . , xn, xk ∈ X Single samples of the discrete set of samples X

n Number of samples in the considered dataset

S Set of supervised samples

y ∈ Y ⊆ Rr Labels associated to the samples x ∈ S

fi(x) Membership score of x to the i-th class.

fi(x) Fuzzy logic predicate associated to the i-th class.

r Number of classes.

∧, ∨, ¬, ⇒ Logical connectives.

K Domain knowledge.

φ( f (x)) ∈ Z ⊆ Rk Knowledge converted into constraint thorugh the T-Norm.

φs( f (xh)) ∈ Z ⊆ Rk Pointwise constraint of a supervised sample xh ∈ S .

φ̂( f (x)) Penalty (≥ 0) associated to constraint φ( f (x)) = 0.

ϕ( f ,K,X ) Loss function associated to a certain knowledge Kand.

k Number of formulas in K.

ψ( f (x)) Logic Constraints learnt from the task function f .

m Number of learnable constraints.

Xφj ,Xψz ∈ X Support of a given constraint φj and of a learnt one ψz.
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Chapter 4

Active Learning by Logic Constraints

In this chapter, we show how logic constraints, derived from a given domain knowl-
edge, can be exploited to minimize the number of training data required to train a
neural network — i.e., to tackle the data-hungry issue introduced in Section 2.3.1.
Some of the contents of this chapter are part of a work submitted to the ICLR 2022
conference together with Prof. Frederic Precioso from the Université Côte d’Azur.

In Section 4.1 the proposed active learning approach is introduced. Section 4.2
reports in details the proposed method, with first an example on inferring the XOR
operation and then contextualized in a more realistic active learning domain. The
experimental results on three datasets are described in Section 4.3, comparing the
proposed technique with a standard active learning strategy. Finally, Section 4.4
resumes the related work.

4.1 Introduction
The main assumption behind active learning strategies is that there exists a subset
of samples that allows to train a model with a similar accuracy as when fed with all
training data. Iteratively, the model indicates the optimal samples to be annotated
from the unlabelled pool. This is generally done by ranking the unlabelled sam-
ples w.r.t. a given measure and by selecting the samples associated to the highest
scores. In this chapter, we propose an active learning strategy that compares the
predictions over the unsupervised data with the available domain knowledge and
exploits the inconsistencies as an index for selecting data to be annotated. To the
best of our knowledge, however, domain-knowledge (converted in the form of logic
constraints) violation has never been used as an index in the selection process of an
active learning strategy.

A straightforward intuition in active learning is that the algorithm should select
the data on which model predictions significantly differ from those produced on
the training data. Uncertain sample selection follows this intuition by picking the
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Figure 4.1: An example of how the proposed method works. Networks predictions
on unseen data are compared with a given knowledge (in the form of FOL formu-
las). Knowledge violation is used as a metric to select samples (figure on the right)
which require annotations in an active learning strategy. Images from the PASCAL-
Part dataset (Chen et al., 2014).

points on which, e.g., the prediction entropy is high, in contrast to the entropy on
the training set which is very low. We also follow this idea by taking into consid-
eration the violation of a given knowledge on unseen data. Indeed, while the logic
constraints derived from the domain knowledge are mostly satisfied on the training
data, the same does not hold outside the training distribution. To give an exam-
ple, let us consider the case of Dog image recognition (Figure 4.1). A model may
have learnt on a set of dog images where dogs’muzzle were identifiable. However,
on an image coming from an unseen distribution (e.g., a dog belonging to a dif-
ferent species), the model may still recognize the muzzle, but it may not recognize
the dog (Figure 4.1, on the right). The proposed method would detect this image
as requiring an annotation because it violates (among others) the logic constraint
∀x : Muzzle(x) ⇒ Dog(x). A main assumption of this strategy is that the model
does not only output the main object in every image, but it also recognizes some
properties of the object or the parts it is composed of. In other words, we define the
problem as multi-label classification. Please notice that this assumption does not
limit the application to the standard image-classification scenario, since also object-
detection can be regarded as a multi-label classification problem (Gong et al., 2019;
Zhao et al., 2020).

In Section 4.3, we show that the proposed strategy outperforms the standard
uncertain sample selection method, particularly in those contexts where domain-
knowledge is rich. We empirically demonstrate that this ismainly due to the fact that
the proposed strategy allows discovering data distributions lying far from training
data, unlike uncertainty-based approaches. Neural networks, indeed, are known
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to be over-confident of their prediction, and they are generally unable to recognize
samples lying far from the training data distribution. This issue, beyond exposing
them to adversarial attacks (Szegedy et al., 2014b; Goodfellow et al., 2014), prevents
uncertainty-based strategies from detecting these samples as points that would re-
quire an annotation. On the contrary, even though a neural network may be confi-
dent of its predictions, the interaction between the predicted classes may still offer
a way to spot out-of-the-distribution samples. As reported in the example above, a
neural networkmay predict with high level of confidence the presence of themuzzle
in the image and, as certainly, it may not recognize the dog. The missing interaction
of the two classes, however, allows spotting an incoherent prediction. Finally, as an-
ticipated above, the Knowledge-driven Active Learning (KAL) strategy can be also
employed in the object-detection contextwhere standard uncertainty-based ones are
difficult to apply (Choi et al., 2021; Haussmann et al., 2020).

4.2 Knowledge-driven Active Learning
Following the notation introduced in Section 3.1, in this chapter, we focus on multi-
label classification problems f : X → Y, where X ⊆ Rd represents the feature
space which may also comprehend non-structured data (e.g. input images) and
Y ⊆ {0, 1}r is the output space composed of r ≥ 1 dimensions. When considering
an object-detection problem, for a given class and a given image, we consider as class
membership probability the maximum score value among all predicted bounding
boxes around objects belonging to that class. Formally, fi(xj) = maxbh∈Bi(xj)

bh(xj)

where Bi(xj) is the set of the confidence scores of the bounding boxes predicting the
i-th class for sample xj. Obviously, in case a certain class is not predicted in any of
the bounding box, we set fi(xj) = 0. We also consider the case in which additional
domain knowledge K f

1 is available for the problem at hand. How to exploit such
knowledge to select the best points for training a classifier is the main subject of
this section, and it follows the principles already introduced in Section 3.2. Using
domain knowledge in the selection process provides precious information to define
a criterion for identifying examples on which the model requires supervision.

Let us also consider the case in which there exists S ⊂ X, representing the por-
tion of input data already associated to an annotation yi ∈ Y ⊂ Y. We define with
s the dimensionality of the starting set of labelled data. At each iteration, a set of
p samples {x1, x2, ...xp} = Xp ⊂ Xu ⊂ X is selected by the active learning strat-
egy to be annotated, being Xu the set of (still) unlabelled input data. This process
is repeated for a number of iterations b, after which the training terminates. The
maximum number of annotations therefore amount to s + b ∗ p.

1In the context of this chapter we only consider the knowledge associated to the logic formulas
K f ⊂ K, excluding, e.g., the knowledge associated to pointwise constraints Ks
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Figure 4.2: A visual example of the principles of the KAL strategy on the XOR-
like problem. We depict network predictions with different colour degrees (light
colours negative predictions, dark colours positive prediction). Also, we depict in
orange the points selected in the current iteration, in blue those selected in previous
iterations. From left, the scenario at the 1st, 10th and 100th iteration.

In the proposed method, we consider the learning from constraints scenario de-
fined in Section 3.2. Based on this, the proposed active learning strategy detect
whether the predictionsmade by themodel on out-of-sample data are coherentwith
the domain knowledge or not. More precisely, in this case Equation 3.5 is computed
considering all the available FOL formulas K f for the given problem to select the
points which violate the most the constraints. In particular, this is done by aggre-
gating the lossess of all the corresponding constraints for all the samples x ∈ Xu:

KAL : x? = arg max
x∈Xu

K
∑
k

φ̂k( f (x)) (4.1)

4.2.1 A paradigmatic example: the XOR-like problem
A well-known problem in machine learning is the inference of the eXclusive OR
(XOR) operation. To show the working principles of the proposed approach, we
propose here a variant of this experiment, in which a neural network learns a XOR-
like operation from a distribution of non-boolean samples. Specifically, we sampled
10000 points from the distribution x ∈ [0, 1]2, and we assigned a label y(x) as fol-
lowing:

y(x) =


1, if x1 > 0.5∧ x2 ≤ 0.5

1, x1 ≤ 0.5∧ x2 > 0.5,

0, otherwise
(4.2)

Also, we can express the XOR operation through a FOL formula (x1 ∧¬x2)∨ (¬x1 ∧
x2)⇔ f.

For the sake of clarity, here and in the following we drop the argument (x) of the
logic predicates. As seen before, through the T-Norm operation we can convert the
logic rule into a numerical constraint, and we can calculate its violation through the
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loss functions:

φ̂1 = f(1− x1(1− x2))(1− x2(1− x2)),

φ̂2 = (1− f)(1− (1− x1(1− x2))(1− x2(1− x2)))
(4.3)

where φ̂1 represents the violation of the rule f→ (x1 ⊕ x2), while φ̂2 represents the
violation of (x1 ⊕ x2) → f, with ⊕ being logic XOR. For an automatic computation
of the loss functions associated to the violation of a rule, please refer to Marra et al.
(2019). TheKAL strategy can therefore compute for each sample the associated loss
(Eq. 4.3) and at each iteration select the points with higher violations (Eq. 4.1).

In Fig. 4.2, we reported an example of the proposed strategy starting from n = 10
labelled data and by selecting p = 5 points at each iteration for a total of k = 100
iterations. We depict network predictions with different colour degrees, from light
beige (negative predictions) to black (positive predictions); we depict in orange the
points selected at current iterations and in blue those selected previously. Notice
how the proposed method immediately discovers novel data distributions by se-
lecting samples from the right-bottom quadrant (orange points—figure on the left);
after 10 iterations (figure at the centre) the network has mostly learnt the correct
data distribution and later refines the predictions of the network sampling along
the decision boundaries (blue points—figure on the right), allowing the network to
completely solve the learning problem (accuracy ∼ 100%).

4.2.2 Real-life scenario: partial knowledge and different type of
rules

It is clear that, in the case of the XOR-like problem, the knowledge is complete: if
we compute the predictions directly through the rule, we already solve the learning
problem. However, the purpose of that simple experiment is to show the potentiality
of the proposed approach in integrating the available symbolic knowledge into a
learning problem. In real-life scenarios, such a situation is unrealistic, but still we
might have access to some useful knowledge that may allow solving more quickly
a given learning problem.

More precisely, when we consider structured data (e.g., tabular data), we may
know some very simple relations taking into consideration few features and the out-
put class. This knowledge may not be sufficient to solve the learning problem, but
a KAL strategy can still exploit it to drive the network to a fast convergence, as we
will see in Sec. 4.3.

On the opposite, when we consider unstructured data (e.g., images or audio
signals) the knowledge that we employ cannot directly rely on the input features.
Nonetheless, if we consider a multi-label learning problem, we may know in ad-
vance some relations between the output classes. Let us consider, as an example,
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a Dog-vs-Man classification: we might know that one of the main object (e.g., a
dog) is composed of several parts (e.g., a muzzle, a body, a tail, four paws). A
straightforward translation of this compositional property into a FOL rule might be
Dog⇒ Muzzle ∨ Body ∨ Tail ∨ Paws. Formulating the composition in the oppo-
site way is also correct, i.e., from the parts to themain object (e.g., Muzzle⇒ Dog).

Moreover, in all problems at least one of the classes needs to be predicted (Dog∨
Man), with main classes beingmutually exclusive in standardmulti-class problems
(Dog⊕Man). Finally, we can always incorporate an uncertainty-like rule requiring
each predicate to be either true or false, Dog⊕¬Dog.

4.2.3 Adding diversity sampling
As anticipated, uncertainty-based methods in DL may not be very effective in case
they are not paired with a diversity-sampling strategy. Also in the case of kal this
holds true: given a set of rules K, the proposed method might select p samples all
violating the same rule φk( f (x)). Even though a neural network may need different
samples to learn a novel distribution of data, picking a batch of samples belonging
to the same distributionmight be a poor strategy and slow down the overall training
process. To avoid this issue, we select a maximum number r of samples violating a
certain rule k, similarly to Brinker (2003) introducing diversity in Tong and Koller
(2001) margin-based approach. Specifically, we group samples x ∈ Xu according to
the rule they violate the most, and we select a maximum number r of samples from
each cluster (still following the ranking given by Eq. 4.1).

4.3 Experiments
In thiswork, we considered six different learning scenarios, comparing the proposed
technique with other active learning strategies. We evaluated the proposed method
on two standard machine learning problems, the inference of the XOR-like problem
(already introduced in Section 4.2.1), and the classification of IRIS plants given their
characteristics; on two image-classification tasks, the ANIMALS and the CUB200
Wah et al. (2011a) datasets; and on two object-recognition tasks, the DOGvsPER-
SON and the PASCAL-Part Chen et al. (2014) datasets. TheDOGvsPERSON dataset
is a newly devised, publicly available dataset that we extracted from PASCAL-Part
. For more details regarding this dataset, please refer to Appendix A.2.1. In Sec-
tion 4.3.1 the compared methods are briefly described and analysed; in Section 4.3.2
a quantitative analysis of the different active learning strategies is reported for the
six learning problems; in Section 4.3.3 a qualitative analysis on the XOR-like task is
conducted; in Section 4.3.4 we compare the correlation of the losses associated to
the uncertain and the kal strategy with the supervised one. All the details regard-
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ing each experimental problem as well as the type of knowledge are reported in the
supplementarymaterial in Appendix A.2.2. All the experiments have been repeated
at least three times (ten in the two standard machine learning problems), starting
from different weight initializations of the models. The code required to run the
experiments is published on a publicly available repository2. Also, a simple code
example is reported in Appendix A.3 showing how to solve the XOR-like problem
following the kal strategy.

4.3.1 Compared methods
We compared kal to four active learning strategies: standard uncertain-sample se-
lection, an enhancedversion coupledwith a diversity-sampling strategy (uncertain+),
random selection, but also a supervised strategy, i.e., a utopian active learning strat-
egy evaluating the supervision loss on the whole pool of the unlabelled samples.
Obviously, this latter is an unfeasible active learning strategy because it would re-
quire to already have the labels of all the samples in the unlabelled pool. However, as
the random selection can be regarded as a lower-bound, we can consider supervised
as a possible upper-bound of the quality of an active learning strategy. Specifically,
supervised selects the samples with the highest cross entropy loss H(yi, fi):

supervised : x? = arg max
x∈Xu,y∈Yu

c

∑
i=1

H( fi, yi), (4.4)

where Yu is the set of labels associated to the samples Xu. Regarding the uncertain-
sample selection, among other possibilities, we consider here the closest samples to
the decision boundaries. Formally:

uncertain : x? = arg min
x∈Xu

(‖ f (x)− 0.5‖1), (4.5)

where an L1 norm is employed to compute the distance from the decision boundary
(0.5). Finally, uncertain+ is computed requiring that the samples selected with
Eq. 4.5 belong to different clusters, computed by means of a K-Means on the input
features (or on the featured extracted by the convolutional filters in the computer
vision problems).

4.3.2 Experimental Results
For a quantitative comparison of the different methods, we evaluated the perfor-
mance growth of a neural network when increasing the number of selected labelled
data. In both the standard machine learning problems (Figures 4.3a, 4.3b), we can

2https://github.com/gabrieleciravegna/Constrained-Active-Learning
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(a) XOR-like (b) IRIS

(c) CUB200 (d) ANIMALS

(e) DOGvsPERSON (f) PASCAL-Part

Figure 4.3: Average performance growth on the six experiments when increasing
the number of labelled samples. 75% confidence intervals not reported in the first
two figures for better readability.

observe how the proposed method allows the network to solve the learning prob-
lem (i.e., reaching 100% accuracy) similarly to using a supervised strategy. While
this was an expected behaviour on the XOR-like task since the provided rules com-
pletely explain the learning problem, on the IRIS classification task it is surprising
since only 3 simple rules considering 2 features each are given (e.g.,¬Long_Petal⇒
Setosa). On the contrary, whenusing uncertain strategies, evenwhen coupledwith
a diversity-based sampling, the network reaches the same level of performances
much later (on IRISwhen most of the dataset is labelled).
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It is also worth noticing how, with random selection, the model does not reach
100 % accuracy in neither task, highlighting the need of an active learning strategy
to perfectly solve the problems with these amounts of training data. A similar situ-
ation is also repeated on the image classification tasks CUB200 and ANIMALS (Fig-
ures 4.3c, 4.3d). Herewe notice the importance of employingwell-structured knowl-
edge. In the ANIMALS task, only 17 rules are employed relating 33 classes about
animal species and their characteristics (e.g., Fly ⇒ ¬Penguin). In this case, the
results with kal are only slightly better w.r.t. using uncertain or uncertain+ strate-
gies (mostly overlapped in the image classification problems). In the CUB200 task
instead, the performances aremuch better thanwhenusing uncertain strategies and
closer to using the utopic supervised one. InCUB200, indeed, 311 rules are employed
in the kal strategy to help the model classify 308 classes considering bird species
and their attributes (e.g., White_Pelican ⇒ Black_Eye ∨ Solid_Belly_Pattern ∨
Solid_Wing_Pattern). At last, in Figures 4.3e, 4.3f, we report the mean Average
Precision (mAP) in two tasks of object recognition. In both cases the results of
the proposed method are very good and, in the case of the DOGvsPERSON task,
even better than using a supervised strategy. This result is unexpected and probably
due to the fact that the supervision loss in object recognition is composed of several
terms, some of which are inherently difficult to optimize. In the PASCAL-Part task,
the overall performances are poor since it is a very difficult task (a Faster R-CNN
trained on 90% of the dataset reaches a test mAP ∼ 13.94) with many small objects
and object-parts to be recognized within the same image.

As anticipated, it is not straightforward applying uncertain (Eq. 4.5) sample
selection to the object-detection context, thus, in this case, we restricted the compar-
ison to the other methods only.

4.3.3 Qualitative Analysis
For a qualitative evaluation of the proposed approach, in Figure 4.4 we reported the
samples selected by the different strategies at the 25th iteration on the XOR-like task,
starting from the same randomly selected samples of Figure 4.2. More figures show-
ing the training prediction at different iterations are reported in Appendix A.2.3.
When equipped with the kal strategy and with this amount of training data, the
network has already fully covered the data distribution in the right-bottomquadrant
not represented by the starting samples. This behaviour mimics the one obtained
when selecting the points through the supervised technique. On the contrary, when
employing uncertain sample selection, novel data distributions are difficult to dis-
cover, leading to poorer performances. Even uncertain+, coupled with diversity
sampling, at the 25th iteration has only started discovering the novel data distribu-
tion. As shown in Figure 4.3a, indeed, uncertain+ requires more points on average
to solve the learning problem.
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(a) supervised (b) kal

(c) uncertain+ (d) uncertain

Figure 4.4: A comparison of the sample selection process on the XOR-like task at
the 25th iteration (starting from the same points as in Figure 4.2). Notice how both
uncertainty-based strategies have not covered yet the novel data distribution (right-
bottom quadrant).

4.3.4 Correlation with Supervised Loss

We further investigated the advantage of using the kal strategy w.r.t. the uncer-
tain one, by analysing the correlation of the supervision loss with the knowledge-
violation loss and with the uncertainty loss (respectively, arguments of Eqs. 4.4, 4.1,
4.5) on the CUB200 problem. In Figure 4.5, we report two scatter plots comparing
the two pairs of losses calculated over Xu at the 30th training iteration. Samples se-
lected by the strategies are depicted in orange, in grey the remaining samples in the
unlabelled pool. The knowledge-violation loss is slightly more correlated with the
supervised loss than the uncertain one, and the average supervision loss of the sam-
ples selected by the kal strategy is higher (blue lines). Considering all iterations
across all seeds on the CUB200 task, the points selected by the kal strategy have an
average supervision loss of ∼ 154.31, while it is only of ∼ 117.9 for those selected
by the uncertain one.
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Figure 4.5: Correlation of the kal (left) and the uncertain (right) losses (horizontal
axes) with the supervised loss (vertical axis). In orange, the points selected by the
active learning strategy. In blue, the average supervision loss of the selected points.

4.4 Related work
Devising an active learning strategy is not an easy task. As previously introduced,
an approach could be to simply select the points on which the model is just wrong
about. Since this is obviously not possible, in the literature, two main approaches
have been followed: uncertainty samplingwhich select the data onwhich themodel
is the least confident, possibly extended with diversity sampling which maximizes
the data distribution exploration among selected samples; curriculum learningwhi-
ch instead focuses first on easy samples then extending the training set to incorpo-
rate more and more difficult ones while also targeting more diversity. Standard un-
certain strategies consist in choosing samples that maximize the prediction entropy
(Houlsby et al., 2011; Cao and Tsang, 2021), the distance from the hyperplane in
SVM (Schohn and Cohn, 2000), or the variation ratio in Query-by-committee with
ensemble methods (Burbidge et al., 2007; Ducoffe and Precioso, 2017; Beluch et al.,
2018). Establishing prediction uncertainty ismore difficultwithDLmodels. Indeed,
they generally tend to be over-confident, particularly when employing softmax ac-
tivation functions (Thulasidasan et al., 2019). Furthermore, there is no easy access
to the distance to the decision boundary as for SVM, so it needs to be computed.
This problem has been tackled by devising different uncertain strategies, such as
employing Bayesian Neural Network with Monte Carlo Dropout (Gal et al., 2017),
predicting the loss associated to each sample (Yoo and Kweon, 2019), or calculat-
ing the minimum distance required to create an adversarial example (Ducoffe and
Precioso, 2018). As pointed out by Pop and Fulop (2018), however, uncertain strat-
egy alone may choose the same categories many times and may create unbalanced
datasets. In order to solve this, uncertain sample selection needs to be coupled with
diversity sampling strategies. Diversity is generally obtained by preferring batches
of data maximizing the mutual information between model parameters and predic-
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tions (Kirsch et al., 2019), or core-set points (Sener and Savarese, 2018), or, also,
samples nearest to k-means cluster centroids (Zhdanov, 2019). At last, by consid-
ering gradient parameters with respect to the predicted category, one can compute
at the same time prediction uncertainty (by selecting samples with higher gradi-
ent norm) and sample diversity (by maximizing the diversity among the selected
samples gradients) (Ash et al., 2019).

It has been pondered that human beings’ cognition mainly consists in two dif-
ferent tasks: perceiving the world and reasoning over it (Solso et al., 2005). While
in humans they take place at the same times, in artificial intelligence these two tasks
are separately conducted bymachine learning and logic programming. In the litera-
ture, there exists a variety of proposals aiming at joining these two fields (to create a
so-called hybrid model), ranging from Statistical Relational Learning (SRL) (Koller
et al., 2007) and Probabilistic Logic Programming (De Raedt and Kimmig, 2015)
which focus on integrating learning with logic reasoning, to enhanced networks fo-
cusing on relations (Santoro et al., 2017) or with external memories (Graves et al.,
2016). To the best of our knowledge, however, none of these methods can be di-
rectly applied in the standard active learning scenario. On the contrary, we have
shown that the learning from constraints framework (Gnecco et al., 2015; Diligenti
et al., 2017) can be naturally leveraged to devise active learning strategies in context
where a domain-knowledge is available.



Chapter 5

Detecting Adversarial Attacks with
Logic Constraints

In this chapter, we show how logic constraints, derived from a given domain knowl-
edge, can be exploited to defend neural networks from adversarial attack issue intro-
duced in Section 2.3.2). Some contents of this chapter are part of the work (Melacci
et al., 2020) that we submitted to the IEEE TPAMI journal together with some col-
leagues from the University of Siena and Cagliari.

This chapter is organized as follows. In Section 5.1we introduce the proposed ad-
versarial defense approach. Section 5.2 deepen some learning from constraints prin-
ciples (previously introduced in Section 3.2). Section 5.3 shows howdomain knowl-
edge can be used to defend against adversarial attacks, together with a knowledge-
aware attack procedure. A detailed experimental analysis is reported in Section 5.4,
evaluating the quality of our defense mechanisms, also considering state-of-the-art
attacks and existing defense schemes. Finally, related works are resumed and com-
pared to the proposed method in Section 5.5.

5.1 Introduction
In this Chapter, we focus on multi-label classification and, in particular, in the case
in which domain knowledge on the relationships among the considered classes is
available. which can be used to improve the classifier by enforcing FOL-based con-
straints on the unsupervised or partially labelled portions of the training set. A
well-known intuition in adversarial machine learning suggests that a reliable model
of the distribution of the data could be used to spot adversarial examples, being
them not sampled from such distribution, but it is not a straightforward proce-
dure (Grosse et al., 2017). Weborrow such intuition, andwe intersect itwith the idea
that semi-supervised examples can help learn decision boundaries that better follow
the marginal data distribution, coherently with the available knowledge (Melacci

39
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Figure 5.1: Leveraging domain knowledge to improve robustness of multi-label
classifiers. At training time, domain knowledge is used to enforce constraints on
the learning process using unlabeled or partially-labeled data. At evaluation time,
domain-knowledge constraints are used to detect and reject samples outside of the
training data distribution.

and Belkin, 2011; Diligenti et al., 2017), and we investigate the role of such knowl-
edge in the context of data generated in an adversarial manner. While the generic
idea of considering domain information in adversarial attacks has been recently fol-
lowed by other authors to different extents (Naseer et al., 2019; Joshi et al., 2019;
Sheatsley et al., 2021), to the best of our knowledge we are the first to use domain
knowledge expressed in FOL and converted into polynomial constraints to improve
adversarial robustness of multi-label classifiers.

In detail, this chapter contributes in showing that domain knowledge is a power-
ful feature (i) to improve robustness of multi-label classifiers, and (ii) to help detect
adversarial examples. The underlying idea of our approach is conceptually repre-
sented in Fig. 5.1. At training time, domain-knowledge constraints are enforced on
the unlabeled (or partially-labeled) data to learn decision boundaries which better
align with the marginal distributions. At test time, the same constraints can be ef-
ficiently evaluated on the test samples to identify and reject incoherent predictions,
ideally outside of the training data distribution, potentially including adversarial
examples. Our approach can be also used in single-classification tasks where do-
main knowledge and auxiliary classes are present, and can be exploited internally
by the classifier to implement the rejectionmechanism based on domain-knowledge
constraints. We will show some concrete examples of this latter setting in our ex-
periments, reporting comparisons with state-of-the-art adversarial attacks and con-
current defenses developed for single-classification tasks.

To properly evaluate the robustness of our approach, which remains one of the
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most challenging problems in adversarial machine learning (Carlini et al., 2019;
Athalye et al., 2018; Biggio andRoli, 2018), we also propose a novelmulti-label attack
that can implement both black-box and white-box adaptive attacks, being driven by
the domain knowledge in the latter case. While we show that an adaptive attack
having access to the domain knowledge exploited by our classifier can bypass it,
even though at the cost of an increased perturbation size, it remains an open is-
sue to understand how hard for an attacker would be to infer such knowledge in
practical cases. For this reason, we believe that our work can provide a significant
contribution towards both evaluating and designing robust multi-label classifiers.

Indeed, most of the approaches in literature works in the fully supervised con-
text. Only a few approaches leverage also unlabeled data to improve adversarial
robustness (Miyato et al., 2016; Park et al., 2018; Akcay et al., 2018; Carmon et al.,
2019; Miyato et al., 2018; Zhai et al., 2019; Najafi et al., 2019; Alayrac et al., 2019),
although the semi-supervised learning setting provides a natural scenario for real-
world applications in which labelling data is costly while unlabelled samples are
readily available. More importantly, the case of multi-label classification, in which
each sample can belong tomore classes, is only preliminary discussed in the context
of adversarial learning in (Song et al., 2018), while using adversarial examples to
improve the accuracy on legitimate (non-adversarial) samples of some multi-label
classifiers is studied in (Wu et al., 2017; Babbar and Schölkopf, 2018).

5.2 Learning with Domain Knowledge
Following the notation introduced in Section 3.1, in the context of this chapter we fo-
cus on multi-label classification problems with r classes, in which each input x ∈ X
is associated to one or more classes. We consider the case in which additional do-
main knowledge K f is available for problem at hand, represented by a set of rela-
tionships that are known to exist among (a subset of) the r classes. The introduc-
tion of domain knowledge in the learning process provides precious information
only when the training data are not fully labeled, as in the classic semi-supervised
framework. Some examples might be partially labeled (i.e., for each data points a
subset of the r classes participates to the ground truth) or a portion of the training
set might be unsupervised. Of course, if the data are fully labeled then all the class
relationships are already encoded in the supervision signal. However, in this chap-
ter we also consider domain knowledge as a mean to define a criterion that can spot
potentially adversarial examples at test time, as we will discuss in Section 5.3, and
that is also feasible in fully-supervised learning problems.

Learning from Constraints Following the learning from constraints principles in-
troduced in Section 3.2, we better define here how constraints can be employed in a
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learning problem and to detect adversarial examples. Indeed, we have seen how to
compute the overall loss considering all the constraints in Equation 3.5. However,
since we usually have k formulas whose relative importance could be uneven, with
a little abuse of notation we define:

ϕ( f ,K,X , µ) =
1
|X | ∑

φ̂j∈K
∑

xh∈X
µjφ̂j( f (xh)) ∈ [0, γ], (5.1)

with ϕ now also depending on µ which is the vector that collects the scalar weights
µj > 0 of the FOL formulas, while γ = ∑k

j=1 µj.
We distinguish between the use of Eq. (5.1) as a loss function in the training stage

and its use as ameasure to evaluate the constraint fulfillment on out-of-sample data.
In detail, the classifier is trained on the training set L by minimizing

f ? = arg min
f

{
ϕs( f ,Ks,S , µS) + λ · ϕ f ( f ,K f ,L, µL)

}
, 1 (5.2)

where we explicitly distinguish the loss related to the pointwise-constraints ϕs de-
rived from the supervised knowledge Ks and calculated on the supervised set S ,
from the loss ϕ f related to the knowledge given as FoL formulas K f calculated on
the overall training set L. Furthermore, µS is the importance of the pointwise con-
straints, µL is the importance of the FOL formulas at training time, and λ > 0 mod-
ulates the weight of the constraint loss related to the formulas with respect to one
related to the supervisions. Please notice that since we are in a semi-supervised set-
ting (i.e., S ⊂ L) not all the training samples are labelled. The optimal λ is chosen
by cross-validation, maximizing the classifier performance.

When the classifier is, instead, evaluated on a test sample x, the measure

ϕ f ( f ,K f , {x}, µT ) ∈ [0, γT ], (5.3)

with weights µT and γT = ∑k
j=1 µTj , returns a score that indicates the fulfillment of

the domain knowledge K f on x (the lower the better). Note that µL and µT might
not necessarily be equivalent, even if certainly related. In particular, one may differ-
entlyweigh the importance of some formulas during training to better accommodate
the gradient-descent procedure and avoid bad local minima.

It is important to notice that Eq. (5.2) enforces domain knowledge only on the
training data L. There are no guarantees that such knowledge will be fulfilled in
the whole input space X . This suggests that optimizing Eq. (5.2) yields a stronger
fulfillment of knowledge K f over the space regions where the training points are
distributed (low values of ϕ f ), while ϕ f could return larger values when departing
from the distribution of the training data. The constraint enforcement is soft, so that
the second term in Eq. (5.2) is not necessarily zero at the end of the optimization.

1In order to simplify the notation, here and in the following we do not explicitly represent the
dependency of f to its internal weights W.
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5.3 Exploiting Domain Knowledge against
Adversarial Attacks

The basic idea behind this chapter is that the constraint loss of Eq. (5.1) is not only
useful to enforce domain knowledge into the learning problem, but also (i) to gain
some robustness with respect to adversarial attacks and (ii) as a tool to detect ad-
versarial examples at no additional training cost, that are, as anticipated, the main
directions of this chapter.

A Paradigmatic Example. The example in Fig. 5.2 illustrates the main principles
followed in this work, in a multi-label classification problem with 4 classes (cat,
animal, motorbike, vehicle) for which the following domain knowledge is available,
together with labeled and unlabeled training data:

∀x, CAT(x)⇒ ANIMAL(x) , (5.4)
∀x, MOTORBIKE(x)⇒ VEHICLE(x) , (5.5)
∀x, VEHICLE(x)⇒ ¬ANIMAL(x) , (5.6)
∀x, CAT(x) ∨ ANIMAL(x) ∨MOTORBIKE(x) ∨ VEHICLE(x). (5.7)

Such knowledge is converted into numerical constraints, as described in Section 5.2,
while the loss function ϕ f is enforced on the training data predictions during clas-
sifier training (Eq. 5.2). Fig. 5.2 shows two examples of the learned classifier.

Considering point (i), in both cases, the decision boundaries are altered on the
unlabeled data, enforcing the classifier to take a knowledge-coherent decision over
the unlabeled training points and to better cover the marginal distribution of the
data. This knowledge-driven regularity improves classifier robustness to adversar-
ial attacks, as we will discuss in Section 5.4. Going into further details to illustrate
claim (ii), in (a) we have the most likely case, in which decision boundaries are
not always perfectly tight to the data distribution, and they might be not closed
(ReLU networks typically return high-confidence predictions far from the training
data (Hein et al., 2019)). Three different attacks are shown (purple). In attack 1,
an example of motorbike is perturbed to become an element of the cat class, but
Eq. (5.4) is not fulfilled anymore. In attack 2, an example of animal is attacked to
avoid being predicted as animal. However, it falls in a region where no predictions
are yielded, violating Eq. (5.7). Attack number 3 consists of an adversarial attack to
create a fake cat that, however, is also predicted as vehicle, thus violating Eq. (5.4)
and Eq. (5.6). In (b) we have an ideal and extreme case, with very tight and closed
decision boundaries. Some classes are well separated, it is harder to generate ad-
versarial examples by slightly perturbing the available data, while it is easy to fall
in regions for which Eq. (5.7) is not fulfilled. The pictures in (c-d) show the unfea-
sible regions in which the constraint loss ϕ f is significantly larger, thus offering a
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Figure 5.2: Toy example using the domain knowledge of Eqs. (5.4-5.7): cat (yellow),
animal (blue), motorbike (green), vehicle (red). Labeled/unlabeled training data
are depicted with coloured dots/gray triangles. (a,b) The decision regions in two
sample outcomes of the training procedure: (a) open/loose decision boundaries;
(b) tight/closed decision boundaries. White area are associated with no predic-
tions. Adversarial examples (purple arrows/dots) are detected when they end up
in regions that violate the constraints. Moreover, in (c,d) The feasible/unfeasible
regions (blue/gray) that fulfill/violate the constraints for (a,b) are shown.

natural criterion to spot adversarial examples that fall outside of the training data
distribution.

Domain Knowledge-based Rejection. Following these intuitions, and motivated
by the approach of (Hendrycks and Gimpel, 2017; Hendrycks and Gimpel, 2017),
we define a rejection criterion Ω as the Boolean expression

Ω(x, τ| f ,K f , µT ) = ϕ f ( f ,K f , {x}, µT ) > τ (5.8)

where τ > 0 is estimated by cross-validation in order to avoid rejecting (or rejecting
a small number of2) the examples in the validation setV . Eq. (5.8) evaluates the con-
straint loss on the validation data V , using the importance weights µT (that we will
discuss in what follows), as in Eq. (5.3). The rationale behind this idea is that those

210% in our experiments.



5.3 Exploiting Domain Knowledge against Adversarial Attacks 45

samples for which the constraint loss is larger than what it is on the distribution of
the data that are available when training/tuning the classifier, should be rejected.
The training samples are the ones over which domain knowledge was enforced dur-
ing the training stage, while the validation set represents data on which knowledge
was not enforced, but that are sampled from the same distribution from which the
training set is sampled, making them good candidates for estimating τ. Notice that
Ω is measured at test time on an already trained classifier, and it can be used inde-
pendently on the nature of the training data (fully or partially/semi-supervised).
Differently from ad-hoc detectors, that usually require to train generative models,
this rejection procedure comes at no additional training cost.3

Pairing Effect. The procedure is effective whenever the functions in f are not too
strongly paired with respect to K f , and we formalize the notion of “pairing” as fol-
lows.

Definition 5.3.1. Pairing. We consider a classification problem whose training data are
distributed accordingly to the probability density p(x). Given K f and µT , the functions in
f are strongly paired whenever ζ(H,L) = ‖ϕ f ( f ,K f ,H, µT )− ϕ f ( f ,K f ,L, µT )‖ ≈ 0,
beingH a discrete set of samples uniformly distributed around the support of p(x).

This notion indicates that if the constraint loss is fulfilled in similar ways over
the training data distribution and space areas close to it, then there is no room for
detecting those examples that should be rejected. While it is not straightforward
to evaluate pairing before training the classifier, the soft constraining scheme of Eq.
(5.2) allows the classification functions to be paired in a less strong manner that
what they would be when using hard constraints.4 Note that a multi-label system is
usually equipped with activation functions that do not structurally enforce any de-
pendencies among the classes (e.g., differently from what happens with softmax),
so it is naturally able to respond without assigning the input to any class (white
areas in Fig. 5.2). This property has been recently discussed as a mean for gaining
robustness to adversarial examples (Shafahi et al., 2019; Bendale and Boult, 2016).
The formula in Eq. (5.7) is what allows our model to spot examples that might fall
in this “I don’t know” area. Dependencies among classes are only introduced by the
constraint loss ϕ f in Eq. (5.2) on the training data.

The choice of µT is crucial in the definition of the reject function Ω. On the one
hand, in some problems we might have access to the certainty degree of each FOL
formula, that could be used to set µT , otherwise it seems natural to select an un-
biased set of weights µT , µh = 1, ∀h. On the other hand, several FOL formulas

3Generative models on the fulfillment of the single constraints could be considered too.
4See (Teso, 2019) for a discussion on hard constraints and graphical models in an adversarial

context.
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involve the implication operator⇒, that naturally implements if-then rules (if class
v then class z) or, equivalently, rules that are about hierarchies, since⇒ models an
inclusion (class v included in class z). However, whenever the premises are false,
the whole formula holds true. It might be easy to trivially fulfill the associated con-
strains by zeroing all the predicates in the premises, eventually avoiding rejection.
As rule of thumb, it is better to select µh’s that are larger for those constraints that
favor the activation of the involved predicates.

Single-label Classifiers. The type of domain knowledge described so far usually
involves logic formulas that encode relationships among multiple classes, thus it is
naturally associated with multi-label problems. Let us focus our attention on multi-
label scenarios in which there exists a subset of categories that are known to be mu-
tually exclusive, that we will refer to as main classes, while the remaining categories
will be referred to as auxiliary classes. If we restrict the original classification prob-
lem to the main classes only, we basically end-up in a single-label scenario. Let us
assume that the available logic formulas introduce relationships between (some of)
the main classes and (some of) the auxiliary ones. As a result, in order to setup
our defense mechanism (Eq. 5.8) or to learn with domain knowledge (Eq. 5.2), pre-
dictions on both the main and auxiliary classes must be available, so that the truth
degree of the logic formulas can be evaluated. This consideration can be exploited to
design classifiers that expose single label predictions on the main classes, thus act-
ing as single-label classifiers, and include predictions on the auxiliary classes that
are not exposed to the user at all, but that are internally used to setup our defense
mechanism or to improve the quality of whole classifier when learning in a semi-
supervised context. Formally, let us assume that the components { fi, i = 1, . . . , c}
of the vector function f are partitioned into two disjoint subsets, where the first one
considers the components about the mutually-exclusive main classes and the sec-
ond subset is about the auxiliary classes. We define with f v the vector function with
the elements in the first subset, while f h is the vector function based on the elements
of the second one, as shown in Fig. 5.3. The system only exposes to the user predic-
tions computed by means of f v, while the computations of f h are hidden. Overall,
the system can still exploit domain knowledge that consists in relationships between
the classes associated to f v (main classes) and the ones associated to f h (auxiliary
classes), or among the ones in f h only, thus leveraging the learning principles that
were described in Section 5.2. Moreover, the system can exploit the hidden pre-
dictions and the available knowledge to implement the knowledge-based rejection
mechanism that we proposed in this section, as sketched in Fig. 5.3.

Due to the single-label nature of the visible portion of the classifier, existing state-
of-the-art attacks, specifically designed for single-label models, can be used to fool
the classifier in a black-box scenario. In Section 5.4, when the consider data are
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Figure 5.3: Single-label classifier on a set of mutually exclusive classes (main classes),
computing the class activations by f v and exposing them to the user (red path). It in-
ternally computes by f h additional predictions over auxiliary classes that are involved
in the domain knowledge (together with the main classes). Training considers all
the classes, Fig. 5.1.

compatible with this special setting, we will exploit recent attack procedures to gen-
erate adversarial examples and evaluate the proposed knowledge-based rejection
mechanism. Of course, differently from what we previously stated about the real
multi-label setting, we cannot consider the cost of the rejection mechanism negligi-
ble in this case, since the systemmust learn the functions in f h in order to be able to
compute the rejection criterion.

5.3.1 Attacking multi-label classifiers

Robustness against adversarial examples is typically evaluated against black-box and
white-box attacks (Biggio and Roli, 2018; Miller et al., 2020). In the black-box setting,
the attacker is assumed to have only black-box query access to the target model, ig-
noring the presence of any defense mechanisms and without having access to any
additional domain knowledge and related constraints. However, a surrogate model
can be trained on data ideally sampled from the same distribution of that used to
train the target model. Within these assumptions, gradient-based attacks can be
optimized against the surrogate model, and then transferred/evaluated against the
target one (Papernot et al., 2016a; Demontis et al., 2019). In the white-box setting,
instead, the attacker is assumed to know everything about the target model, includ-
ing the defense mechanism. White-box attacks are thus expected to also exploit the
available domain knowledge to try to bypass the knowledge-based defense.

The existing literature on the generation of adversarial examples is strongly fo-
cused on single-label classification problems (see (Miller et al., 2020) and references
therein). In such context, the classifier is expected to take a decision that is only
about one of the r classes, and, in a nutshell, attacking the classifier boils down to
perturb the input in order to make the classifier predict a wrong class. The whole
procedure is subject to constraints on the amount of perturbation that the system is
allowed to apply. Formally, given x ∈ T , being T the test set, the attack generation
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procedures in single-label classification commonly solve the following problem,

x? = arg min
x′

[−ϕs( f ,Ks, {x′}, µS)],

s.t. ‖x− x′‖ < ε,
(5.9)

being ‖ · ‖ an Lp-norm and ε > 0. Each x has a unique class label/index attached
to it and stored in S , and ϕs is usually computed as a cross-entropy loss. Different
attacks and optimization techniques for solving the problem of Eq. (5.9) have been
proposed (Croce and Hein, 2020b). While there are no ambiguities on the class on
which we want the classifier to reduce its confidence, i.e., the ground-truth (posi-
tive) class of the given input x, the class that the classifier will predict in input x?

might be given or not, thus each of the remaining r− 1 classes could be a valid op-
tion. When moving to the multi-label setting, each x ∈ T is associated to multiple
ground-truth positive classes, collected in set Px, and we indicate with Nx the set of
ground-truth negative classes of x. Differently to the previous case, due to the lack
of mutual-exclusivity of the predictions, creating an adversarial example out of x is
more arbitrary. For example, the optimization procedure could focus onmaking the
classifier not able to predict any of the classes in Px, or a subset of them. Similarly,
the optimization could focus on making the classifier positively predict one or more
classes of Nx.

Departing from the overwhelming majority of existing attacks for single-label
classifiers, we propose a multi-label attack that focuses on the classes on which the
classifier is less confident (thus easier to attack), that are selected and re-defined
during the optimization procedure in function of the way the predictions of the
classifier progressively change. Of course, in the black-box case, this attack is not
considering that classes are related, and it is not taking care that, perhaps, chang-
ing the prediction on a certain class should also trigger a coherent change in other
related classes. Differently, in the white-box setting, the previously introduced do-
main knowledge and, in particular, the corresponding loss of Eq. (5.1) is what en-
codes such relationships in a differentiable way, so that we can easily exploit it when
crafting attacks. We first introduce the proposedmulti-label attack in a black-box set-
ting, in which domain knowledge is not available. To make gradient computation
numerically more robust, as in (Carlini and Wagner, 2017b), we consider the ac-
tivations (logits) of the last layer of f to compute the objective function, instead
of using the cross-entropy loss. Let us define p = arg mini[ fi(x), i ∈ Px], and
n = arg maxi[ fi(x), i ∈ Nx], i.e., p (n) is the index of the positive (negative) class
with the smallest (largest) output score. These are essentially the indices of the
classes for which x is closer to the decision boundaries. Our attack optimizes the
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following objective,

x? = arg min
x′

[max(lp(x′),−κ)−min(ln(x′), κ)]

s.t. ‖x− x′‖ < ε,
(5.10)

where lj is the value of the logit of f j, ‖ · ‖ is an Lp-norm (L2 in our experiments),
and in the case of image data with pixel intensities in [0, 1] we also have x′ ∈ [0, 1].
The scalar κ ≥ 0 is used to threshold the values of the logits, to avoid increasing/de-
creasing them in an unbounded way (in our experiments, we set κ = 2). Optimiz-
ing the logit values is preferable to avoid sigmoid saturation. While the definition
of Eq. (5.10) is limited to a pair of classes, we dynamically update p and n whenever
logit lp (ln) goes beyond (above) the threshold −κ (κ), thus multiple classes are
considered by the attack, compatibly with the maximum number of iterations of the
optimizer. This strategy resulted to be more effective than jointly optimizing all the
classes in Px and Nx. Moreover, the classes involved in the attack can be a subset of
the whole set, as in (Song et al., 2018). In a white-box scenario, when the attacker
has the use of the domain knowledge, the information in K f provides a compre-
hensive description on how the predictions of the classifier should be altered over
several classes in order to be coherent with the knowledge. In such a scenario, we
enhance Eq. (5.10) to implement what we refer to as multi-label knowledge-driven
adversarial attack (MKA), including the differentiable knowledge-driven loss ϕ f in
the objective function,

x? = arg min
x′

[max(lp(x′),−κ)−min(ln(x′), κ) + α · ϕ f ( f , {x′},K f , µT )],

s.t. ‖x− x′‖ < ε
(5.11)

in which we set α > 0 to enforce domain knowledge and avoid rejection. When
crafting adversarial examples,MKAsoftly enforces the fulfillment of domain knowl-
edge by means of the loss function ϕ f . For black-box attacks, instead, we set α = 0
to recover Eq. (5.10). MKA naturally extends the formulation of single-label at-
tacks (when Px is composed of a single class) and it allows staging both black-box
and white-box (adaptive) attacks against our approach. Eq. (5.11) is minimized via
projected gradient descent (1000 samples and 50 iterations in our experiments).

5.3.2 Impact of domain knowledge and main issues
Our approach is built around the idea of exploiting the available domain knowledge
K f on the target classification problem, both in the cases of rejection andmulti-label
attack. Several existing works use additional knowledge on the learning problem
with different goals, being it represented by logic (d’Avila Garcez et al., 2019; Dili-
genti et al., 2017; Gnecco et al., 2015; Gori and Melacci, 2013), inherited by knowl-
edge graphs or other external resources (Melacci et al., 2018; Yu and Dredze, 2014),
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and encoded in multiple ways to face specific tasks (Pi et al., 2017; Morgado and
Vasconcelos, 2017; Melacci et al., 2018). For instance, Semantic-based Regulariza-
tion (Diligenti et al., 2017) and the theory formalized in (Gnecco et al., 2015) focus
on the same approachwe use here to convert generic FOL knowledge. On one hand,
K f might not always be available, thus limiting the applicability of what we pro-
pose and of the other aforementioned approaches. On the other hand, K f is about
relationships among classes that, in the case of the universal quantifier, hold ∀x.
As a result, such knowledge is more generic than specific example-level supervi-
sions. Human experts can produce FOL rules to a lesser effort than what is needed
to manually label large batches of examples, since K f naturally represents the type
of high-level knowledge on the target domain that a humanwould develop during a
concrete experience on the considered task (e.g., if A happens, then also B or C are trig-
gered, but not D). Moreover, we are currently working on on Explainable AI methods
(Ciravegna et al., 2020a; Barbiero et al., 2021b) extracting the type of knowledge that
we consider in this chapter bymeans of special neural architectures. These methods
will be explained in detail in Chapters 6 and 7.

When the number r of FOL formulas in K f is large, a larger number of penalty
terms φ̂h will be considered in ϕ f of Eq. (5.1). Of course, every approach that ex-
ploits additional knowledge usually incurs in increased complexitywhen the knowl-
edge base is large (d’AvilaGarcez et al., 2019; Diligenti et al., 2017; Gnecco et al., 2015;
Gori and Melacci, 2013). In our case, the T-Norm-based conversion does not repre-
sent an issue, since it is computed only once in a pre-processing stage, and, similarly,
the output of the network f (x, W) is computed only once in order to evaluate ϕ f for
a certain sample x and for given weights W, independently on the size of K f . How-
ever, the computation of ϕ f must be repeated at each iteration of the optimization
of Eq. (5.2) or Eq. (5.11), and when evaluating whether an input should be rejected
or not, Eq. (5.8). From the practical point of view, the computational complexity
scales almost linearly with r, but each φ̂h has a different structure depending on the
FOL formula from which it was generated—roughly speaking, formulas involving
more predicates usually yield more complex T-Norm-based polynomials. Several
heuristic solutions are indeed possible to overcome these issues. For example, the
knowledge base could be sub-selected in order to bound the number of rules in
which each class is involved, or a stochastic optimization could be devised to sam-
ple the rules included in ϕ f at each iteration of the optimization process. However,
we remark that, in the experimental activities of this chapter, none of the mentioned
issues arose.

The way we convert FOL rules into polynomial constraints, described in Sec-
tion 5.2, inherits the flexibility of logic in terms of knowledge representation capa-
bilities. Of course, the concrete impact ofK f in the rejectionmechanisms or inMKA
depends on the specific information that is encoded by the FOL rules. For instance,
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suppose that fi(x) = 1 for a certain x. The formula fi(x) ⇒ fv(x) ∨ fz(x) ∨ . . . ∨
fu(x) is “more likely” to be fulfilled than the formula with an analogous structure
in which ∨’s are replaced by ∧’s. In the former, it is enough for a predicate in the
conclusions to be 1, while in the latter, all the predicates of the conclusions must
be jointly true. The rejection criterion or MKA are likely to be more effective in the
latter case, but it cannot be strongly stated in advance, since it depends on the con-
crete way in which f (·, W) is developed by the learning procedure, as discussed in
Section 5.3, and, in the case of MKA, on the difficulty in optimizing Eq. (5.11).

When restricting our attention to the rejection function of Eq. (5.8), a key ele-
ment to the success of the proposed criterion is the choice of τ. In Section 5.3 we
suggested using data in V to tune τ, that is a valuable solution, but, of course, it
strongly depends on the quality of V , similarly to what happens when tuning other
hyper-parameters. More generally, a too small τ will result in a reject-prone system
that does not reject only those inputs that are strongly coherent with the domain
knowledge. A too large τ would end up in not rejecting inputs, being them coher-
ent with K f or not. If further information on the formulas in K f is available, such
as their expected importance with respect to the considered task, one could avoid
computing an averaged measure as ϕ f , and evaluate the penalty term φ̂h of each
single formula against its own reject threshold (i.e., multiple τ’s), that might be se-
lected accordingly to the importance of the formula itself (i.e., smaller τ’s in more
important formulas).

5.4 Experiments
In this section, we report our experimental analysis, discussing the experimental
setup in Section 5.4.1, and the results of standard and adversarial evaluations for
multi-label classifiers in Section 5.4.2. We then show in Section 5.4.3 how our multi-
label classifiers can also be adopted to mitigate the impact of adversarial examples
in single-label classification tasks, when auxiliary classes are exploited. This allows
us to highlight that our approach exhibits competitive performances with respect to
other baseline defensemethods designed under the same assumptions (i.e., without
assuming any specific knowledge of the attacks) and against state-of-the-art attacks
that are developed for single-label classification tasks.

5.4.1 Experimental settings
Datasets. We considered three image classification datasets, referred to as ANI-
MALS, CIFAR-100 and PASCAL-Part respectively. The ANIMALS and PASCAL-
Part are the same dataset employed in the previous Chapter 4. The PASCAL-Part
dataset, however, is here used in a multi-label classification task instead of object
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Table 5.1: Datasets details on the experimental setting. “Classes” reports the total
number of categories, main classes in parentheses. The fraction of labeled (%L)
samples, the level of partial labeling (%P), and the number of training (|L|), vali-
dation (|V|), and test (|T |) examples are reported.

Dataset Classes %L %P |L| |V| |T |

ANIMALS 33 (7) 30% 90% 5808 1244 1243

CIFAR-100 120 (100) 30% 0% 40000 10000 10000

PASCAL-Part 64 (20) 30% 70% 7072 1515 1515

Table 5.2: Values of the hyperparameter λ
selected in our experiments.

Model ANIMALS CIFAR-100 PASCAL-Part

TL+C 10−2 3 10−1

TL+CC 1 10 1

FT+C 10−2 3 10−1

Table 5.3: Values of the constraint loss
ϕ f on the test data T .

Model ANIMALS CIFAR-100 PASCAL-Part

TL 0.583 ±0.031 1.444 ±0.008 2.728 ±0.085

TL+C 0.213 ±0.016 1.040 ±0.002 1.742 ±0.051

TL+CC 0.200 ±0.009 0.726 ±0.002 0.738 ±0.015

FT 0.375 ±0.016 0.960 ±0.004 2.447 ±0.072

FT+C 0.089 ±0.011 0.444 ±0.006 0.843 ±0.047

recognition. CIFAR-100, instead, is a popular benchmark composed of RGB images
(32× 32) belonging to different types of classes (vehicles, flowers, people, etc.),5

All datasets are used in a multi-label classification setting, so that the ground
truth of each example is composed by a set of binary class labels. In the case of
ANIMALS there are 33 categories, where the first 7 ones, also referred to as “main”
classes, are about specific categories of animals (albatross, cheetah, tiger, giraffe, ze-
bra, ostrich, penguin) while the other 25 classes are about more generic features
(mammal, bird, carnivore, fly, etc.). The CIFAR-100 dataset is composed of 120
classes, out of which 100 are fine-grained (“main” classes) and 20 are superclasses.
In the PASCAL-Part dataset, after having processed data as in (Donadello et al.,
2017), we are left with 64 categories, out of which 20 are objects (“main” classes)
and the remaining 44 are object-parts. We have the use of domain knowledge that
holds for all the available examples. In the case of ANIMALS, as we have already
seen in the previous Chapter, it is a collection of FOL formulas that were defined
in the benchmark of P.H. Winston (Winston and Horn, 1986) and they involve re-
lationships between animal classes and animal properties, such as ∀x FLY(x) ∧
LAYEGGS(x) ⇒ BIRD(x). In CIFAR-100, FOL formulas are about the father-son

5CIFAR-100: https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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relationships between classes, with the following structure ∀x FATHER(x)⇒∨#sons
i=1

SONi(x), ∀x SONi(x)⇒ FATHER(x), i = 1, . . . , #sons. As in the previous case, also
here in PASCAL-Part FOL formulas either list all the parts belonging to a certain ob-
ject, (type a) i.e., MOTORBIKE(x) ⇒ WHEEL(x)∨ HEADLIGHT(x)∨ HANDLE-
BAR(x)∨ SADDLE(x) , or they list all the objects in which a part can be found (type
b), i.e., HANDLEBAR(x)⇒ BICYCLE(x)∨MOTORBIKE(x) In all datasets we also
introduced a disjunction or a mutual-exclusivity constraint among the main classes
(type c), and another disjunction among the other classes (type d). Each dataset
was divided into training and test sets (the latter indicated with T ). The training
set was divided into a learning set (L), used to train the classifiers, and a validation
set (V), used to tune the model parameters. We defined a semi-supervised learning
scenario in which only a portion of the training set is labeled, sometimes partially
(i.e., only a fraction of the binary labels of an example is known), as detailed in Ta-
ble 5.1. We indicated with %L the percentage of labeled training data, and with %P
the percentage of binary class labels that are unknown for each labeled example.6

Classifiers. We compared two neural architectures, based on the popular back-
bone ResNet50, trained using ImageNet data. In the first network, referred to as
TL, we transferred the ResNet50 model and trained the last layer from scratch in or-
der to predict the dataset-specific multiple classes (sigmoid activation). The second
network, indicated with FT, has the same structure of TL, but we also fine-tuned
the last convolutional layer. Each model is based on the product T-Norm, and it
was trained for a number of epochs e that we selected as follows: 1000 epochs in
ANIMALS, 300 (TL) or 100 (FT) epochs in CIFAR-100, and 500 (TL) or 250 (FT)
in PASCAL-Part, using minibatches of size 64. We used the Adam optimizer, with
an initial step size of 10−5, except for FT in CIFAR-100, for which we used 10−4 to
speedup convergence. We selected the model at the epoch that led to the largest F1
in V . We considered unconstrained (λ = 0) and knowledge-constrained (λ > 0)
models. The latter are indicated with the +C (and +CC) suffix.

EvaluationMetrics. To evaluate performance, we considered the (macro) F1 score
and a metric restricted to the main classes.7 For ANIMALS and CIFAR-100, the
main classes are mutually exclusive, so we measured the accuracy in predicting the
winningmain class (AccMain), while in PASCAL-Partwe kept the F1 score (F1Main)
as multiple main classes can be predicted on the same input.

6When splitting the training data intoL and V , we kept the same percentages of unknown binary
class labels per example (%P) in both the splits. Of course, inV there are no fully-unlabeled examples
(%L is 100). Moreover, when generating partial labels, we ensured that the percentages of discarded
positive (i.e., 1) and negative (i.e., 0) class labels were the same.

7We compared the outputs against 0.5 to obtain binary labels.
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Table 5.4: Multi-label classification results in T , for different models, averaged
across different repetitions (standard deviations are < 1%). The second block of
rows is restricted to the main classes (Accuracy or F1). See the main text for details.

Metric Dataset TL TL+C TL+CC FT FT+C

F1 (%)
ANIMALS 98.3 98.6 98.1 98.6 99.2

CIFAR-100 52.0 55.1 53.1 59.3 64.0

PASCAL-Part 69.5 70.0 69.4 69.1 71.0

AccMain (%)1

F1Main (%)2

ANIMALS1 98.8 99.2 99.2 98.5 99.1

CIFAR-1001 53.3 55.6 52.8 60.5 61.6

PASCAL-Part2 73.8 75.9 69.5 70.4 75.0

Hyperparameter Tuning. In Table 5.2 we report the optimal value of
λ ∈ {10−2, 10−1, 1, 3, 5, 8, 10, 102} for the TL+C and FT+C models used in our ex-
periments, selected via a 3-fold cross-validation procedure. In the case of TL, we
also considered a strongly-constrained (+CC) model with inferior performance but
higher coherence (greater λ) among the predicted categories (that might lead to
a worse fitting of the supervisions).8 Table 5.3 reports the value of the constraint
loss ϕ f measured on the test set T . We used µL = µT , setting each component
µ·h to 1, with the exception of the weight of the mutual exclusivity constraint or the
disjunction of the main classes, which was set to 10 to enforce the classifier to take
decisions.

5.4.2 Experimental results on multi-label classifiers
We discuss here the main experiments related to the evaluation of the considered
multi-label classifiers.

Standard Evaluation. In order to assess the behaviors of the classifiers in the con-
sidered datasets and the available domain knowledge, we compared classifiers that
exploit domain knowledge with the ones that do not exploit it. The results of our
evaluation are reported in Table 5.4, averaged over the 3 training-test splits. For
each of them, 3 runs were considered, using different initialization of the weights.
The introduction of domain knowledge allows the constrained classifiers to slightly
outperform the unconstrained ones.

Adversarial Evaluation. To evaluate adversarial robustness, we used the MKA at-
tack procedure described in Section 5.3. and we restricted the attack to work on the

8FT+C has more learnable weights: constraint loss is already small.
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Figure 5.4: Black-box attacks. Classification quality of vanilla and knowledge-
constrained models in function of ε. Dotted plots include rejection (Rej) of inputs
that are detected to be adversarial.
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Figure 5.5: White-box attacks in the case of the FT classifiers. Classification quality
of vanilla and knowledge-constrained models in function of ε. Dotted plots include
rejection (Rej) of inputs that are detected to be adversarial.

already introduced main classes, being them associated to the most important cat-
egories of each problem. In ANIMALS and CIFAR-100 we assumed the attacker to
have access to the information on the mutual exclusivity of the main classes, so that
p in Eq. (5.11) is not required to change during the attack optimization. We also
set κ = ∞ to maximize confidence of misclassifications at each given perturbation
bound ε. All the following results are averaged over the three training runs.

In the black-box setting, we assumed the attacker to be also aware of the network
architecture of the target classifier, and attacks were generated from a surrogate
model trained on a different realization of the training set. Fig. 5.4 shows the clas-
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sification quality as a function of the data perturbation bound ε, comparing models
trained with and without constraints against those implementing the detection/re-
jectionmechanism described in Eq. (5.3). When using suchmechanism, the rejected
examples are marked as correctly classified if they are adversarial (ε > 0), other-
wise (ε = 0) they are marked as points belonging to an unknown class, slightly
worsening the performance. The +C/+CC models show larger accuracy/F1 than
the unconstrained ones. Despite the lower results at ε = 0, models that are more
strongly constrained (+CC) resulted to be harder to attack for increasing values
of ε. When the knowledge-based detector is activated, the improvements with re-
spect to models without rejection are significantly evident. No model is specifically
designed to face adversarial attacks and, of course, there are no attempts to reach
state-of-the-art results.9 However, the positive impact of exploiting domain knowl-
edge can be observed in all the considered models and datasets, and for almost all
the values of ε, confirming that such knowledge is not only useful to improve clas-
sifier robustness, but also as a mean to detect adversarial examples at no additional
training cost. In general, FT models yield better results, due to the larger number
of optimized parameters. In ANIMALS the rejection dynamics are providing large
improvements in both TL and FT, while the impact of domain knowledge is mostly
evident on the robustness of FT. In CIFAR-100, domain knowledge only consists of
basic hierarchical relations, with no intersections among child classes or among fa-
ther classes. By inspecting the classifier, we found that it is pretty frequent for the
fooling examples to be predicted with a strongly-activated father class and a (co-
herent) child class, i.e., we have strongly-paired classes, accordingly to Def. 5.3.1.
Differently, the domain knowledge in the other datasets is more structured, yielding
better detection quality on average, remarking the importance of the level of detail
of such knowledge to counter adversarial examples. In the case of PASCAL-Part, the
detection mechanism turned out to better behave in unconstrained classifiers, even
if it has a positive impact also on the constrained ones. This is due to the intrinsic
difficulty of making predictions on this dataset, especially when considering small
object-parts. The false positives have a negative effect in the training stage of the
knowledge-constrained classifiers.

To provide a comprehensive, worst-case evaluation of the adversarial robustness
of our approach, we also considered a white-box adaptive attacker that knows every-
thing about the target model and exploits knowledge of the defense mechanism to
bypass it. Of course, this attack always evades detection if the perturbation size ε is
sufficiently large. We evaluated multiple values of α of Eq. (5.11), selecting the one
that yielded the lowest values of such objective function. In Fig. 5.5 we report the

9Recall that our rejection mechanism is completely agnostic to the attack; it neither assumes any
knowledge of the attack algorithm nor is retrained on adversarial examples. Nevertheless, it can be
used as a complementary defense mechanism.
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outcome of this analysis for FT models, showing that, even if the accuracy drop is
obviously evident for all datasets, in ANIMALS the constrained classifiers require
larger perturbations than the unconstrained ones to reduce the performance of the
same quantity. A similar behavior is shown in CIFAR-100, even though only at small
ε values. Accordingly, fooling the proposed detection mechanism is not always as
trivial as one might expect, even in this worst-case setting. The impact of the re-
jection mechanisms is significantly reduced, as expected, but still having a positive
impact. Finally, let us point out that the performance drop caused by the white-
box attack is much larger than that observed in the black-box case. However, since
domain knowledge is not likely to be available to the attacker in many practical set-
tings, it remains an open challenge to develop stronger, practical black-box attacks
that are able to infer and exploit such knowledge to bypass our defense mechanism.

Attack Optimization. We report here some additional details on the attack opti-
mization process and on the parameter settings used in our experiments. Our at-
tack optimizes Eq. (5.11) via projected gradient descent. Black-box attacks are non-
adaptive, and thus ignore the defense mechanism. For this reason, the constraint
loss term ϕ in our attack is ignored by setting its multiplier α = 0 and κ = ∞. For
white-box attacks on ANIMALS and PASCAL-PART, we set α = 0.1 and α = 1, re-
spectively, while setting κ = 2. These values are chosen to appropriately scale the
values of the constraint loss term ϕ w.r.t. the logit difference (i.e., the first term in
Eq. 5.11, lower bounded by −2κ). This is required to have the sample misclassi-
fied while also fulfilling the domain-knowledge constraints. The process is better
illustrated in Figs. 5.6a and 5.6b, in which we respectively report the behavior of the
black-box and white-box attack optimization on a single image from the ANIMALS
dataset, with ε = 1. In particular, in each Figure we report the source image, the
adversarial perturbation, and the resulting adversarial examples, along with some
plots describing how the attack loss of Eq. (5.11) is minimized across iterations, and
how the outputs on the main classes and the constraint loss ϕ change accordingly.

In both the black-box and white-box cases, the attack loss is progressively re-
duced during the iterations of the optimization procedure. While the albatross pre-
diction is progressively transformed into ostrich, the constraint loss increases across
iterations, exceeding the rejection threshold. Thus, the adversarial example is cor-
rectly detected. Similarly, the white-box attack is able to initially flip the prediction
from albatross to ostrich, allowing the constraint loss to increase. However, after this
initial phase, the attack correctly reduces the constraint loss after its initial bump,
bringing its value below the rejection threshold. The system thus fails to detect the
corresponding adversarial example. Finally, it is also worth remarking that, in both
cases, the final perturbations do not substantially compromise the source image con-
tent, remaining essentially imperceptible to the human eye.
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(a) Black-box attack on the ANIMALS dataset. The attack is able to flip the
initial prediction from albatross to ostrich, but it is eventually detected as the
constraint loss remains above the rejection threshold (dashed black line).

(b) White-box attack on the ANIMALS dataset. The attack is able to flip
the initial prediction from albatross to ostrich, and then starts reducing the
constraint loss which eventually falls below the rejection threshold (dashed
black line). The attack sample remains thus undetected.

Figure 5.6: Visual examples of the black-box (a) and white-box (b) attacks.
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Ablation Studies on K and τ. We investigated in more detail the relative impact
of the domain information on a target problem, simulating the availability of differ-
ently sized knowledge bases, K1, K2, K3, K4, where eachKj ⊆ K f . In particular, we
considered the ANIMALS dataset, and we generated K1, K2, K3 by removing some
of the FOL formulas of the original K f that was used in the previous experiments
while K4 = K f . This means that some information that belongs to K4 is actually
missing in the other knowledge sets. In detail, we created K1 by removing the rules
that either include the ’mammal’ or the ’bird’ categories, while K2 is the outcome
of discarding from K f the rules including the ’mammal’ category. Similarly, K3 is
obtained removing the rules of the ’bird’ category. We executed a batch of indepen-
dent experiments, each of them using only one of the generated knowledge bases,
and focusing on the same models of Fig. 5.4 (bottom) and Fig. 5.5, that were re-
trained from scratch. Fig. 5.7 (a,c) shows the classification quality we obtained in
the black (a) and white box (c) settings, using the MKA attack and ε = 0.5 (almost
the mid of the plots in Figs. 5.4-5.5). In the black-box case, focusing on the models
that include rejection (Rej), it is evident how larger knowledge bases yield better
results. Interestingly, comparing the outcome of such models with the ones with-
out rejection, we can see that our defense makes the classifier more robust to attacks
evenwhen using the smallest amount of knowledge (K1), confirming the versatility
of what we propose. In the white-box setting there are still changes in the accuracy
when varying Kj, but they are not so evident and they lack a clear trend. This was
expected, since, in this case, the attack procedure is aware of the domain knowledge.
However, this result confirms the capability of MKA to craft adversarial examples
that lead to knowledge-coherent predictions (to a certain extent) evenwhen varying
the level of detail of the knowledge sets.

In the same experimental setting we also explored the sensitivity of the system
to the rejection threshold τ, using the whole knowledge set K. We compared dif-
ferent τ’s that are smaller or greater than the one we selected using validation data
(Section 5.3), indicated here with τ?. In particular, we evaluated τ ∈ {10κτ?, κ ∈
[−5, 5], integer}, and we measured both the classification quality on the perturbed
data, as we did so far, and the rejection rate on the clean test data, where no samples
should be rejected. Fig. 5.7 (b,d) reports these two measures on the y-axis and x-
axis, respectively, and each marker is about a a specific τ, considering black (b) and
white (d) box settings. The value of τ? has been highlighted with a red circle, and
only the significant portions of the plots are shown. Too small thresholds (rightmost
areas of each plot) lead to systems that frequently reject also clean examples, while
too large τ’s (leftmost areas) do not improve the quality of the classifiers, that are
fooled by some of the data generated in an adversarial manner within the ε-bound.
Overall, the τ? we selected represents a pretty appropriate trade-off between the
two measures.
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Figure 5.7: Further analysis of the proposed approach in theANIMALS dataset (ε =
0.5). Black-box setting top figures, white-box bottom; (a,c): increasing amounts of
domain knowledge K1, . . . ,K4; (b,d): different values of the rejection threshold τ
(from larger to smaller values, left-to-right).

5.4.3 Experimental results on single-label classifiers

The focus of this chapter is on multi-class classification paired with domain knowl-
edge. However, as anticipated in Section 5.3 and qualitatively shown in Fig. 5.3, we
can consider a special setting in which a single-label classifier internally includes
predictors over auxiliary classes that are involved in the knowledge constraints. We
experimentally evaluate this setting in the context of the ANIMALS and CIFAR-100
datasets, where the respectivemain classes (described in Section 5.4.1) aremutually
exclusive (which is not the case of PASCAL-Part), thus well suited to simulate the
setting of Fig. 5.3. We compared the proposed rejection mechanisms to a concurrent
defensemechanism developed under the same assumptions (i.e., without assuming
any knowledge of the attack algorithm), known as Neural Rejection (NR) (Melis
et al., 2017; Sotgiu et al., 2020), and against the state-of-the-art attacks included in
theAutoAttack framework (Croce andHein, 2020b), developed for single-label clas-
sification tasks.
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Table 5.5: ANIMALS dataset. Vulnerability analysis of the classifiers against MKA
and state-of-art attacks—classification quality is reported, the same of Figs. 5.4-
5.5 (first column). For each type of classifier (TL,FT), rows are organized into
three groups, that are: models without rejection, with rejection (Rej), classifier
equipped with Neural Rejection (NR). For each attack (columns—see (Croce and
Hein, 2020b) for a description of the compared attacks), the result of the most ro-
bust classifier in the group is highlighted in bold. Models exploiting the proposed
rejection (Rej) that overcome NR are marked with *, and vice-versa.

White-box attacks (ε = 0.5) Black-box transfer attacks (ε = 0.5)

Model ε = 0 MKA APGD-CE APGD-T FAB-T Square MKA APGD-CE APGD-T FAB-T Square

TL 99.0 25.0 17.5 14.9 20.0 96.6 45.3 29.4 29.1 83.1 98.4

TL+C 99.3 25.0 19.0 15.4 21.5 98.0 47.7 29.8 30.6 87.7 98.9

TL+CC 99.3 24.5 18.1 15.5 22.7 98.2 48.0 30.2 32.0 89.5 99.0

TL (Rej) 91.8 49.8 43.3 97.0* 100.0* 100.0* 85.6 53.7 98.4 99.9 99.9

TL+C (Rej) 92.3 56.8* 47.8 97.7* 100.0* 100.0* 91.2 56.0 98.6 99.9 99.9

TL+CC (Rej) 92.7 57.5* 45.8 98.1* 100.0* 100.0* 93.4 55.4 98.8 100.0* 100.0*

TL (NR) 99.2 55.5 58.5* 96.8 99.6 99.8 98.0* 71.7* 99.3* 100.0* 100.0*

FT 98.6 25.6 21.9 12.9 20.0 96.3 51.2 47.2 75.6 95.7 98.2

FT+C 99.1 31.7 51.1 18.0 29.5 97.7 76.7 57.5 88.8 98.3 98.9

FT (Rej) 92.7 39.3* 36.8 90.0* 99.7* 99.7* 88.9 66.9 99.6* 99.7* 99.8*

FT+C (Rej) 93.2 60.7* 66.6* 97.3* 99.8* 99.9* 98.3* 82.2* 99.9* 99.9* 99.9*

FT (NR) 98.6 37.3 38.3 87.3 97.0 99.6 91.0 79.2 98.7 99.2 99.5

ComparedDefense andAttack Strategies. TheNRdefensemechanism, proposed
in (Melis et al., 2017; Sotgiu et al., 2020), aims to reject inputs that are far from the
training data in a given representation space. The rationale is that points with low
support from the training set cannot be reliably classified, and should be thus re-
jected. To this end, the output layer of the deep network is replaced with a Support
Vector Machine trained using the RBF kernel (SVM-RBF), which enforces the pre-
diction scores to be proportional to the distance between the input sample and the
reference prototypes (i.e., the support vectors) in the representation space. Samples
are rejected if the prediction scores do not exceed the rejection threshold. Similarly
to our approach, this defense mechanism does not make any assumptions on the
attack to be detected, other than assuming an anomalous behavior with respect to
the observed training data.

To compare our defense with NR, we have considered four different state-of-the-
art evasion attacks: APGD-CE, APGD-T, FAB-T, and Square, implemented within
the framework of AutoAttack (Croce and Hein, 2020b). APGD-CE (APGD-T) is an
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Table 5.6: CIFAR-100 dataset. Vulnerability analysis of the classifiers against MKA
and state-of-art attacks—classification quality is reported, the same of Figs. 5.4-5.5
(second column). Refer to the caption of Table 5.5 for more details (see (Croce and
Hein, 2020b) for a description of the compared attacks).

White-box attacks (ε = 0.03) Black-box transfer attacks (ε = 0.03)

Model ε = 0 MKA APGD-CE APGD-T FAB-T Square MKA APGD-CE APGD-T FAB-T Square

TL 51.0 21.9 22.2 21.6 22.3 51.4 23.1 23.7 23.9 39.5 52.7

TL+C 52.9 27.4 24.6 24.2 25.1 53.3 32.3 35.5 37.9 48.4 54.5

TL+CC 50.5 27.1 25.0 24.7 25.3 49.5 35.5 38.6 40.4 46.9 51.5

TL (Rej) 48.1 26.9 33.2* 34.3* 34.4 59.2* 27.6 35.1 36.9 49.1 60.2*

TL+C (Rej) 49.4 31.8* 35.0* 35.6* 36.2 60.6* 40.7 44.8 47.0 56.0* 61.0*

TL+CC (Rej) 46.1 30.8* 34.0* 34.7* 35.4 55.7* 45.4 46.3 47.6 53.5* 57.0*

TL (NR) 49.0 30.5 30.1 24.5 39.6* 45.6 49.0* 48.3* 49.0* 51.3 53.3

FT 59.4 29.0 26.4 26.0 26.7 57.2 48.4 49.1 49.7 55.5 59.5

FT+C 60.0 31.4 29.6 28.3 30.6 60.1 51.6 52.2 52.8 57.8 61.0

FT (Rej) 57.4 31.1 37.5* 42.0* 41.1 66.1* 55.1 57.2* 58.4* 62.7* 66.2*

FT+C (Rej) 56.7 37.6* 37.8* 41.1* 44.6 67.0* 60.2* 59.5* 60.3* 64.4* 67.1*

FT (NR) 59.7 36.5 35.3 30.4 50.9* 55.1 58.0 54.2 55.7 60.0 62.7

indiscriminate (targeted) step-free variant of the famous attack called PGD (Madry
et al., 2018). Unlike PGD, the step size reduction is not scheduled a priori but in-
stead governed by the optimization function trend. Moreover, both APGDs attack
use momentum. FAB-T is the targeted version of an attack called Fast Adaptive
Boundary Attack (FAB) (Croce and Hein, 2020a), which tries to find the minimum
distance sample beyond the boundary of the desired class. The Square attack (An-
driushchenko et al., 2020), differently from the previously mentioned ones, is a
black-box attack; namely, it can query the classifier obtaining the predicted scores
without exploiting any knowledge of the model architecture. By default, APGD-CE
makes five random restarts, whereas the targeted versions of the attacks, i.e., APGD-
T and FAB-T, run the attack nine times, each setting the target class as one of the nine
top classes except the true class.

Adversarial Evaluation. In our experiments, we fixed the maximum allowed per-
turbation ε to 0.5 and 0.03 on the ANIMALS and CIFAR-100 datasets, respectively
– the values in the middle of x-axis of Figs. 5.4-5.5 – and we used the default value
for all the other attacks’ parameters. Table 5.5 and Table 5.6 report the results of this
analysis, showing the classification quality (same measure of Figs. 5.4-5.5) on the
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clean (unmodified) test set T (ε = 0) and on the attacked instances of T generated
in the same white-box and black-box scenarios described in Section 5.4.2. As ex-
pected, white-box attacks are more effective than the black-box ones, reducing the
model accuracy in a more evident manner. Results confirm that both the domain
knowledge introduced at training time (+C and +CC) or exploited to implement
the proposed rejection mechanism (Rej) improve the model robustness against all
the considered attacks, and jointly using these strategies further improves it. On
average, the performances of the unconstrained classifiers (TL and FT) paired with
the proposed knowledge-based rejection are comparable with the ones paired with
NR, even though they clearly behave in different manners across the datasets/at-
tacks. Differently, when also considering constrained models (+C and +CC), in
most of the cases we can find a classifier with rejection (Rej) that outperforms the
unconstrained classifiers equipped with NR. On the clean samples (ε = 0), the
knowledge-based rejection criterion resulted more aggressive than NR.

MKA and APGD-CE/T are more effective than the other attacks. On average,
their performances are comparable, and they depend on both the considered model
and the dataset. In CIFAR-100, MKA outperforms APGD-CE/T on the black-box
transfer scenario and against themodel equippedwith the proposed rejectionmech-
anism (Rej), whereas on the ANIMALS dataset, APGD-CE usually obtained better
results. APGD-CE/T leverages an optimization strategy that is more advanced than
the one of MKA that, differently from APGD-CE/T, is designed to be used in multi-
label problems too. For example, APGD-CE/Tmakes several attack restarts anduses
a special type of adaptive step size. In the white-box setting, attacks yield a larger
reduction of the performances. However, in the case of ANIMALS, the proposed
rejection mechanism is still robust to all the attacks, with the exceptions of MKA,
that is knowledge aware, and of APGD-CE. The fine-tuned optimization procedure
in APGD-CE allows the attack to create samples that are confidently misclassified,
and they end-up in belonging to space regions in which the classification functions
are paired (Def. 5.3.1). In CIFAR-100, the rejection mechanism still has a positive
impact, even if it is less significant than in ANIMALS.

In-depthAnalysis. We further analyzed our results, visualizing the behavior of all
the compared attacks in terms of value of the constraint loss of Eq. (5.3) and of the
supervision loss – first term of Eq. (5.2). Figs. 5.8-5.9 show each generated adver-
sarial example, highlighting them with different markers/colors in function of the
corresponding attack procedure, on the ANIMALS and CIFAR-100 datasets, respec-
tively, black-box (i.e., the constraint loss is measured for the purpose of determining
whether to reject or not an example). Samples that are rejected are indicated with
crosses, while circles represent the non-rejected ones. The dotted line is about the
rejection threshold τ from Eq. (5.8).
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Figure 5.8: Adversarial data generated (ε = 0.5) by different attacks – ANIMALS,
TL+C(Rej), black-box. Examples that are rejected/not-rejected by the proposed
knowledge-based criterion are depicted with crosses/circles (“Clean” indicates un-
altered examples from the test set; the vertical line is the reject threshold).

In line with what we observed in the numerical results, in the case of ANIMALS,
Fig. 5.8, it is evident how APGD-CE is actually able to craft attacks that strongly in-
crease the supervision loss, still fulfilling the constraints (top-left area). Differently,
the other attacks are not able to reach such result, so that their data is localized in
high-constraint loss regions, easily rejected by the proposed technique, especially
FAB-T, while Square actually fails in generating evident attacks. It is interesting
to notice the D-shaped white region over the origin. It is an area in which con-
straints are almost fulfilled and the loss function can reach significantly non-null
values, but no attacks fall there. This suggests that it is not straightforward to in-
crease the supervision loss without violating the constraints. However, there are
more extreme APCG-CE configurations with the largest supervision losses that also
fulfill the knowledge (Fig. 5.8, top-left area). Of course, this depends on several fac-
tors, such as the type of domain knowledge that is available, the way we selected to
convert it into polynomial constraints, and the constraint enforcement scheme, thus
opening to future improvements. Moving to the CIFAR-100 dataset, Fig. 5.9, we
observe different patterns with respect to the case of ANIMALS. This was clearly
expected, since the two datasets differ both in terms of the problem they consider,
the number of classes and in terms of the known relationships among such classes,
described by the dataset-specific domain knowledge and embedded into the con-
straint loss. However, we can still observe the D-shaped region over the origin, even
if in a less significant manner. On this dataset, the rejection rates are generally lower
than ANIMALS. This is mostly due to the fact the constraint loss is larger also on the
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Figure 5.9: Adversarial data generated (ε = 0.03) by different attacks – CIFAR-100,
TL+C(Rej), black-box. See Fig. 5.8.

unaltered data, due to the already mentioned different problem and different type
of domain knowledge. As amatter of fact, we have also a larger reject threshold τ. In
this case, the behavior of the different attack strategies is more coherent, remarking
previous considerations on the role of knowledge in shaping the attack distribution.

5.5 Related Work
In addition to the literature described in Section 2.3.2, we further emphasize the
differences ofwhatweproposewith respect to themost strongly related approaches.

Multi-label adversarial perturbations. Most of the work in the adversarial ML
area focuses on single-label classification problems. To the best of our knowledge,
the first and only study on this problem is the one in (Song et al., 2018), in which the
authors focus on targeted multi-label adversarial perturbations defining in advance
the set of classes on which the attack is targeted (being them positive or negative)
and also introducing another set of classes for which the attack is expected not to
change the classifier predictions. The framework described in (Song et al., 2018) is
only experimented in a static/targeted context, i.e., by selecting in advance the sets
mentioned above using custom criteria to simulate the attacking scenario artificially.
The multi-label attack that we propose in this chapter is instead dynamic/untargeted
and without the need of defining in advance what are the classes to be considered.
Regarding the defenses, to our best knowledge, none of the previously proposed
ones leverage multi-label classification outputs.
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Semi-supervised Learning and Adversarial Training. In the context of adversar-
ial machine learning, unlabeled data are usually employed to improve the robust-
ness of the classifier by performing adversarial training. The rationale behind such
training scheme is that if the available unlabeled samples are perturbed, then the
predicted class should not change. Miyato et al. (Miyato et al., 2016, 2018) and Park
et al. (Park et al., 2018) exploit adversarial training (virtual adversarial training and
adversarial dropout, respectively) to favor regularity around the supervised and
unsupervised training data, and to improve the classifier performance. The work
in (Akcay et al., 2018) develops an anomaly detector using adversarial training in
the semi-supervised setting. Self-supervised learning is exploited in (Carmon et al.,
2019; Najafi et al., 2019) to gain stronger adversarial robustness. Stability criteria
are enforced on unlabeled training data in (Zhai et al., 2019), whereas the work
in (Alayrac et al., 2019) specifically focuses on an unsupervised adversarial training
procedure in the context of semi-supervised classification. Our model neither ex-
ploits adversarial training nor any adversary-aware training criteria aimed at gain-
ing intrinsic regularity. We focus on the role of domain knowledge as an indirect
means to increase adversarial robustness and, afterward, to detect adversarial ex-
amples. Therefore, the proposed apporoach is not attack-dependent, and it is faster
at training time as it does not require generating adversarial examples. We believe
that using unlabeled data also to simulate attacks and incorporate them into the
training process may further improve robustness. All the described methods could
also be applied jointly with what we propose.

Rejection-based Approaches for Adversarial Examples. A different line of de-
fenses, complementarywith adversarial training, is based on detecting and rejecting
samples sufficiently far from the training data in feature space. Our approach dif-
fers from other adversarial-example detectors (Carlini andWagner, 2017a; Ma et al.,
2018; Samangouei et al., 2018; Miller et al., 2020) as it has no additional training cost
and negligible runtime cost. We are the first to show that domain knowledge can
be used to reject adversarial examples and also to propose a detector that exploits
unlabeled data.

Domain-AgnosticMethods and Semantic Attacks. Recent work in adversarial at-
tacks considers the role of the learning domain and of additional semantic informa-
tion, even if with different goals to the ones of this chapter. The way the learning
domain is related to the generation of attacks was recently studied in (Naseer et al.,
2019), that is based on the idea of developing generative adversarial perturbations
easily transferable from the source domain (where the attack function is modeled)
to another domain. Differently, we focus on knowledge that is domain specific and
used both for defending and creatingmore informed attacks. The knowledge of a set
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semantic attributes is used to implement the threat model of semantic adversarial
attacks in (Joshi et al., 2019). A generative network is considered, and the attack pro-
cedure focuses on altering the activation of such human-understandable attributes,
that, in turn, yield visible changes in the input image (e.g., adding glasses to the
input face). Differently, our approach is built on an Lp-norm-bounded perturbation
model that does not enforce the input image to change in a human-understandable
manner. Our approach considers a more generic notion of knowledge, that includes
information also on the relationships within subsets of logic predicates, and that ex-
ploits the power of FOL. Predicate activations are modeled by neural networks and
not by scalar variables as for the attributes of (Joshi et al., 2019).
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Chapter 6

Devising Explanations with an
Auxiliary Network

In this chapter, we show how it is possible to extract logic constraints from a neural
network (as introduced in Section 3.3) with the aim of tackling the explainability
problem introduced in Section 2.3.3. Part of the content of this chapter is extracted
from the works Ciravegna et al. (2020b) and Ciravegna et al. (2020a), that have been
accepted at the AAAI2020 and IJCAI 2020 conferences. These papers have been
written with some colleagues from the University of Siena.

The chapter is organized as follows. In Section 6.1 a high-level overview of the
problem and of the proposed framework is given. Section 6.2 introduces the use
cases covered in this chapter, while the proposed model is described in Section 6.3.
Experiments are collected in Section 6.4 showing the validity of the proposed ap-
proach in two computer vision problems. Finally, Section 6.5 resumes the related
work and concludes the chapter.

6.1 Introduction
In this chapter we propose a general framework to learn explanations with respect
to classifier outputs, according to certain criteria that may be specified by the final
user. In particular, given a multi-label classification problem, we aim at learning
both a set of classifier (also referred as task or predicate) functions and a set of expla-
nations, that express some knowledge about the classifier activation. In this scenario
it is possible to exploit the acquired explanations to both improve the classifier per-
formances and obtain newly devised knowledge eventually converted into symbolic
form. The main advantage of this approach is that it may be used to simultaneously
produce different customizable pieces of knowledge about the task functions.

Again, also in this chapter we consider multi-label classification, where each in-
put example belongs to one or more classes, but we focus on the problem of ex-

71
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Figure 6.1: Overview of the proposed approach. Input data are x are mapped to
one or more classes f (x). The relationships among the classes are uncovered by
the ψ neural network, which also provides for FOL explanations. In this case the
relationships between the predicted class Bird(x) and the other classes is taken into
consideration. Figure from the PASCAL-Part dataset (Chen et al., 2014).

tracting First-Order Logic (FOL)-based explanations of the behaviour of a classifier.
More precisely, we focus onneural network-based systems, that implicitly learn from
supervisions the relationships among the considered classes. We propose to intro-
duce another neural network that operates in the output space of the classifier, also
referred to as task space, further projecting the data onto the so-called rule space,
where each coordinate represents the satisfaction of a constraint that we describe by
a FOL rule, as it is shown in Figure 6.1.

In particular, we propose to progressively prune the connections of the newly
introduced network and interpret each of its neurons as a learnable boolean function
(an idea related to several methods (Fu, 1991; Towell and Shavlik, 1993; Tsukimoto,
2000; Sato and Tsukimoto, 2001; Zilke et al., 2016)), ending up in a FOL formula for
each coordinate of the rule space.

The tasks-to-rules projection can be learned by using different criteria, that bias
the type of rules discovered by the system. On one side, when the user does not
express any preference on the required explanation, we propose a general unsuper-
vised criterion based on information principles, following Melacci and Gori (2012).
However, humans usually have expectations on the kind of explanations theymight
get. For example, suppose we are training a network to classify digits and also to
predict whether they are even numbers. If we do not know what being evenmeans,
we might be particularly interested in knowing the relationships between the class
even and the other classes (i.e., that even numbers are 0 or 2 or 4 or 6 or 8). It could
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not be so useful to discover that 0 is not 2, even if it is still a valid explanation in
the considered multi-label problem. Motivated by this consideration, we propose a
generic framework that can discover both unbiased and user-biased explanations.

A key feature of the proposed framework is that learning the classifier and the
explanation-related network takes place in a joint process, differently from what
could be done, for example, by classic data mining tools (Liu, 2007; Witten and
Frank, 2005). This implicitly introduces a latent dependency between the develop-
ment of the explanationmechanism and the one of the classifiers. When cast into the
semi-supervised learning setting, we show that linking the two networks can lead
to better quality classifiers, bridging the predictions on the unsupervised portion of
the training data by means of the explanation net, that acts as a special regularizer.

6.2 Scenarios
Following the notation introduced in Section 3.1, we consider a multi-label classi-
fication problem, in which a multi-output classifier f is learned from data. Each
output unit is associated to a function in [0, 1] that predicts how strongly an input
example belongs to the considered class. We will also interchangeably refer to these
functions as task functions (in a more general perspective where each function is re-
lated to a different task), or predicates (if we interpret each output score as the truth
value of a logic predicate).

We also consider a set of logic constraints ψ, that express the explanations on the
relationships among the task functions, and that are the outcome of the proposed
approach. Such knowledge is not known in advance, and it represents a way to
explain what the classifier implicitly learned about the task functions. In order to
guide the process of building the explanations, the user can specify one or more
preferences. In particular, the user can decide if the explanations have to describe
local relationships that only hold in sub-portions of the task space or global rules
that hold everywhere, or even if they must focus on a user-selected task function
(as in the example in the introduction of the chapter). In what follows we report an
overview of the specific use cases explored in this chapter.

Local Explanations. In this scenario, the explanations are automatically produced
without making any assumptions on which task functions to consider. In order to
provide a valid criterion to develop explanations, we enforce them to only hold in
sub-portions of the task space and, overall, to cover the whole dataset. The user can
provide an example to the trained network and get back the explanation associated
to it, that may highlight partial co-occurrences of the task functions. For instance,
the system might discover that “eyes or sunglasses” is a valid rule for some pictures
(the ones with faces) but not for others (the ones without faces).
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Global Explanations. Local explanations may provide very specific knowledge
concerning only small portions of data. In order to describe more general prop-
erties that hold on the whole dataset, we may be interested in global explanations.
Global explanations may catch general relations among task functions that are valid
for all the points of the considered dataset, such as mutual exclusion of two classes
or hierarchical relations.

Class-driven Explanations. The user may require explanations about the beha-
viour of specific task functions. He could also specify if he is looking for necessary
conditions (IF→) or necessary and sufficient explanations (IFF ↔). For instance,
focusing on the driving classman, wemay discover that a certain pattern is classified
as “man only if it is also classified as containing hand, body, head”, and so on. In the
example at the beginning of the chapter, even was the class driving a necessary and
sufficient explanation. The rules of this scenario are completely tailored around the
user-selected target classes.

CombinedExplanations. All the scenarios described so farmaybe arbitrarily com-
bined in case the user is simultaneously interested in multiple explanations accord-
ing to different criteria. In particular, some explanations might have to specify the
behaviour of some task functions, while the remaining ones might have to be auto-
matically acquired in order to describe global or local interactions.

6.3 Model
Following what introduced in Section 3.3, we consider data x belonging to an input
space X ⊂ Rd with y labels living in a task space Y ⊆ Rr each of them associated to a
task function fi, i = 1 . . . , r (that corresponds to an output unit of a neural network).

We also consider a set of learnable constraints ψj, j = 1 . . . , m, whose inputs lives
in the task space while it outputs in the rule space. Each ψj( f (x)) expresses the sat-
isfaction of a certain constraint with respect to the output of the task functions on
the data sample x ∈ X. To simplify the notation, in this case we denote with 1
the satisfaction of the constraint so that when the output neuron ψj( f (x)) = 1, the
corresponding constraint is satisfied. In addition, we assume ψj( f (x)) ∈ [0, 1] in
order to relate the value of ψj to the truth-degree of a certain FOL formula which
represent an explanation of f (x) on the input sample x ∈ X. For this reason, we
will frequently make no explicit distinctions between constraints FOL formula and
explanations throughout the chapter.

Different criteria are needed to learn the parameters of the functions ψj in order
to implement the scenarios of Section 6.2, as we will describe in Section 6.3.1. Once
the explaining functions are learnt, we will consider their approximation as boolean
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functions, and they will be given a description in terms of FOL, as we will discuss
in Section 6.3.2. Throughout the chapter, the notation ψ̂j denotes both the approx-
imating boolean function and its associated logical formula. Finally, as introduced
in Section 3.3, Xψj denotes the subset of the input space where the j-th explanation
holds true, also named its support, i.e., Xψj = {x ∈ X : ψ̂j( f (x)) = 1}.

6.3.1 Learning criteria
We consider a semi-supervised setting in which only a portion of the data S ⊆ X ⊂
X is labelled (Melacci and Belkin, 2011). This is a natural setting of several real-
world applications, since getting labelled data is usually costly, and it also allows
us to better emphasize the proprieties of the explanation learning mechanisms, that
can exploit both labelled and unlabelled training data with no distinctions.

Again, following the notation of Section3.3, a classic given knowledge Ks repre-
senting the supervision on the labelled data is considered to train the task functions
fi’s, paired with a regularization criterion to favour smooth solutions (weight de-
cay). For the sake of simplicity, in this scenario we consider that only the knowl-
edge about the supervision Ks and no further knowledge (e.g. on the relations of
the task function K f ) is available. Therefore, the problem of learning from – and of
– constraints can be formalized as,

f ?, ψ? = arg min
f ,ψ
{U( f ,S) + D(ψ, f ,X )} , (6.1)

where U( f , ·) represents the problem of learning from constraints on a certain set of
data and is defined as U( f ,S) = ϕ( f ,Ks,S) (see Eq. 3.6) and D(ψ, f ,X ) represents
the problem of learning of constraints (see Eq. 3.8).

In order to implement the scenarios of Section 6.2, we need to properly define
some learning criteria D(ψ, f ) involving the explaining functions ψj’s, for all x’s,
being them labelled or not. In the following, some possible formulations are pro-
posed and are summarized in Fig. 6.2, which also describe their relations with the
scenarios of Section 6.2.

Mutual Information-based Criterion. The maximization of the Mutual Informa-
tion (MI) between the task and rule spaces can be enforced in order to implement
the principles behind the Local Explanations scenario, and it could also be used as a
basic block to implement the Global Explanations scenario (Section 6.2). In the latter
case, further operations are needed, and they will be described in Section 6.3.2.

Maximizing the transfer of information from the r task functions to the m ex-
plaining functions is a fully unsupervised process that leads to configurations of
the ψj’s functions such that, for each x ∈ X , only one of them is active (close to
1) while all the others are close to zero (see Melacci and Gori (2012)). In order to
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Figure 6.2: The learning criteria of the proposed framework and their relations with
the use-cases of Section 6.2.

define the MI index, we introduce the probability distribution PΨ=j|Y= f (x)(ψ, f (x)),
for all j, as the probability of ψj to be active in f (x). Following the classic notation of
discrete MI, Ψ is a discrete random variable associated to the set of constraint func-
tions ψ, while Y is the variable related to the output of the task functions f in the
task space. We implemented the probability distribution using the softmax opera-
tor, scaling the logits with a constant factor to ensure that when ψj(x) = 1 all the
other ψz 6=j0 are zero. The developmental function minimize is minus the MI index,
that is:

DMI(ψ, f ,Xψ) = −HΨ(ψ, f ,X ) + HΨ|Y(ψ, f ,X ) , (6.2)

where HΨ and HΨ|Y denote the entropy and conditional entropy functions (respec-
tively) associated to the aforementioned probability distribution andmeasured over
the whole set of input data X . An outcome of the maximization of the MI index is
that the supports of the explaining functions will tend to partition the input space
X , i.e., X =

⋃m
j=1Xψj and Xψj ∩ Xk = ∅, for j 6= k (see Melacci and Gori (2012);

Betti et al. (2019) for further details).

Class-driven Criteria. The Class-driven Explanations scenario of Section 6.2 aims
at providing explanations for user-selected task functions. Let us assume that the
user wants the system to learn an explaining function ψh(i) that is driven by the
user-selected fi, being h(·) an index mapping function. We propose to enforce the
supportXψh(i) of ψh(i) to contain (IF→) or to be equal to (IFF↔) the space regions in
which fi is active. Notice that fi and ψh(i) have different input domains (perceptual
space and task space, respectively), so we are introducing a constraint between two
different representations of the data (see e.g. Melacci et al. (2009)). Moreover, since
the goal of this scenario is to explain fi in terms of the other fu 6=i’s, we mask the i-th
component of f (x) by setting it to 0 for all x ∈ X. This also avoids trivial solutions
in which ψh(i) only depends on fi.
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We denote by P, S ⊆ {1, . . . , n} the disjoint sets of task function indexes selected
for class-driven IF → and IFF ↔ explanations, respectively. The loss terms that
implement the described principles are reported in Eq. 6.3 and Eq. 6.4,

D→(ψ, f ,Xψ) = ∑
i∈P,x∈X

max{0, fi(x)− ψh(i)( f (x))} (6.3)

D↔(ψ, f ,Xψ) = ∑
i∈S,x∈X

| fi(x)− ψh(i)( f (x))| . (6.4)

While Eq. 6.3 does not penalize those points on which ψh(i)(x) > fi(x), Eq. 6.4
specifically enforces the ψh(i) and fi to be equivalent. In order to avoid trivial solu-
tions of Eq. 6.3 in which, for instance, ψh(i) is always 1, we enforce the supervision yi
also on the output of ψh(i). Notice that these losses never explicitly estimate Xψh(i).

Class-driven & Mutual Information-based Criteria. The Combined Explanations
scenario of Section 6.2 is the most general one, and it can be implemented involving
all the penalty terms described so far. The MI index can be enforced only on those
ψj’s for which the user is looking for a local explanation, while other explaining
functions can be dedicated to class-driven explanations. Interestingly, we can also
nest the MI index inside a class-driven explanation, since the user could ask for
multiple local explanations for each selected driving class. In this case, multiple
ψj’s are allocated for each driving class, and theMI index is computed assuming the
probability distribution of the discrete samples in the task space to be proportional to
the activation of the task functionwe have to explain. This scenario can be arbitrarily
made more complex, and it is out of the scope of this chapter to focus on all the
possible combinations of the proposed criteria.

6.3.2 First-order logic formulas
Each explaining function ψj is a [0, 1]-valued function defined in [0, 1]m. At the end
of the training stage, each ψj is converted into a boolean function ψ̂j (this is also con-
sideredwith a different goal e.g. in Fu (1991); Towell and Shavlik (1993); Tsukimoto
(2000); Sato and Tsukimoto (2001); Zilke et al. (2016)), and then converted into a
FOL formula.

The booleanization step is obtained by approximating any neuron output with
its closest integer (assuming sigmoids as activation functions, this value can only
be 0 or 1) and by repeating this process for each layer, from the output neurons of
the task functions up to the output layer of ψ. As a result, for each neuron we get
a boolean function, whose truth-table can be easily rewritten as a boolean formula
in Disjunctive Normal Form (DNF), i.e., a disjunction of minterms (conjunction of
literals). By composing the formulas attached to each neuron, accordingly to the
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Figure 6.3: Extracting FOL formulas from each ψj. Hidden and output neurons
are paired truth tables (right) and their corresponding logic description (top), as
described in Section 6.3.2. The truth tables include the real-value neuron outputs
(third column) and their boolean approximation (last column). The FOL descrip-
tions of ψ1, ψ2 are the outcome of composing the truth tables of the hidden neurons.

network structure, we get ψ̂j, that is the boolean formula of the output neuron asso-
ciated to ψj. The whole procedure is illustrated in the example of Figure 6.3. Clearly,
this procedure is efficient only if the fan-in of each neuron is small, a condition that
we enforce with the procedure described in Section 6.3.3.

In the case of Local Explanations (Section 6.2), each ψj is close to 1 only in some
sup-portions of the space, due to the maximum mutual information criterion, so
that the FOL rule ψ̂j will hold true only on Xψj ⊂ X (and false otherwise). As a
consequence, each explanation is local, ∀x ∈ Xψj , ψ̂j( f (x)), for j = 1, . . . , m .

The case of Global Explanations (Section 6.2) is still built on the maximum mu-
tual information criterion. A global explanation (i.e., an explanation holding on the
whole input space X) can be obtained by a disjunction of ψ̂1, . . . , ψ̂m. However, the
resulting formula will be generally unclear and quite complex. A possible approach
to get a set of global explanations starting from the previous case is then to convert
it in Conjunctive Normal Form (CNF), i.e., a conjunction of m′, m′ 6= m disjunctions
of literals ψ̂′k, k = 1, . . . , m′,

m∨
j=1

ψ̂j( f (x)) ≡
m′∧

k=1

ψ̂′k( f (x)) . (6.5)

In this case, the following global formulas are valid in all X , ∀x ∈ X , ψ̂′k( f (x)), for
k = 1, . . . , m′.
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Unfortunately, converting a boolean formula into CNF can lead to an exponential
explosion of the formula. However, after having converted each ψ̂j in CNF, the con-
version can be computed in polynomial timewith respect to the number ofminterms
in each ψ̂j (Russell and Norvig, 2016).

The Class-driven Explanations (Section 6.2) naturally generate rules that hold for
all X but that are specific for some set of predicates. In particular, Eq. 6.3 and Eq.
6.4 enforce 1 fi ⊆ Xψh(i) and 1 fi = Xψh(i) respectively (for all i ∈ P and i ∈ Q), being
1 fi the characteristic function associated to regions where fi is active. From a logic
point of view, we get the validity of the following FOL formulas:

∀x ∈ X, f̂i(x)→ ψ̂h(i)(x) for i ∈ P , (6.6)
∀x ∈ X, f̂i(x)↔ ψ̂h(i)(x) for i ∈ Q , (6.7)

where→ and↔ are the implication and logical equivalence, respectively, and f̂i is
the boolean approximation of fi.

6.3.3 Learning strategies
Keeping the fan-in of each neuron in the ψ-networks close to small values is a con-
dition that is needed in order to efficiently devise FOL formulas. L1-norm-based
regularization can be exploited to reduce the number of non-zero-weighed input
connections of each neuron. After the training stage, we propose to progressively
prune the connectionswith the smallest absolute values of the associatedweights, in
order to keep exactly q ≥ 2 input connections per neuron. This process is performed
in an iterative fashion. At each iteration, only one connection per neuron is removed,
and a few optimization epochs are performed (using the same loss of the training
stage), to let the weights of the ψ functions to re-adapt after the weight removal. We
repeat this process until all the neurons are left with q input connections.

Globally training the whole model involves optimizing time the weights of the
f - and ψ-networks. However, this might lead to low-quality solutions, since the cri-
teria of Section 6.3.1 might have a dominating role in the optimization of Eq. 6.1.
We propose to initially train only the f -networks using the available supervisions
and the cross-entropy loss, for E epochs. Then, once the selected criteria of Section
6.3.1 are added to the cost function, both the f and ψ-networks are jointly trained
(Global Optimization). After a first experimentation, we found to be even more ef-
ficient to further specialize the latter training, alternating the optimization of the
f and ψ-networks. Therefore, we propose a (Stage-based Optimization) procedure
(formalized in Algorithm 1) in which we first learn the task functions subject to the
given constraints only (stage 1 – only U( f ) is involved) for N f epochs, and then we
learn new constraints in the task space, keeping the task functions fixed (stage 2 –
only D(ψ, f ) is involved), for Nψ epochs. Afterwards, we apply an iterative process
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Algorithm 1 Stage-based Optimization procedure (superscripts indicate the itera-
tion number). In order to simplify the notation, here we do not make explicit the
dependence of objective functions U and D on the data.

1: initialize: f (0), ψ(0) . initialization of the network weights
2: f (1) ← arg min f U( f (0)) . learning the task functions (stage 1)
3: ψ(1) ← arg minψ D(ψ(0), f (1)) . learning of constraints (stage 2)
4: for t = 1 to t = T − 1 do
5: f (t+1) ← arg min f U( f ) + D(ψ(t), f (t)) . refinement of the task functions
6: ψ(t+1) ← arg minψ D(ψ(t), f (t+1)) . refinement of the learned constraints
7: end for
8: output: f ? = f (T), ψ? = ψ(T)

that is based on optimizing the whole Eq. 6.1, alternately keeping fixed either the
constraints or the task functions. In other words, we further refine the task func-
tions by the learned constraints (emphasizing their relationships) and, in turn, we
refine the constraints bymeans of the updated task functions (in this case, we do not
consider the term U( f ,S), since it is not function of ψ). This procedure is repeated
T − 1 times, and it is guaranteed to converge since we keep minimizing the same
functional. At the end of Section 6.4.1, we report an experiment comparing the two
learning strategies and showing the advantages of the stage-based one.

6.4 Experiments
We considered two different tasks, the joint recognition of objects and objects parts
in the PASCAL-Part dataset1, and the recognition of face attributes in portrait images
of the CelebA dataset.2 In both cases, we compared the quality of the plain classifier
(Baseline), against the classifiers augmented with the explanation networks.

Experimental Setup. According to Section 6.3.3, we set E = 25, and then 3 learn-
ing stages (T = 4) are performed, each of them composed of N f = 20 epochs for
the f -network (stage > 1) and Nψ = 5 epochs for the ψ-network. For a fair com-
parison, the baseline classifier is trained for 100 epochs. Each dataset was divided
into training, validation, test sets, and we report the (macro) F1 scores measured on
the test data. All the main hyperparameters (weights of terms composing the learn-
ing criteria of Section 6.3.1, initial learning rate (Adam optimizer, mini-batch-based
stochastic gradient), contribute of the weight decay) have been chosen through a

1PASCAL-Part: https://www.cs.stanford.edu/~roozbeh/pascal-parts/pascal-parts.
2CelebA: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.

https://www.cs.stanford.edu/~roozbeh/pascal-parts/pascal-parts
http://mmlab.ie.cuhk.edu.hk/projects/CelebA
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grid search procedure, with values ranging in [10−1, 10−4], selecting the best model
through cross-validation. Results are averaged over 5 different runs.

Each neuron is forced to keep only q = 2 input connections in the ψ-network.
Deeper ψ-networks are capable of providing more complex explanations, since the
compositional structure of the network can relate multiple predicates. We consid-
ered two types of ψ-networks, with one or two hidden layers (10 units each), respec-
tively, with the exception of the case of MI in which we considered no-hidden layers
or one hidden layer (10 units). This is due to the unsupervised nature of the MI cri-
terion, that, when implemented in deeper networks might capture more complex
regularities that are harder to evaluate for a human.

When class-driven criteria are exploited, we considered an independent neural
network to implement each ψj associated to a driving class. The input space of each
of them is different, due to the masking of the driving task function, as described in
Section 6.3.1. When considering the MI criterion only, we used a single ψ-network
with a number of output units m (one for each ψj) ranging from 10 to 50.

PASCAL-Part. This dataset is the same introduced in Chapter 4, but used in amul-
tilabel classification task as in Chapter 5. We divided the dataset into three splits,
composed of 9,092 training images, 505 validation images, 506 test images, respec-
tively (keeping the original class distribution). From each image, we extracted 2048
features using a ResNet50 backbone network pretrained on ImageNet. We used 100
hidden units and r output units to implement the f -network.

We tested two different semi-supervised settings in which 10 and 100 labeled ex-
amples per-class are respectively provided. The remaining portion of the training
data is left unlabeled (it is exploited by the learning criteria of Section 6.3.1). In the
class-driven cases, we considered the main objects as driving classes, so m = 16.
Results are reported in Table 6.1, in which the F1 scores (upper portion) and a sam-
ple of the extracted rules (lower portion) are shown. The proposed learning criteria
lead to an improvement of the classifier performance that is more evident when less
supervisions are provided, as expected. We further explored this result, distinguish-
ing between the F1 measured (a) on the driving classes, that are more represented,
and (b) on the other classes. Fig. 6.4 (top) shows that evident improvements (w.r.t.
the baseline) can sometimes be due to only one of the two groups of classes, and
there is not a clear trend among the criteria. Notice that class-driven criterion not
necessarily leads to better driving-task-functions, while it can also improve the other
functions. This is because some driving classes might also participate in explaining
other driving classes.

The explanations in Table 6.1 show that deeper ψ networks usually lead to more
complex formulas, as expected. Local Explanations depend on the regions covered
by the Xψj , and they sometimes involve semantically related classes, that might be
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Figure 6.4: F1 score % on (a) the driving classes and (b) on the other classes, in
function of the number of labeled examples per class.

simultaneously active on the same region. Global Explanations show possible cover-
ings of the whole classifier output space. We only show 2 sample ψ̂′j’s from Eq. 6.5.
They might be harder to follow, since they merge multiple local explanations. In
the deeper case we get more compact terms, that, however, are more numerous, i.e.,
larger K. Class-driven Explanations IF→ and IFF↔ provide a semantically coherent
description of objects and their parts. Interestingly, these rules usually implement
reasonable expectations on this task, with a few exceptions. The IFF↔ case is more
restrictive than IF→ (compare Car, Bicycle in the two cases).

CelebA. This dataset is composed of over 200k images of celebrity faces, out of
which 45% are used as training data, 5% as validation data and ≈ 100k are used
for testing. The dataset is composed of 40 annotated attributes (classes) per image
(BlondHair, Sideburns, GrayHair, WavyHair, etc.), that we extended by adding the at-
tributesNotAttractive, NotBald, Female, Beard, Old, as opposite of the already existing
Attractive, Bald, Male, NoBeard, Young. In the class-driven criteria, these two sets of
attributes are the ones we require to explain (m = 10). We exploit the same pre-
processing and neural architectures of the previous experiment, evaluating semi-
supervised settingswith 25 and 100 labeled examples per class. Results are reported
in Table 6.2 and Fig. 6.4 (bottom).

We obtained a slightly less evident improvement of the performance with re-
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Table 6.1: PASCAL-Part dataset. Top: macro F1 scores % (±standard deviation),
different learning settings and number of labeled points per-class. Bottom: expla-
nations yielded in different scenarios (two types of ψ-network). Functions f̂i’s are
indicated with their class-names.

# Labeled Baseline MI IF→ IFF↔

10 57.0 ± 0.3 58.1 ± 0.2 58.5 ± 0.2 57.1 ± 0.1

100 63.5 ± 0.2 63.7 ± 0.2 63.6 ± 0.2 63.9 ± 0.1

Scenario Explanations Explanations (Deeper ψ)

Local

∀x ∈ Xi, Beak ∨ Bird ∀x ∈ Xi, Bottle ∨ Table

∀x ∈ Xj, Headlight ∨ Plate ∀x ∈ Xj, Arm ∧ ¬Bottle ∧ ¬Horn ∧ ¬Table

∀x ∈ Xk, Cat ∨ Horse ∀x ∈ Xk, ¬Bottle ∧ ¬Table ∧ (Car ∨Motorbike)

Global

∀x, AeroplaneBody ∨ Beak ∨ Bird ∨ Table
∨Car ∨ Headlight ∨Motorbike ∨Muzzle
∨Train ∨ Chainwheel ∨ ¬Aeroplane ∨ Plant

∀x, Bird ∨ Coach ∨ Hand ∨ Nose
∨Sheep ∨ Stern ∨Wheel ∨ ¬Roo f side

∀x, ¬Saddle ∨ Bird ∨ Coach ∨ Hand ∨ Nose
∀x,¬Horse ∨ AeroplaneBody ∨ Beak ∨ Bird
∨Car ∨ Chainwheel ∨ Headlight ∨Muzzle
∨Table ∨Motorbike ∨ Plant ∨ Train

∨Sheep ∨ Stern ∨Wheel

Class-
driven
IF →

∀x, Car → Backside ∨Mirror
∨(Window ∧ ¬Coach) ∀x, Aeroplane→ Engine ∨ Stern

∀x, Bicycle→ Saddle ∨ Handlebar ∀x, Chair → (Table ∧ So f a) ∨ (Table ∧ ¬Door)
∀x, Train→ Coach ∨ TrainHead ∀x, Boat→ ¬Bottle ∧ ¬Cat ∧ ¬Coach

∧¬Le f tside ∧ ¬Paw ∧ ¬Wheel ∧ ¬Wing

Class-
driven
IFF ↔

∀x, Horse↔ (Hoo f ∧ Ear) ∨ (Hoo f ∧ Neck) ∀x, Aeroplane↔ AeroplaneBody ∧ ¬Horn

∀x, Bird↔ Beak ∧ ¬Horn ∀x, Car ↔ Door ∨Mirror
∀x, Bicycle↔ (Chainwheel ∧ ¬Cow ∧ Handlebar)
∨(Chainwheel ∧ ¬Cow ∧ Saddle)

∀x, Dog↔ Muzzle ∧ Paw
∧¬Table ∧ ¬TrainHead

spect to the baseline, especially in the less-supervised case. This is mostly due to
the fact that some classes are associated to high-level attributes (such as Attractive)
that might be not easy to generalize from a few supervisions. When distinguish-
ing among the results on driving and not-driving classes (Fig. 6.4), improvements
are more evident. From the Local Explanations in the lower portion of Table 6.2, we
can appreciate that some rules are able to capture in a fully unsupervised way the
relationships between, for example, being Attractive and Young, or being Old and
with GrayHair. Global Explanations show more differentiated coverings of the classi-
fier output space. Class-driven Explanations IF→ and IFF↔ yield descriptions that,
again, are usually in line with common expectations (see Beard, Bald, Male).
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Table 6.2: CelebA dataset. Top: macro F1 scores % (±standard deviation), differ-
ent learning settings and number of labeled points per-class. Bottom: explanations
yielded in different scenarios (two types of ψ-network). Functions f̂i’s are indicated
with their class-names.

# Labeled Baseline MI IF→ IFF↔

25 54.7 ± 0.4 55.0 ± 0.3 56.1 ± 0.1 55.1 ± 0.2

100 60.0 ± 0.1 60.4 ± 0.2 60.9 ± 0.2 60.5 ± 0.2

Scenario Explanations Explanations (Deeper ψ)

Local

∀x ∈ Xi, Bangs ∧ ¬Bald ∀x ∈ Xi, BlackHair ∧ Attractive ∧Young

∀x ∈ Xj, StraightHair ∧ BushyEyebrows ∀x ∈ Xj, (Old ∧ GrayHair) ∨ (Old ∧ ¬Young)

∀x ∈ Xk, Female ∧ Attractive ∀x ∈ Xk, NoBeard ∧ Female ∧ ¬WearNecktie

Global

∀x, Bangs ∨ BlondHair ∨ Blurry ∨ Goatee
∨StraightHair ∨WearHat
∨¬Attractive ∨ ¬Female ∨ ¬Male

∀x, Beard ∨ BlackHair ∨ BrownHair ∨ Goatee
∨HeavyMakeup ∨Mustache ∨Old∨
WearNecktie ∨ ¬Beard ∨ ¬Young

∀x, Blurry ∨ Goatee ∨WearHat
∨¬Attractive ∨ ¬BlackHair ∨ ¬BlondHair
∨¬Female ∨ ¬StraightHair

∀x, HeavyMakeup ∨Mustache ∨WearNecktie
∨Young ∨ ¬Beard ∨ ¬WearLipstick

Class-
driven
IF →

∀x, Attractive→ PaleSkin ∨ RosyCheeks
∨(¬Blurry ∧ ¬Chubby)

∀x, Male→ Beard ∨ FiveOClockShadow
∨DoubleChin ∨ ¬WearLipstick

∀x, Beard→ Goatee ∨ Sideburns
∀x, Old→ GrayHair ∨ ¬Attractive

∀x, Bald→ RecedingHairline ∧ ¬Bangs
∧¬RosyCheeks ∧ ¬WavyHair

∀x, Female→ HeavyMakeup ∨WearLipstick
∨(¬DoubleChin ∧ ¬WearNecktie)

Class-
driven
IFF ↔

∀x, Bald↔ ¬BlackHair ∧ ¬BrownHair
∧¬StraightHair ∧ ¬WavyHair

∀x, Beard↔ (Goatee ∧Mustache)
∨(Goatee ∧ Sideburns)

∀x, NotBald↔ Bangs ∨ BrownHair
∨WavyHair

∀x, Bald↔ ¬Bangs ∧ ¬StraightHair
∧¬WavyHair

∀x, Male↔ ¬WearLipstick ∧ ¬WearNecklace ∀x, Young↔ (¬GrayHair ∧ BigLips)
∨(¬GrayHair ∧ ¬WearNecklace)

6.4.1 Learning comparison

We here analyse the training performances of the learning configurations described
in Section 6.3.3, the Stage-based Optimization and the Global Optimization, together
with a Baseline represented by learning the f function only. These strategies have
been compared under the same conditions, i.e., same hyperparameters, labelled
data and network initialization and extracting Local Explanations (therefore maxi-
mizing theMI as defined in Eq. 6.2). Fig. 6.5 reports the F1 growth in the case of the
PASCAL-Part experiment when 100 labelled samples per class are given as supervi-
sion. For both strategies, we can observe an improvement of the performances over
the Baseline. The stage-based performance evolution is particularly interesting to in-
spect: after 20 epochs, the learning of constraints stage begins (the one that involves
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Figure 6.5: Evolution of the training performances when increasing the number of
epochs, comparing the different learning strategies on the PASCAL-Part problem
with 100 labelled samples per class and over a single seed. The Stage-based opti-
mization boost the performances due to the regularization effect of DMI in Eq. 6.1.

the MI), and for the following 5 epochs the F1 score does not improve as the task
functions are not modified. Nonetheless, in a few epochs the regularization effects
imposed by the DMI term in Eq. 6.1 boost the performances of the network, over-
coming those of the other two networks. This process is repeated every 25 epochs
with smaller effects, leading to higher final F1 score for the Stage-based optimization
with respect to the others.

6.5 Related Work
In the last few years, the scientific community devoted a lot of effort to the pro-
posal of approaches that yield explanations to the decisions of machine learning-
based systems (Bibal and Frénay, 2016; Doshi-Velez and Kim, 2017; Došilović et al.,
2018; Guidotti et al., 2018b; Teso and Kersting, 2019). In particular, several Explain-
able Artificial Intelligence (XAI) (Gunning, 2017) techniques have been developed,
with different properties and output formats. They generally rely on existing inter-
pretable models, such as decision trees, rules, linear models (Freitas, 2014; Huys-
mans et al., 2011), that are considered easily understandable by humans. On the
other hand, in order to provide an explanation for black-box predictors, such as
(deep) neural networks and support vector machines, a new interpretable model
that is as faithful as possible to the original predictor is considered, sometimes act-
ing on localized regions of the space (Guidotti et al., 2018b). Then, the explanation
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problem consists in finding the best interpretable model approximating the black-
box predictor. In the context of the XAI literature, there is no clear agreement on
what an explanation should be, nor onwhat are the suitablemethodologies to quan-
titatively evaluate its quality (Carvalho et al., 2019; Molnar, 2020). There is also a
strong dependence on the target of the explanation, e.g., a common user, an expert,
or an artificial intelligence researcher. In this regard, the framework proposed in
this chapter allows the final user to choose among different kinds of explanations,
even if assuming a first-order logic language.

Symbolic interpretation of neural networks (rule extraction) has been the subject
of many researches by several authors, especially in the nineties. Some approaches
are about Fuzzy Logic Kasabov (1996); Huang and Xing (2002); Castro and Tril-
las (1998); Di Nola et al. (2013), but are generally less straightforward in terms of
explainability than the ones based on Boolean Logic Fu (1991); Towell and Shavlik
(1993); Tsukimoto (2000); Sato and Tsukimoto (2001). In the latter case, it is pretty
common to rely on a discretization of the input and output values of the neurons,
pruning the network to keep it simple. The interpretation we propose in this chap-
ter follows this approach, mostly in the spirit of Zilke et al. (2016) where Boolean
interpretation is applied neuron-by-neuron to a deep neural network that is trained
to solve a specific task, decomposing the interpretation of the whole network to its
sub-constituents. However, in this chapter we followed a different paradigm, both
developing a set of task functions and another network that, in turn, learns how the
tasks are related (constrained), with the aim of extracting logic explanations.



Chapter 7

An Explainable-by-Design Network

In this chapterwepropose a different solution to the explainability issue described in
Section 2.3.3, by introducing a neural network which both solves the learning prob-
lem and provide explanations of its predictions. Part of the content of this chapter
is extracted from the works Ciravegna et al. (2021) and Barbiero et al. (2021b) that
we submitted to the Artificial Intelligence journal and to the AAAI 2022 conference
respectively, together with some colleagues from the University of Siena and Cam-
bridge.

In this chapter, we first propose an entropy-based layer (Section 7.2.1) that en-
ables the implementation of concept-based neural networks, providing First-Order
Logic explanations (Fig. 7.1). Second, we describe how to interpret the predictions
of the proposed neural model to distil logic explanations for individual observa-
tions and for a whole target class (Section 7.2.3). We therefore define our approach
as explainable by design, since the proposed architecture allows neural networks to
automatically provide logic explanations of their predictions. Finally, we demon-
strate how our approach provides high-quality explanations according to six quan-
titative metrics while outperforming some state-of-the-art white-box models (later
described in Section 7.4) in terms of classification accuracy on four case studies (Sec-
tion 7.3).

7.1 Introduction
Following the notation introduced in Section 3.1, we consider again the classifica-
tion problem X → Y and to extract logic constraints from a classifier f . However, in
this chapter we aim at providing explanations of the prediction for a certain class in
terms of the input features rather than other classes. Therefore, input samples x ∈ X
are first mapped to a concept space C that represent symbolic concepts. We then
consider the family of Concept-based classifiers f , machine learning models pre-
dicting class memberships from the activation scores of h human-understandable

87
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OUTPUT
PREDICTION

CLASSIFIER ENTROPY-BASED
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INPUT
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LOGIC EXPLANATIONS

Figure 7.1: The proposed pipeline on one example from the CUB dataset. The pro-
posed neural network maps concepts onto target classes f : C 7→ Y and provide
concise logic explanations (yellow—we dropped the arguments in the logic predi-
cates, for simplicity) of its own decision process. When the input features are non-
interpretable (as pixels intensities), a classifier g : X 7→ C maps inputs to concepts.

categories, f : C 7→ Y, where C ⊂ [0, 1]h (see Fig. 7.1). When observations are
represented in terms of non-interpretable input features belonging to X ⊂ Rd (such
as pixels intensities), a “concept decoder” g (similarly to what proposed in (Koh
et al., 2020) is used to map the input into a concept-based space, g : X 7→ C (see
Fig. 7.1). Otherwise, they are simply rescaled from the unbounded space Rd into
the unit interval [0, 1]h, such that input features can be treated as logic predicates.

A similar method related to the proposed approach is the ψ network1 intro-
duced in Chapter 6 (Ciravegna et al., 2020a,b), an end-to-end differentiable model
explaining the predictions of another network. However, we here aim at creating
an explainable-by design classifier f per se rather than explaining another classifier.
Since the decision process of the ψ is interpretable, we directly could use them to
classify, optimizing both terms of Eq. 6.1 with the same network and asking for
Class-driven explanations of its own predictions. However, the ψ network applies an
L1-regularization and a strong pruning strategy to each layer of the network to allow
the computation of logic formulas representing the activation of each node. Also,
it requires employing a sequence of fully connected layers with sigmoid activations
only. Such constraints limit the learning capacity of the model when used as a stan-
dard classifier and impair its classification accuracy (as we will see in Section 7.3).
Therefore, in this chapter, we propose here a variant of the ψ network that leverages
the intermediate symbolic layer C to distil First-Order Logic formulas, representing
the learned mapping from C to Y. More precisely, we propose an entropy-based
approach which allows the extraction of concise FOL explanations without severely
impairing the learning capability of the network. The approach does not impose
constraints on the form of activation functions nor weights’ pruning. As we will

1In this chapter we indicate with ψ the model introduced in Chapter 6, not the generic function
mapping Y → Z defined in Chapter 3.
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better see in the following, the method only encourages the classifier f to focus on
a limited subset of concepts (Section 7.2.1) for each task Yi for which it provides
an explanation. The proposed method provides state-of-the art classification accu-
racy and high-quality explanations according to several metrics when compared to
standard interpretable-by-design machine learning models.

7.2 Entropy-based Logic Explanations of Neural
Networks

The key contribution of this chapter is a novel linear layer enabling entropy-based
logic explanations of neural networks (see Fig. 7.2). This layer receives in input
samples from the concept space C, while the outcomes of the layer computations
are: (i) the embeddings hi (as any linear layer), (ii) a truth table T i explaining how
the network leveraged concepts to make predictions for the i-th target class. Each
class of the problem requires an independent entropy-based layer, as emphasized by
the superscript i. For ease of reading andwithout loss of generality, all the following
descriptions concern inference for a single observation (corresponding to the con-
cept tuple c ∈ C) and a neural network f i predicting the class memberships for the
i-th class of the problem. For multi-class problems, multiple “heads” of this layer
are instantiated, with one “head” per target class (see Section 7.3), and the hidden
layers of the class-specific networks could be eventually shared.

7.2.1 Entropy-based linear layer
When humans compare a set of hypotheses outlining the same outcomes, they tend
to have an implicit bias towards the simplest ones as outlined in philosophy (Aris-
totle, 0 BC; Hoffmann et al., 1996; Soklakov, 2002; Rathmanner and Hutter, 2011),
psychology (Miller, 1956; Cowan, 2001), and decision making (Simon, 1956, 1957,
1979). The proposed entropy-based approach encodes this inductive bias in an end-
to-end differentiable model. The purpose of the entropy-based linear layer is to en-
courage the neural model to pick a limited subset of input concepts, allowing it to
provide concise explanations of its predictions. The learnable parameters of the
layer are the usual weight matrix W and bias vector b. In the following, the forward
pass is described by the operations going from Eq. 7.1 to Eq. 7.4 while the genera-
tion of the truth tables from which explanations are extracted is formalized by Eq.
7.5 and Eq. 7.6.

The relevance of each input concept can be summarized in a first approximation
by a measure that depends on the values of the weights connecting such concept to
the upper network. In the case of network f i (i.e. predicting the i-th class) and of
the j-th input concept, we indicate with W i

j the vector of weights departing from the
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Figure 7.2: On the right, the proposed neural network learns the function f : C 7→ Y.
For each class, the network leverages one “head” of the entropy-based linear layer
(green) as first layer. For each target class i, the network provides: the class mem-
bership predictions f i and the truth table T i (Eq. 7.6) to distil FOL explanations
(yellows, top). On the left, a detailed view on the entropy-based linear layer for the
1-st class, emphasizing the role of the k-th input concept as example: (i) the scalar
γ1

k (Eq. 7.1) is computed from the set of weights connecting the k-th input concept to
the output neurons of the entropy-based layer; (ii) the relative importance of each
concept is summarized by the categorical distribution α1 (Eq. 7.2); (iii) rescaled
relevance scores α̃1 drop irrelevant input concepts out (Eq. 7.3); (iv) hidden states
h1 (Eq. 7.4) and Boolean-like concepts ĉ1 (Eq. 7.5) are provided as outputs of the
entropy-based layer.

j-th input (see Fig 7.2), and we introduce

γi
j = ||W i

j ||1 . (7.1)

The higher γi
j, the higher the relevance of the concept j for the network f i. In the limit

case, γi
j → 0, the model f i drops the j-th concept out. To select only few relevant

concepts for each target class, concepts are set up to compete against each other. To
this aim, the relative importance of each concept to the i-th class is summarized in
the categorical distribution αi, composed of coefficients αi

j ∈ [0, 1] (with ∑j αi
j = 1),

modeled by the softmax function:

αi
j =

eγi
j/τ

∑k
l=1 eγi

l/τ
(7.2)
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where τ ∈ R+ is a user-defined temperature parameter to tune the intrinsic ten-
dency of the softmax function. For a given set of γi

j, when using high temperature
values (τ → ∞) all concepts have nearly the same relevance. For low temperatures
values (τ → 0), the probability of the most relevant concept tends to ≈ 1, while it
becomes ≈ 0 for all other concepts. As the probability distribution αi highlights the
most relevant concepts, this information is directly fed back to the input, weighting
concepts by the estimated importance. To avoid numerical cancellation due to val-
ues in αi close to zero, especially when the input dimensionality is large, we replace
αi with its normalized instance α̃i, still ∈ [0, 1]h, and each input sample c ∈ C is
modulated by the (normalized) estimated importance,

c̃i = c� α̃i with α̃i
j =

αi
j

maxu αi
u

, (7.3)

where � denotes the Hadamard (element-wise) product. The highest value in α̃i

is always 1 (i.e. maxj α̃i
j = 1) and it corresponds to the most relevant concept. The

embeddings hi are computed as in any linear layer by means of the affine transfor-
mation:

hi = W i c̃i + bi. (7.4)

Whenever α̃i
j → 0, the input c̃j → 0. This means that the corresponding concept

tends to be dropped out and the network f i will learn to predict the i-th classwithout
relying on the j-th concept.

In order to get logic explanations, the proposed linear layer generates the truth ta-
ble T i formally representing the behaviour of the neural network in terms of Boolean-
like representations of the input concepts. In detail, we indicate with c̄ the Boolean
interpretation of the input tuple c ∈ C, while µi ∈ {0, 1}h is the binary mask associ-
ated to α̃i. To encode the inductive human bias towards simple explanations (Miller,
1956; Cowan, 2001; Ma et al., 2014), the mask µi is used to generate the binary con-
cept tuple ĉi, dropping the least relevant concepts out of c,

ĉi = ξ(c̄, µi) with µi = Iα̃i≥ε and c̄ = Ic≥ε, (7.5)

where Iz≥ε denotes the indicator function that is 1 for all the components of vector
z being ≥ ε and 0 otherwise (considering the unbiased case, we set ε = 0.5). The
function ξ returns the vector with the components of c̄ that correspond to 1’s in µi

(i.e. it sub-selects the data in c̄). As a results, ĉi belongs to a space Ĉi of mi Boolean
features, with mi < h due to the effects of the subselection procedure.

The truth table T i is a particular way of representing the behaviour of network f i

based on the outcomes of processing multiple input samples collected in a generic
dataset C. As the truth table involves Boolean data, we denote with Ĉ i the set with
the Boolean-like representations of the samples in C computed by ξ, Eq. 7.5. We also
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introduce f̄ i(c) as the Boolean-like representation of the network output, f̄ i(c) =

I f i(c)≥ε. From an operational perspective, the contents Ti of the truth table T i are
obtained by stacking data of Ĉ i into a 2D matrix Ĉi (row-wise), and concatenating
the result with the column vector f̄i whose elements are f̄ i(c), c ∈ C:

Ti =
(

Ĉi
∣∣∣∣∣∣ f̄i

)
. (7.6)

T i is used to generate logic explanations, as we will explain in Section 7.2.3.

7.2.2 Loss function
The entropy of the probability distribution αi (Eq. 7.2),

H(αi) = −
k

∑
j=1

αi
j log αi

j (7.7)

is minimized when a single αi
j is one, thus representing the extreme case in which

only one concept matters, while it is maximumwhen all concepts are equally impor-
tant. We jointly minimize H with the usual loss function about the knowledge on
the supervision ϕ( f ,K∫ ,S) (being S = C, since we are in a fully supervised learn-
ing scenario). This allows the model to find a trade-off between fitting quality and
a parsimonious activation of the concepts, allowing each network f i to predict i-th
class memberships using few relevant concepts only. Overall, the loss function to
train the network f is defined as,

L( f , y, α1, . . . , αr) = ϕ( f ,K∫ ,S) + λ
r

∑
i=1
H(αi), (7.8)

where λ > 0 is the hyperparameter used to balance the relative importance of low-
entropy solutions in the loss function. Higher values of λ lead to sparser configu-
ration of α, constraining the network to focus on a smaller set of concepts for each
classification task (and vice versa), thus encoding the inductive human bias towards
simple explanations (Miller, 1956; Cowan, 2001; Ma et al., 2014).

7.2.3 First-order logic explanations
Any Boolean function can be converted into a logic formula in Disjunctive Normal
Form (DNF) by means of its truth-table (Mendelson, 2009). We indicate with f̂ i

the Boolean function represented by the truth table T i, f̂ i : Ĉi 7→ Yi, being Yi the
i-th component of Y. Converting a truth table into a DNF formula provides an ef-
fective mechanism to extract logic rules of increasing complexity from individual
observations to a whole class of samples. The following rule extraction mechanism
is considered for each task i.
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FOL extraction. Each row of the truth table T i can be partitioned into two parts
that are a binary tuple of concept activations, q̂ ∈ Ĉi, and the outcome of f̂ i(q̂) ∈
{0, 1}. An example-level logic formula, consisting in a single minterm, can be triv-
ially extracted from each row for which f̂ i(q̂) = 1, by simply connecting with the
logic AND ∧ the true concepts and negated instances of the false ones. The logic
formula becomes human understandable whenever concepts appearing in such a
formula are replaced with human-interpretable strings that represent their name
(similar consideration holds for f̂ i, in what follows). For example, the following
logic formula ϕi

t,
ϕi

t = c1 ∧ ¬c2 ∧ . . . ∧ cmi , (7.9)

is the example-level formula extracted from the t-th row of the table where, in the
considered example, only the second concept is false, being cz the name of the z-th
concept. Example-level formulas can be aggregated with the logic OR ∨ to provide
a class-level formula, ∨

t∈Si

ϕi
t, (7.10)

being Si the set of rows indices of the truth table for which f̂ i(q̂) = 1, i.e. it is the
support of f̂ i. We define with φi(ĉ) the function that holds true whenever Eq. 7.10,
evaluated on a given Boolean tuple ĉ, is true. Due to the aforementioned definition
of support, we get the following class-level First-Order Logic (FOL) explanation for
all the concept tuples,

∀ĉ ∈ Ĉi : φi(ĉ)↔ f̂ i(ĉ). (7.11)

We note that in case of non-concept-like input features, we may still derive the FOL
formula through the “concept decoder” function g (see Section 7.1),

∀x ∈ X : φi
(

ξ(g(x), µi)
)
↔ f̂ i

(
ξ(g(x), µi)

)
, (7.12)

where ξ(g(x)µi) = ĉ and is the result of the selection and the boolenization process
over the output of g. An example of the above scheme for both example and class-
level explanations is depicted on the top-right of Fig. 7.2.

Remarks. The aggregation of many example-level explanations may increase the
length and the complexity of the FOL formula being extracted for a whole class.
However, existing techniques as the Quine–McCluskey algorithm can be used to
get compact and simplified equivalent FOL expressions (McColl, 1878; Quine, 1952;
McCluskey, 1956). For instance, the explanation (person ∧ nose) ∨ (¬person ∧ nose)
can be formally simplified in nose. Moreover, the Boolean interpretation of con-
cept tuples may generate colliding representations for different samples. For in-
stance, the Boolean representation of the two samples {(0.1, 0.7), (0.2, 0.9)} is the
tuple c̄ = (0, 1) for both of them. This means that their example-level explanations
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match as well. However, a concept can be eventually split into multiple finer grain
concepts to avoid collisions. Finally, we mention that the number of samples for
which any example-level formula holds (i.e. the support of the formula) is used
as a measure of the explanation importance. In practice, example-level formulas
are ranked by support and iteratively aggregated to extract class-level explanations,
until the aggregation improves the support of the formula on a validation set.

7.3 Experiments
The quality of the explanations and the classification performance of the proposed
approach are quantitatively assessed. The proposed approach is also compared
with state-of-the-art white-box methods providing logic-based, global explanations
(see Section 7.4). In particular, we selected one representative approach from differ-
ent families of methods: Decision Trees2 (white-box machine learning), BRL3 (rule
mining) and ψ Networks4 (interpretable neural models).

A visual sketch of each classification problem (described in detail in the follow-
ing together with all the experimental details) and a selection of the logic formulas
found by the proposed approach is reported in Fig. 7.3. Six quantitative metrics are
defined and used to compare the proposed approach with state-of-the-art methods.
Finally, we summarizes the main findings. A python package5 and a GitHub repos-
itory6 implementing the proposed approach are publicly available. In appendix
A.4.1 a snippet of the code extracted from the library is reported.

7.3.1 Classification tasks and datasets
For the experimental analysis, four classification problems ranging from computer
vision to medicine are considered. Computer vision datasets (e.g. CUB) are anno-
tated with high-level concepts (e.g. bird attributes) used to train concept bottleneck
pipelines (Koh et al., 2020). In the other datasets, the input data is rescaled into a
categorical space (Rk → C) suitable for concept-based networks.

Will we recover from ICU? (MIMIC-II). The Multiparameter Intelligent Moni-
toring in Intensive Care II (MIMIC-II, (Saeed et al., 2011; Goldberger et al., 2000))7
is a public-access intensive care unit (ICU) database consisting of 32,536 subjects

2Decision Trees: https://scikit-learn.org/stable/modules/tree.html, BSD-3 Clause License.
3BRL: https://github.com/tmadl/sklearn-expertsys, MIT license.
4ψ Networks: https://github.com/pietrobarbiero/logic_explainer_networks, Apache 2.0 License.
5Entropy Net PIP: https://pypi.org/project/pytorch_explain/
6Entropy Net GitHub: https://github.com/pietrobarbiero/pytorch_explain
7MIMIC-II: https://archive.physionet.org/mimic2.

 https://scikit-learn.org/stable/modules/tree.html
https://github.com/tmadl/sklearn-expertsys
https://github.com/pietrobarbiero/logic_explainer_networks
https://pypi.org/project/pytorch_explain/
https://github.com/pietrobarbiero/pytorch_explain
https://archive.physionet.org/mimic2
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Figure 7.3: The four case studies show how the proposed Entropy-based networks
(green) provide concise logic explanations (yellow—we dropped the arguments
in the logic predicates, for simplicity) of their own decision process in different
real-world contexts. When input features are non-interpretable, as pixel intensities
(MNIST and CUB), a “concept decoder” (ResNet10) is employed to map images
into concepts. Entropy-based networks then map concepts into target classes.

(with 40,426 ICU admissions) admitted to different ICUs. The dataset contains de-
tailed descriptions of a variety of clinical data classes: general, physiological, results
of clinical laboratory tests, records of medications, fluid balance, and text reports of
imaging studies (e.g. x-ray, CT, MRI, etc). In our experiments, we removed non-
anonymous information, text-based features, time series inputs, and observations
with missing data. We discretize continuous features into one-hot encoded cate-
gories. After such preprocessing step, we obtained an input space C composed of
h = 90 key features. The task consists in identifying recovering or dying patients
after ICU admission.

What kind of democracy are we living in? (V-Dem). Varieties of Democracy
(V-Dem, (Pemstein et al., 2018; Coppedge et al., 2021))8 is a dataset containing a
collection of indicators of latent regime characteristics over 202 countries from 1789
to 2020. The database includes h1 = 483 low-level indicators (e.g. media bias, party
ban, high-court independence, etc.), h2 = 82 mid-level indices (e.g. freedom of
expression, freedom of association, equality before the law, etc), and 5 high-level
indices of democracy principles (i.e. electoral, liberal, participatory, deliberative,
and egalitarian). In the experiments, a binary classification problem is considered

8V-Dem: https://www.v-dem.net/en/data/data/v-dem-dataset-v111.

https://www.v-dem.net/en/data/data/v-dem-dataset-v111
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to identify electoral democracies from non-electoral democracies. We indicate with
C1 and C2 the spaces associated to the activations of the aforementioned two levels
of concepts. Two classifiers f1 and f2 are trained to learn the map C1 → C2 → Y.
Explanations are given for classifier f2 in terms of concepts c2 ∈ C2.

What does parity mean? (MNIST Even/Odd). The Modified National Institute
of Standards and Technology database (MNIST, (LeCun, 1998))9 contains a large
collection of images representing handwritten digits. The input space X ⊂ R28×28

is composed of 28x28 pixel images while the concept space C with h = 10 is rep-
resented by the label indicator for digits from 0 to 9. However, the task we con-
sider here is slightly different from the common digit-classification. Assuming Y ⊂
{0, 1}2, we are interested in determining if a digit is either odd or even, and ex-
plaining the assignment to one of these classes in terms of the digit labels (concepts
in C). Notice how, for this classification problem, we trivially have ground-truth
first-order logic formulas: ∀x, isOdd(x) ↔ isOne(x) ⊕ isThree(x) ⊕ isFive(x) ⊕
isSeven(x) ⊕ isNine(x) and ∀x, isEven(x) ↔ isZero(x) ⊕ isTwo(x) ⊕ isfour(x) ⊕
isSix(x)⊕ isEight(x), being ⊕ the exclusive OR. The mapping X → C is provided
by a ResNet10 classifier g (He et al., 2016) trained from scratch. while the classifier
f is used to learn both the final mapping and the explanation as a function C → Y.

What kind of bird is that? (CUB). The Caltech-UCSD Birds-200-2011 dataset
(CUB, (Wah et al., 2011b))10 is a fine-grained classification dataset. It includes
11,788 images representing c = 200 (Y = {0, 1}200) different bird species. 312 bi-
nary attributes describe visual characteristics (color, pattern, shape) of particular
parts (beak, wings, tail, etc.) for each bird image. Attribute annotations, however,
is quite noisy. For this reason, attributes are denoised by considering class-level an-
notations (Koh et al., 2020)11. In the end, a total of 108 attributes (i.e. concepts with
binary activations belonging to C) have been retained. The mapping X → C from
images to attribute concepts is performed again with a ResNet10 model g trained
from scratch while the classifier f learns the final function C → Y.

7.3.2 Experimental details
Batch gradient-descent and theAdamoptimizerwith decoupledweight decay (Loshchilov
and Hutter, 2017) and learning rate set to 10−2 are used for the optimization of
all neural models’ parameters (Entropy-based Network and ψ Network). An early

9MNIST: http://yann.lecun.com/exdb/mnist.
10CUB: http://www.vision.caltech.edu/visipedia/CUB-200-2011.html.
11A certain attribute is set as present only if it is also present in at least 50% of the images of

the same class. Furthermore we only considered attributes present in at least 10 classes after this
refinement.

http://yann.lecun.com/exdb/mnist
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
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Table 7.1: Hyperparameters selected through cross-validation for the Entropy-based
network in each learning task.

λ τ Epochs Hidden neurons

MIMIC-II 10−3 0.7 200 20

V-Dem 10−5 5 200 20, 20

MNIST 10−7 5 200 10

CUB 10−4 0.7 500 10

stopping strategy is also applied: the model with the highest accuracy on the vali-
dation set is saved and restored before evaluating the test set.

With regard to the Entropy-basedNetwork, Tab. 7.1 reports the hyperparameters
employed to train the network in all experiments. A grid search cross-validation
strategy has been employed to select hyperparameter values. The objective was to
maximize at the same time both model and explanation accuracy. λ represents the
trade-off parameter in Eq. 7.8 while τ is the temperature of Eq. 7.2.

Concerning the ψ network, in all experiments one network per class has been
trained. They are composed of two hidden layers of 10 and 5 hidden neurons, re-
spectively. As indicated in the original paper, an l1 weight regularization has been
applied to all layers of the network. As in this work, the contribute in the overall loss
of the l1 regularization is weighted by a hyperparameter λ = 10−4. The maximum
number of non-zero input weight (fan-in) is set to 3 in MIMIC and V-Demwhile for
MNIST and CUB200 it is set to 4. In Chapter 6, ψ networks were devised to provide
explanations of existing models; in this chapter, however, we show how they can
directly solve also a classification problem.

Decision Trees have been limited in their maximum height in all experiments to
maintain the complexity of the rules at a comparable level w.r.t the other methods.
More precisely, the maximum height has been set to 5 in all binary classification
tasks (MIMIC-II, V-Dem, MNIST) while we allowed a maximum height of 30 in the
CUB experiment due to the high number of classes to predict (200).

BRL algorithms requires to first run the FP-growth algorithm (Han et al., 2000)
(an enhanced version of Apriori) to mine a first set of frequent rules. The hyper-
parameter used by FP-growth are: the minimum support in percentage of training
samples for each rule (set to 10%), the minimum and the maximum number of fea-
tures considered by each rule (respectively set to 1 and 2). Regarding the Bayesian
selection of the best rules, the number of Markov chain Monte Carlo used for infer-
ence is set to 3, while 50000 iterations maximum are allowed. At last, the expected
length andwidth of the extracted rule list is set respectively to 3 and 1. These are the
default values indicated in the BRL repository. Due to the computational complexity
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Table 7.2: Classification accuracy (%) of the compared models.

Entropy net Tree BRL ψ net Black box

MIMIC-II 79.05± 1.35 77.53± 1.45 76.40± 1.22 77.19± 1.64 77.81± 2.45

V-Dem 94.51± 0.48 85.61± 0.57 91.23± 0.75 89.77± 2.07 94.53± 1.17

MNIST 99.81± 0.02 99.75± 0.01 99.80± 0.02 99.79± 0.03 99.81± 0.08

CUB 92.95± 0.20 81.62± 1.17 90.79± 0.34 91.92± 0.27 93.32± 0.35

and the high number of hyperparameters, they have not been cross validated.
All the experiments have been run on the samemachine: Intel®Core™ i7-10750H

6-Core Processor at 2.60 GHz equipped with 16 GiB RAM and NVIDIA GeForce
RTX 2060 GPU. All datasets employed can be downloaded for free (only MIMIC-II
requires an online registration).

7.3.3 Quantitative metrics
Measuring the classification quality is of crucial importance for models that are go-
ing to be applied in real-world environments. On the other hand, assessing the qual-
ity of the explanations is required for their lawful deployment. In contrastwith other
kind of explanations, logic-based formulas can be evaluated quantitatively. Given a
classification problem, first a set of rules are extracted from the entropy-based net-
work for each target category and then each explanation is tested on an unseen set of
test samples. The results for eachmetric are reported in terms of mean and standard
error, computed over a 5-fold cross validation (Krzywinski and Altman, 2013). For
each experiment and for each explainer (i.e. themodel f : C → Y mapping concepts
to target categories) six quantitative metrics are measured. (i) The model accuracy
measures how well the explainer identifies the target classes on unseen data (see
Table 7.2). (ii) The explanation accuracy measures how well the extracted logic
formulas identifies the target classes (Fig. 7.4). This metric is obtained as the aver-
age of the F1 scores computed for each class explanation. (iii) The complexity of an
explanation estimates how hard to understand the logic formula is for a human be-
ing (see Fig. 7.4). Thismetric is computed by standardizing the explanations inDNF
and then by counting the number of terms of the standardized formula (Fig. 7.4).
The longer the formula, the harder the interpretation for a human being. (iv) The
fidelity of an explanation measures how well the extracted explanation matches
the predictions obtained using the explainer (Table 7.3). reports out-of-distribution
fidelity, i.e. computed on unseen test data. (v) The rule extraction time measures
the time required to obtain an explanation from scratch (see Fig. 7.5). It is com-
puted as the sum of the time required to train the model and the time required to
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Figure 7.4: Non-dominated solutions (Marler and Arora, 2004) (dotted black line)
in terms of average classification test error and their average complexity of the expla-
nations. The vertical dotted red line marks the maximum explanation complexity
laypeople can handle (i.e. complexity≈ 9, see (Miller, 1956; Cowan, 2001; Ma et al.,
2014)). When humans compare a set of hypotheses outlining the same outcomes,
they tend to have an implicit bias towards the simplest ones, making explanations
from entropy-based networks the best choice.

extract the formula from a trained explainer. (vi) The consistency of an explana-
tion measures the average similarity of the extracted explanations over the 5-fold
cross validation runs (see Table 7.4). It is computed by counting how many times
the same concepts appear in the logic formulas over different iterations.

7.3.4 Results analysis
Experiments show how entropy-based network outperforms state-of-the-art white
box models such as BRL and decision trees and interpretable neural models such
as the ψ networks on challenging classification tasks (Table 7.2). Moreover, the
entropy-based regularization has minor effects on the classification accuracy of the
explainer as shown in Table 7.2 when compared to a standard black box neural
model. This is a neural network having the same architecture and hyperparame-
ters of the entropy-based network, with the only exception of the Lagrangian mul-
tiplier in the loss function (see Eq. 7.8) which is set to λ = 0. This setting makes
the network free from any constraint related to explainability. At the same time, the
logic explanations provided by entropy-based networks are better than ψ networks
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Figure 7.5: Time required to trainmodels and to extract the explanations. Ourmodel
compares favourably with the competitors, with the exception of Decision Trees.
BRL is by one to three order of magnitude slower than our approach. Error bars
show the 95% confidence interval of the mean.

and almost as accurate as the rules found by decision trees and BRL, while being far
more concise, as demonstrated in Fig. 7.4. More precisely, logic explanations gen-
erated by the proposed approach represent non-dominated solutions (Marler and
Arora, 2004) quantitatively measured in terms of complexity and classification er-
ror (i.e. 100 minus the classification accuracy of the explanation). The complexity
of decision tree formulas is never below 100 terms, making them useless as expla-
nations. Furthermore, the time required to train entropy-based networks is only
slightly higher with respect to Decision Trees but is lower that ψ Networks and BRL
by one to three orders of magnitude (Fig. 7.5), making it feasible for explaining also
complex tasks. The fidelity (Table 7.3)12 of the formulas extracted by the entropy-
based network is always higher than 90% with the only exception of MIMIC. This
means that almost any prediction made using the logic explanation matches the
corresponding prediction made by the model, making the proposed approach very
close to a white box model. The combination of these results empirically shows that
our method represents a viable solution for the lawful deployment of explainable
cutting-edge models.

The reason why the proposed approach consistently outperform ψ networks
across all the key metrics (i.e. classification accuracy, explanation accuracy, and
fidelity) can be explained observing how entropy-based networks are far less con-
strained than ψ networks, both in the architecture (our approach does not apply
weight pruning) and in the loss function (our approach applies a regularization on
the distributions αi and not on all weight matrices). Likewise, the main reason why
the proposed approach provides a higher classification accuracywith respect to BRL
and decision trees may lie in the smoothness of the decision functions of neural net-
workswhich tend to generalize better than rule-basedmethods, as already observed

12Wedid not compute the fidelity of decision trees andBRL as they are trivially rule-basedmodels.
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Table 7.3: Out-of-distribution fidelity (%)

Entropy net ψ net

MIMIC-II 79.11± 2.02 51.63± 6.67

V-Dem 90.90± 1.23 69.67± 10.43

MNIST 99.63± 0.00 65.68± 5.05

CUB 99.86± 0.01 77.34± 0.52

Table 7.4: Consistency (%)

Entropy net Tree BRL ψ net

28.75 40.49 30.48 27.62

46.25 72.00 73.33 38.00

100.00 41.67 100.00 96.00

35.52 21.47 42.86 41.43

by Tavares et al. (Tavares et al., 2020). For each dataset, we report in the supple-
mental material (Appendix A.4.2) a few examples of logic explanations extracted
by each method, as well as in Fig. 7.3. We mention that the proposed approach
is the only matching the logically correct ground-truth explanation for the MNIST
even/odd experiment, i.e. ∀x, isOdd(x) ↔ isOne(x) ⊕ isThree(x) ⊕ isFive(x) ⊕
isSeven(x) ⊕ isNine(x) and ∀x, isEven(x) ↔ isZero(x) ⊕ isTwo(x) ⊕ isfour(x) ⊕
isSix(x) ⊕ isEight(x), being ⊕ the exclusive OR. In terms of formula consistency,
we observe how BRL is the most consistent rule extractor, closely followed by the
proposed approach (Table 7.4).

The combination of these results empirically shows that our method represents
a viable solution for the lawful deployment of explainable cutting-edge models.

7.4 Related work
In the last few years, the demand for human-comprehensible models has signifi-
cantly increased in safety-critical and data-sensible contexts. In order to provide
explanations for a given black-box model, most methods focus on identifying or
scoring the most relevant input features (Erhan et al., 2010; Simonyan et al., 2013;
Zeiler and Fergus, 2014; Ribeiro et al., 2016; Lundberg and Lee, 2017; Selvaraju et al.,
2017). Feature scores are usually computed sample by sample (i.e. providing local
explanations) analyzing the activation patterns in the hidden layers of neural net-
works (Erhan et al., 2010; Simonyan et al., 2013; Zeiler and Fergus, 2014; Selvaraju
et al., 2017) or by following a model-agnostic approach (Ribeiro et al., 2016; Lund-
berg and Lee, 2017). Either way, feature-scoringmethods are not able to explain how
neural networks compose features to make predictions (Kindermans et al., 2019;
Kim et al., 2018b; Alvarez-Melis and Jaakkola, 2018) and only a few of these ap-
proaches have been efficiently extended to provide explanations for a whole class
(i.e. providing global explanations) (Simonyan et al., 2013; Ribeiro et al., 2016). From
a different prospective, some recent approaches attempted to identify common ac-
tivations patterns in the last nodes of a neural network which could be associated to
symbolic concepts (Kim et al., 2018a; Kazhdan et al., 2020), or to directly force the
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network to extract such concepts (Chen et al., 2020; Koh et al., 2020). Also in this
case, even though these methods may help in understanding the model behaviour,
they can not be employed to support human decisions.

Differently, rule-based explanations can be employed in such a scenario since
they usually rely on a formal language, such as FOL. Logic rules are used to explain
how black boxes predict class memberships for indivudal samples (Guidotti et al.,
2018a; Ribeiro et al., 2018), or for a whole class (Sato and Tsukimoto, 2001; Zilke
et al., 2016; Ciravegna et al., 2020a,b).

Distilling explanations from an existing model, however, is not the only way to
achieve explainability. Historically, standard machine-learning such as Logistic Re-
gression (McKelvey and Zavoina, 1975), Generalized Additive Models (Hastie and
Tibshirani, 1987; Lou et al., 2012; Caruana et al., 2015) Decision Trees (Breiman et al.,
1984; Quinlan, 1986, 2014) and Decision Lists (Rivest, 1987; Letham et al., 2015; An-
gelino et al., 2018) were devised to be intrinsically interpretable. However, most
of them struggle in solving complex classification problems. Logistic Regression,
for instance, in its vanilla definition, can only recognize linear patterns, e.g., it can-
not to solve the XOR problem (Minsky and Papert, 2017). Further, only Decision
Trees and Decision Lists provide explanations in the form of logic rules. Consid-
ering decision trees, each path may be seen as a human comprehensible decision
rule when the height of the tree is reasonably contained. Another family of concept-
based XAI methods is represented by rule-mining algorithms, which became popu-
lar at the end of the last century (Holte, 1993; Cohen, 1995). Recent research has led
to powerful rule-mining approaches as Bayesian Rule Lists (BRL) (Letham et al.,
2015), where a set of rules is “pre-mined” using the frequent-pattern tree mining
algorithm (Han et al., 2000) and then the best rule set is identified with Bayesian
statistics. As we have seen in this chapter, however, the learning capability of a neu-
ral network is not matched by any of the compared white-box model. At the same
time, the proposed approach has been able to extract rule — i.e., logic explanations
— of comparable quality in terms of both accuracy and conciseness.



Chapter 8

Conclusions

This Chapter concludes this work, resuming and analysing the overall ideas pre-
sented in this thesis. Going into more details, in Sec. 8.1 we will analyse in general
the strengths and the limits of the proposed methods; in Sec. 8.2, instead, we will
resume the contribution of each chapter, and we will outline possible future work
in each field of study.

8.1 Learning with logic constraints: strengths and
limits

In this thesis, we proposed two different learning with constraints approaches to
tackle a few important problems of DNNs. First, we considered the learning from
constraints framework in which we aim at learning task functions subject to a set of
constraints coming from different types of knowledge. This setting allows enhanc-
ing DNNs with previously available knowledge and to tackle the data-hungry and
the fragility against adversarial attack issues. Second, we considered the learning
of constraints problem in which we aim at learning function expressing the existing
(but unknown) relations among the task functions or between symbolic input data
and the task functions. This allows explaining the prediction of a network, either
in terms of the other predictions or in terms of the same input data. In both learn-
ing problems, we rely on First-Order-Logic to represent a given knowledge or the
extracted constraints.

The proposed methods, however, have some limitations, and they require, in
general, a higher amount of work from human experts. The learning from con-
straints approach exploits the domain knowledge, which, however, may not be al-
ways available. When this is the case, we can still extract the knowledge from a
neural network following the learning of constraint approach, but the quality of the
knowledge extracted may be lower than the one provided by a human expert -—
e.g., it may suffer from biases present in the dataset. Furthermore, both approaches
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rely on the presence of concepts. As defined in Chapter 7, we can regard as concepts
the same input data when facing structured data problems. When facing unstruc-
tured data problems (e.g., image recognition), however, we can employ as concepts
only low-level annotations about the final classes (e.g., person, animal or object at-
tributes). In the latter case, a human expert needs to manually label also the sec-
ondary classes, increasing the overall annotation effort. Recent works on automatic
concept extractionmay alleviate the related costs, leading tomore cost-effective con-
cept annotations (Ghorbani et al., 2019; Kazhdan et al., 2020).

8.2 Future Work
Active Learning by Logic Constraints In Chapter 4, we proposed a Knowledge-
drivenActive Learning strategy (KAL) driven by knowledge consistency principles.
The KAL strategy inspects model predictions on unseen data to detect those violat-
ing the logic constraints, extracted from an available domain knowledge by means
of the T-Norm. The performance of a model equipped with such a strategy outper-
forms the standard uncertainty-based approach.

As future work, KAL paves the way for novel online learning methods in which
the model keeps learning only on those points where the knowledge is violated.
Also, the proposed approach could be refined by asking for supervision only for the
predicates involved in the violated rules, reducing further the number of required
labelled data. At last, in case no knowledge is available on a certain problem, a first
idea could be to pair the KAL strategy with the method presented in Chapter 7,
where FOL explanations of network predictions are extracted from training data,
to continuously check whether the knowledge learnt on the training distribution is
also valid on unseen data.

Detecting Adversarial Attacks with Logic Constraints The adversarial example
rejection scheme proposed in Chapter 5 is based on the idea of forcing classifiers to
fulfil the knowledge-related constraints only over the training space regions. Indeed,
the constraints may not be satisfied on the other regions, which may allow detecting
malicious data. This has been experimentally evaluated to be a key ingredient to
profitably build a rejection strategy. Also, we showed that advanced optimization
strategies can fool the defence by injecting, however, a stronger perturbation.

In future work, we will consider intermixing adversarial training with knowl-
edge constraints, to strengthen the violation of the constraints out of the distribution
of the real data. We also plan to design a learnable model that decides whether to
reject or not the examples in function of the fulfilment of each specific logic formula,
going beyond a simple-but-effective threshold on the cumulative constraint loss.
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Devising Explanations with an Auxiliary Network In Chapter 6, we presented
an approach that yields First-Order Logic-based explanations of amulti-label neural
classifier, using another neural network that learns to explain the classifier itself. In
multiple use-cases that include user preferences, the model extracts qualitatively
sound rules that can also partially improve the classifier.

The main drawback of the proposed approach, however, is the important reduc-
tion of the learning capacity of the ψ network due to the pruning procedure in order
to make them interpretable. For this reason, in Chapter 6 they have always been
used to explain another network, and never as a stand-alone classifier. The method
proposed in Chapter 7, is the natural extension of this work since it combines the
explainability of ψ network with the learning capacity of standard FFNNs. In fur-
ther future work, we propose to analyse the effect of learning new constraints with
respect to the robustness of the task functions, as in the case of adversarial attacks.

An Explainable-by-Design Network Finally, in chapter 7, we proposed a novel
end-to-enddifferentiable approach enabling the extraction of logic explanations from
(almost) standard neural networks. Themethod, indeed, relies on an entropy-based
first neural layer that automatically identifies the most relevant concepts. This en-
tropy layer enables the distillation of concise logic explanations from the neural net-
work, and it contributes to a lawful and safer adoption of deep neural networks.

However, the employment of a Concept-bottleneck model slightly decreases the
performance w.r.t. an end-to-end neural network. This is mainly due to the boolean
or fuzzy encoding of the concepts, which limit the representation of the final classes.
In future work, we will study whether employing a distributed encoding of the con-
cepts may reduce this issue. Also, even though logic explanations are richer than
feature importance lists, they are not easy to interpret from a non-expert user. Con-
verting FOL into natural language (following, e.g., (Mpagouli and Hatzilygeroudis,
2007)) could be an interesting way to solve this issue. Finally, a user study compar-
ing different types of explanations could attest which explanations are better from
a human point of view.





Appendix A

Experiment Appendix

A.1 Knowledge-driven Active Learning Appendix

In the following, we report some additional results related to the active learning
approach presented in Chapter 4.

A.2 Experimental details and further results

A.2.1 The Dog-vs-Person Dataset

The DOGvsPERSON dataset is a publicly available dataset that we have created for
showing the potentiality of the proposedmethodon awell-defined object-recognition
problem. It has been extracted from the PASCAL-Part dataset by considering only
the Dog and Person main classes and their corresponding parts. Very specific parts
have been merged into a single class following the approach of Serafini and Garcez
(2016) (e.g., Left_Lower_Arm, Left_Upper_Arm, Right_Lower_Arm,
Right_Upper_Arm → Arm). Differently from the standard PASCAL-Part dataset,
parts in common to different objects were considered as different classes (head →
Dog_Head, Person_Head). Furthermore, we only considered as valid label masks
having areas≥ 1% of the whole image areas. At last, only classes being displayed at
least 100 times have been retained. This led to a total of 20 classeswith 2main classes
(Dog and Person) and 18 parts (Dog_Ear, Dog_Head, Dog_Leg, Dog_Muzzle,
Dog_Neck, Dog_Nose, Dog_Paw, Dog_Tail, Dog_Torso, Person_Arm,
Person_Foot, Person_Hair, Person_Hand, Person_Head, Person_Leg,
Person_Neck, Person_Nose, Person_Torso) displayed in a total of 4304 samples.
Final classes are distributed in the samples as shown in Figure A.1.
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A.2.2 Experimental Details
XOR-like The problem of inferring the XOR-like operation has been already in-
troduced in Section 4.2.1: it is an artificial dataset consisting of 10000 samples x ∈
X ⊂ R2, mapped to the corresponding label y ∈ Y ⊂ [0, 1] as in Eq. 4.2. A Multi-
Layer Perceptron (MLP) f : X → Y is used to solve the task. It is equipped with
a single hidden layer of 100 neurons and Rectified Linear Unit (ReLU) activation,
and a single output neuron with sigmoid activation. It has been trained with an
AdamW optimizer Loshchilov and Hutter (2017) for 100 epochs at each iteration,
with a learning rate η = 10−2. Standard cross-entropy loss has been used to enforce
f to learn the available supervisions. By starting from n = 10 samples, we added
p = 5 labelled samples at each iteration for a total of b = 100 iterations, resulting
in 1010 supervisions at the last iteration. The accuracies reported in Figure 4.3a are
averaged over 10 different seed initializations. As anticipated, in the XOR problem,
the rule employed for the KAL strategy is (x1 ∧¬x2)∨ (¬x1 ∧ x2)⇔ f , with the ad-
dition of an uncertainty-like constraint f ⊕¬ f . In the original PASCAL-Part dataset,
labels are given in the form of segmentation masks. We extracted a bounding box
from each mask by considering the leftmost and highest pixel as the first coordinate
and the rightmost and lowest pixel as the second one.

For more real-life style problems, we have considered five more datasets where
the domain-knowledge is partial or only related to the class functions.

IRIS The IRIS1 dataset is the standard iris-species classification problem. More
precisely, the task consists in classifying c = 3 Iris species (Iris Setosa, Iris Versi-
colour, Iris Virginica) starting from d = 4 features (sepal length, sepal width, petal
length, petal width). To solve the learning problem, an MLP f : Xd → Yc is em-
ployed, with one hidden layer composed of 100 neurons equippedwith ReLu activa-
tion functions. It has been trained again with AdamW optimizer for 1000 epochs at
each iteration and learning rate η = 3 ∗ 10−3. A Binary Cross-Entropy (BCE) loss is
employed to enforce the supervisions. By starting from n = 5 points and by adding
p = 5 labelled samples at each iteration for b = 16 iterations. Also in this case, the
accuracies reported in Figure 4.3a are averaged over 10 different seed initializations.
The knowledge employed in this case consists of 3 very simple rules (one per class)
based on the two predicates Long_Petal and Wide_Petal, with the addition, in this
case, of a mutually exclusive rule on the classes Setosa⊕Versicolour⊕Virginica
and of the uncertainty like constraint for each class.

CUB200 The Caltech-UCSD Birds-200-20112 dataset Wah et al. (2011a) is a col-
lection of 11,788 images of birds. The task consists in the classification of 200 birds

1Iris: https://archive.ics.uci.edu/ml/datasets/iris
2CUB200:http://www.vision.caltech.edu/visipedia/CUB-200-2011

https://archive.ics.uci.edu/ml/datasets/iris
http://www.vision.caltech.edu/visipedia/CUB-200-2011
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Figure A.1: Class distribution in the DOGvsPERSON dataset.

species (e.g., Black_foooted_Albatross) and birds attributes (e.g., White_Throat,
Medium_Size). Attribute annotation, however, is quite noisy. For this reason, at-
tributes are denoised by considering class-level annotations similarly to Koh et al.
(2020). A certain attribute is set as present only if it is also present in at least 50 im-
ages of the same class. Furthermore, we only considered attributes present in at least
10 classes after this refinement. In the end, 108 attributes have been retained, for a
total of c = 308 classes. Images have been resized to a dimension d = 256× 256
pixels. A Resnet50 CNN has been employed to solve the task f : Xd → Yc. Go-
ing into more details, a transfer learning strategy has been employed: the network
f was pretrained on the ImageNet dataset and only the last fully connected layer
has been trained (from scratch) on the CUB200 dataset. Again, an AdamW op-
timizer is considered with a learning rate η = 10−3 for 2000 epochs of training.
Owing to the increased difficulty of the problem, we started with n = 2000 la-
belled samples, and we added p = 100 samples for b = 50 iterations, for a total
of 7000 samples. For diversity sampling, at each iteration, we pick a maximum
of r = 20 samples violating the same rule. Since CUB200 is a multi-label classifi-
cation problem, in Figure 4.3c we reported the F1 score of the model when vary-
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ing the number of supervised training samples The knowledge employed in this
case consider the relation between the classes and their attributes both from the
class to the attributes (e.g., White_Pelican ⇒ Black_Eye ∨ Solid_Belly_Pattern
∨Solid_Wing_Pattern), and the vice-versa (e.g., Striped_Breast_Pattern⇒
Parakeet_Auklet ∨Black_throated_Sparrow ∨. . . ) Furthermore, a disjunction of
the main classes and one on the attributes are considered Again also in this case an
uncertainty-like constraint is considered (e.g., Black_throated_Sparrow⊕
¬Black_throated_Sparrow).

ANIMALS The Animals’ dataset is a collection of 8287 images of animals, taken
from the ImageNet database3. The task consists in the classification of 7main classes
(Albatross, Giraffe, Cheetah, Ostrich, Penguin, Tiger, Zebra) and 26 animal at-
tributes (e.g., Mammal, Fly or Lay_Eggs), for a total of c = 33 classes. The same
network as in the previous case has been employed to solve the learning problem.
Trainingwas carried on for 1000 epochs at each iterationwith standard cross-entropy
loss and the sameoptimizer as in the previous case. We startedwith n = 100 labelled
samples, and we added p = 50 samples each time for b = 98 iterations, for a total of
5000 labelled samples. For diversity sampling, at each iteration, we pick amaximum
of r = 20 samples violating the same rule. Also in this case, we employed the F1
score as a metric in Figure 4.3d. In the case of Animals, the employed knowledge is
a simple collection of 16 FOL formulas, defined by Winston and Horn (1986) as a
benchmark. They involve relationships between animals and their attributes, such
as ∀x Fly(x) ∧ Lay_Eggs(x)⇒ Bird(x) (mostly type b) rules, following the notation
introduced in Section 4.2.2). To this collection of rules, we have also added amutual
exclusive disjunction among the animal classes (only one animal is present in each
image) and a standard disjunction over the animal attributes (each animal hasmore
than one attribute.

DOGvsPERSON This dataset has been already introduced in Appendix A.2.1.
Since we filtered out very small object masks in this dataset, we have been able to
employ aYOLOv3model Redmon andFarhadi (2018) to solve the object-recognition
problem. Themodel has been trained for 100 epochs at each iterationwith anAdamW
optimizer, with a learning rate η = 3 ∗ 10−4 decreasing by 1/3 every 33 epochs. For
both training and evaluation, the Input Over Union (IOU) threshold has been set
to 0.5, the confidence threshold to 0.01 and the Non-Maximum Suppression (NMS)
threshold to 0.5. We started trainingwith n = 1000 labelled examples and by adding
p = 100 samples for b = 10 iterations for a total of 2000 labelled examples. In
Figure 4.3e we reported the growth of the mean Average Precision (mAP) of the
model averaged 10 times with Intersection over Union (IoU) ranging from 0.5 to

3Animals: http://www.image-net.org/

http://www.image-net.org/
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0.95. On DOGvsPERSON , we have a set of rules listing the parts belonging to the
dog or the person, (e.g., Person⇒ Person_Arm ∨ Person_Foot ∨ Person_Hair ∨
Person_Hand ∨ . . .), the opposite rules implying the presence of the main object
given the part (e.g., Person_Foot⇒ Person). Also, we have a disjunction of all the
main classes and a disjunction of all the object-parts, for a total of 22 rules employed.

PASCAL-Part The PASCAL-Part dataset4 is composed of 10103 images of varying
size, depicting objects (Person, Aeroplane, etc.) and object-parts (Head, Muzzle,
Tail, etc.). We preprocessed the dataset following the approach of Serafini and
Garcez (2016), merging specific parts into unique labels. Furthermore, we have
divided original part classes describing very different objects into different classes
(e.g., Body → Bottle_Body, aeroplane_body), leading to c = 66 classes, out of
which 16 are main objects. In this dataset, labels are given in the form of segmenta-
tion masks. A Faster R-CNN network Ren et al. (2016) is trained on the bounding
boxes extracted from eachmask, the leftmost and highest pixels are used for the first
coordinate and the opposites for the second one. Owing to the computational com-
plexity of the task, themodel has been trained for 50 epochs at each iteration, with an
SGD optimizer with momentum and a learning rate schedule with an initial value
η = 3 · 10−3 decreasing by 0.3 every 20 epochs. In this case, we started with n = 500
labelled examples and by adding p = 50 samples for b = 10 iterations for a total of
1000 supervisions. At each iteration, we pick a maximum of r = 5 samples violating
the same rule. In Figure 4.3f the reported mAP is calculated as in the previous case.
On PASCAL-Part, we have a set of rules listing the parts belonging to a certain object,
(e.g., Motorbike ⇒ Wheel ∨Headlight ∨Handlebar ∨ Saddle), and listing all
the objects inwhich a part can be found (e.g., Handlebar⇒ Bicycle∨Motorbike).
Also, we have a disjunction of all the main classes and a disjunction of all the object-
parts, for a total of 62 rules employed.

For all experiments, the results reported in Figure 4.3a corresponds to the model
classification performances over the whole pool of data, i.e., over both the labelled
and the unlabelled samples.

Diversity-based strategies In the uncertain+ strategy, the K-Means clustering has
been set to always search for 8 clusters. Instead, the maximum number of points
selected from the same cluster has been set through a hyperparameters search to
2 in the XOR-like and IRIS problems, while it has been set to 20 in the computer
vision problems. In the kal strategy, instead, a diverse selection is always obtained
by heuristically requiring that a maximum of r = p/2 of the selected samples can
mostly violate the same rule.

4PASCAL-Part: http://roozbehm.info/pascal-parts/pascal-parts.

http://roozbehm.info/pascal-parts/pascal-parts
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A.2.3 Training evolutions on the XOR-like problem
In Figure A.2 we report further snapshots of the training process. They depict for
each of the compared method the model predictions, similarly to what it has been
shown in Figure 4.4, but for different iterations. As it has already been noticed,
uncertain is the only method unable to discover the data distribution in the right-
bottom angle (for which no samples have been drawn during the initial random
sampling) even after 100 iterations. When coupled with diversity-based strategy,
uncertain+ is instead capable to eventually cover all data distribution; however,
after 25 iterations the right-bottom distribution was still wrongly predicted. Also,
it is interesting to notice how the sampling selection performed by the proposed
approach resemble that made by the supervised one. For the complete animations
showing the evolution of the training at each iteration for eachmethod, please check
the public GitHub repository.

A.3 Software
The Python code and the scripts used for the experiments, including parameter

values and documentation, is freely available under Apache 2.0 Public Licence from
a GitHub repository5. The proposed approach requires only a few lines of code to
train amodel following theKAL strategy, aswe sketch in the following code example
(Listing A.1).

5https://github.com/gabrieleciravegna/Constrained-Active-Learning

https://github.com/gabrieleciravegna/Constrained-Active-Learning
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Figure A.2: A visual example on the XOR-like problem, showing how the training
evolves in each of the compared strategy. We depict network predictionswith differ-
ent colour degrees (light colours negative predictions, dark colours positive predic-
tion). In blue, we depict the points selected in previous iterations, in orange those
selected at the current iteration. Black lines at x1 = 0.5 and x2 = 0.5 are reported
only for visualization purposes. From left to right, the situation at the 1st, 25th and
100th iteration.
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1 tot_points = 10000
2 first_points = 10
3 n_points = 5
4 n_iterations = 98
5
6 # Generating data for the xor problem
7 x = np.random.uniform(size=(tot_points , 2))
8 y = np.ndarray.astype (((x[:, 0] > 0.5) & (x[:, 1] < 0.5)) |
9 ((x[:, 1] > 0.5) & (x[:, 0] < 0.5)), float)
10 x_t = torch.as_tensor(x, dtype=torch.float)
11 y_t = torch.as_tensor(y, dtype=torch.float)
12
13 # Defining constraints as product t-norm of the FOL rule expressing

the XOR (x1 & ~x2) | (x2 & ~x1) <=> f
14 def calculate_constraint_loss(x_continue: torch.Tensor , f: torch.

Tensor):
15 discrete_x = steep_sigmoid(x_continue).float()
16 x1 = discrete_x [:, 0]
17 x2 = discrete_x [:, 1]
18 cons_loss1 = f * ((1 - (x1 * (1 - x2))) * (1 - (x2 * (1 - x1))))
19 cons_loss2 = (1 - f) * (1 - ((1 - (x1 * (1 - x2))) * (1 - (x2 *

(1 - x1)))))
20 return cons_loss1 + cons_loss2
21
22 # Constrained Active learning strategy
23 # We take the p samples that most violate the constraints and are

among available idx
24 def cal_selection(not_avail_idx: list , c_loss: torch.Tensor , p: int):
25 c_loss[torch.as_tensor(not_avail_idx)] = -1
26 cal_idx = torch.argsort(c_loss , descending=True).tolist ()[:p]
27 return cal_idx
28
29 # Few epochs with n randomly selected data
30 net = MLP(2, 100)
31 first_idx = np.random.randint(0, x.shape [0] - 1, first_points).tolist

()
32 train_loop(net , x_t , y_t , first_idx)
33
34 preds_t = net(x_t)
35
36 cons_loss = calculate_constraint_loss(x_t , preds_t)
37 available_idx = [*range(tot_points)]
38 used_idx = first_idx
39
40 # Active Learning with KAL strategy for n_iterations
41 for n in range(1, n_iterations + 1):
42 available_idx = list(set(available_idx) - set(used_idx))
43 active_idx = cal_selection(used_idx , cons_loss , n_points)
44 used_idx += active_idx
45
46 # train for 50 epochs the MLP on the used idx
47 train_loop(net , x_t , y_t , used_idx , epochs =50)
48
49 preds_t = net(x_t).squeeze ()
50 accuracy = (preds_t > 0.5).eq(y_t).sum().item() / y_t.shape [0] *

100
51 cons_loss = calculate_constraint_loss(x_t , preds_t)

Listing A.1: KAL code - Example on the XOR problem.
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A.4 Entropy-based Logic Explanation of Neural
Networks Appendix

In the following, we report some additional results related to the XAI method pre-
sented in Chapter 7.

A.4.1 Software

In order to make the proposed approach accessible to the whole community, we
released "PyTorch, Explain!" Barbiero et al. (2021a), a Python package 6 with an ex-
tensive documentation on methods and unit tests. The Python code and the scripts
used for the experiments, including parameter values and documentation, is freely
available under Apache 2.0 Public License from a GitHub repository 7. The code li-
brary is designed with intuitive APIs requiring only a few lines of code to train and
get explanations from the neural network as shown in the following code snippet
A.2 showing how to train an Entropy-based network on the XOR problem.

A.4.2 Extracted Rules

In Table A.1, we report a selection of the rule extracted by each method in all exper-
iments is shown. For all methods, we report only the explanations of the first class
for the first split of the Cross-validation. For the Entropy-based method only, Tables
A.2, A.3, A.4, A.5 resume the explanations of all classes in all experiments.

6https://pypi.org/project/torch_explain/
7https://github.com/pietrobarbiero/pytorch_explain

https://pypi.org/project/torch_explain/
https://github.com/pietrobarbiero/pytorch_explain
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1 import torch_explain as te
2 from torch_explain.logic import test_explanation
3 from torch_explain.logic.nn import explain_class
4
5 # XOR problem with additional features
6 x0 = torch.zeros((4, 100))
7 x = torch.tensor ([
8 [0, 0, 0],
9 [0, 1, 0],
10 [1, 0, 0],
11 [1, 1, 0],
12 ], dtype=torch.float)
13 x = torch.cat([x, x0], dim =1)
14 y = torch.tensor ([0, 1, 1, 0], dtype=torch.long)
15
16 # network architecture
17 layers = [
18 te.nn.EntropyLogicLayer(x.shape[1], 10, n_classes =2),
19 torch.nn.LeakyReLU (),
20 te.nn.LinearIndependent (10, 10, n_classes =2),
21 torch.nn.LeakyReLU (),
22 te.nn.LinearIndependent (10, 1, n_classes =2, top=True)
23 ]
24 model = torch.nn.Sequential (* layers)
25
26 # train loop
27 optimizer = torch.optim.AdamW(model.parameters (), lr =0.01)
28 loss_form = torch.nn.CrossEntropyLoss ()
29 model.train()
30 for epoch in range (1001):
31 optimizer.zero_grad ()
32 y_pred = model(x)
33 loss = loss_form(y_pred , y) + \
34 0.00001 * te.nn.functional.entropy_logic_loss(model)
35 loss.backward ()
36 optimizer.step()
37
38 # logic explanations
39 y1h = one_hot(y)
40 _, class_explanations , _ = explain_class(model , x, y1h , x, y1h)

Listing A.2: Example on how to use the APIs to implement the proposed
approach on the simple XOR problem.
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Table A.1: Comparison of the formulas obtained in the first run of each experiment
for all methods. Only the formula explaining the first class has been reported. El-
lipses are used to truncate overly long formulas.

Dataset Method Formulas

MIMIC-II Entropy non_recover↔ ¬liver_flg ∧ ¬stroke_flg ∧ ¬mal_flg

DTree
non_recover↔ (age_high < 0.5 ∧mal_flg < 0.5 ∧ stroke_flg < 0.5 ∧
age_normal < 0.5 ∧ iv_day_1_normal < 0.5) ∨ (age_high < 0.5 ∧mal_flg < 0.5 ∧
stroke_flg < 0.5 ∧ age_normal < 0.5 ∧ iv_day_1_normal > 0.5) ∨ (age_high < 0.5 ∧ ...

BRL
non_recover↔ (age_low ∧ sofa_first_low ∧ ¬(mal_flg ∧ ¬weight_first_normal)) ∨
(age_high ∧ ¬service_num_normal ∧ ¬(age_low ∧ sofa_first_low) ∧ ¬(chf_flg ∧
¬day_icu_intime_num_high) ∧ ¬(mal_flg ∧ ¬weight_first_normal) ∧ ¬(stroke_flg ∧ ...

ψ Net
non_recover↔ (iv_day_1_normal ∧ ¬age_high ∧
¬hour_icu_intime_normal ∧ ¬sofa_first_normal) ∨ (mal_flg ∧
¬age_high ∧ ¬hour_icu_intime_normal ∧ ¬sofa_first_normal) ∨ ...

V-Dem Entropy non_electoral_democracy↔ ¬v2xel_frefair ∨ ¬v2x_elecoff ∨ ¬v2x_cspart ∨
¬v2xeg_eqaccess ∨ ¬v2xeg_eqdr

DTree
non_electoral_democracy↔ (v2xel_frefair < 0.5 ∧ v2xdl_delib < 0.5 ∧
v2x_frassoc_thick < 0.5) ∨ (v2xel_frefair < 0.5 ∧ v2xdl_delib < 0.5 ∧
v2x_frassoc_thick > 0.5 ∧ v2x_freexp_altinf < 0.5 ∧ v2xeg_eqprotec < 0.5) ∨ ...

BRL non_electoral_democracy↔ ¬v2x_cspart ∨ ¬v2x_elecoff ∨ ¬v2x_frassoc_thick ∨
¬v2x_freexp_altinf ∨ ¬v2xcl_rol ∨ (¬v2x_mpi ∧ ¬v2xel_frefair)

ψ Net
non_electoral_democracy↔ ¬v2xeg_eqaccess ∨ (v2x_egal ∧ ¬v2x_frassoc_thick) ∨
(v2xeg_eqdr ∧ ¬v2x_egal) ∨ (v2xel_frefair ∧ ¬v2x_frassoc_thick) ∨
(¬v2x_cspart ∧ ¬v2x_suffr) ∨ (¬v2x_frassoc_thick ∧ ¬v2x_suffr) ∨ ...

MNIST Entropy
even↔ (zero ∧ ¬one ∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬five ∧
¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (two ∧ ¬zero ∧ ¬one ∧ ¬three ∧
¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (four ∧ ¬zero ∧ ...

DTree
even↔ (one < 0.54 ∧ nine < 1.97·10−5 ∧ three < 0.00 ∧ five < 0.09 ∧ seven < 0.20) ∨
(one < 0.54 ∧ nine < 1.97·10−5 ∧ three < 0.00 ∧ five > 0.09 ∧ two > 0.97) ∨
(one < 0.54 ∧ nine < 1.97·10−5 ∧ three > 0.00 ∧ two < 0.99 ∧ eight > 1.00) ∨ ...

BRL
even↔ (two ∧ ¬one ∧ ¬seven ∧ ¬three ∧ ¬(seven ∧ ¬two)) ∨
(four ∧ ¬five ∧ ¬nine ∧ ¬seven ∧ ¬three ∧ ¬(seven ∧ ¬two) ∧ ¬(two ∧
¬one)) ∨ (four ∧ ¬five ∧ ¬seven ∧ ¬three ∧ ¬(four ∧ ¬nine) ∧ ¬(seven ∧ ...

ψ Net
even↔ (four ∧ nine ∧ six ∧ three ∧ zero ∧ ¬eight ∧ ¬one ∧
¬seven) ∨ (four ∧ nine ∧ six ∧ two ∧ zero ∧ ¬eight ∧ ¬one ∧ ¬seven) ∨
(eight ∧ six ∧ ¬four ∧ ¬nine ∧ ¬seven ∧ ¬three ∧ ¬two) ∨ (eight ∧ six ∧...

CUB Entropy
black_footed_albatross↔ has_bill_length_about_the_same_as_head ∧
has_wing_pattern_solid ∧ ¬has_upper_tail_color_grey ∧ ¬has_belly_color_white
∧ ¬has_wing_shape_roundedwings ∧ ¬has_bill_color_black

DTree
black_footed_albatross↔ (has_back_pattern_striped < 0.46 ∧
has_back_color_buff < 0.69 ∧ has_upper_tail_color_white < 0.59 ∧
has_under_tail_color_buff < 0.82 ∧ has_shape_perchinglike < 0.66 ∧ ...

BRL
black_footed_albatross↔ (has_back_pattern_striped ∧
has_belly_color_black ∧ has_bill_shape_hooked_seabird ∧
¬has_belly_color_white) ∨ (has_back_pattern_striped ∧ ...

ψ Net
black_footed_albatross↔ (has_bill_shape_hooked_seabird ∧
¬has_breast_color_white ∧ ¬has_size_small_5__9_in ∧
¬has_wing_color_grey) ∨ (has_bill_shape_hooked_seabird ∧ ...
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Table A.2: Formulas extracted from the MIMIC-II dataset.

Formulas

non_recover↔ ¬liver_flg ∧ ¬stroke_flg ∧ ¬mal_flg

recover↔mal_flg ∨ (age_HIGH ∧ ¬iv_day_1_NORMAL)

Table A.3: Formulas extracted from the V-Dem dataset.

Formulas

non_electoral_democracy ↔ ¬v2xel_frefair ∨ ¬v2x_elecoff ∨ ¬v2x_cspart ∨ ¬v2xeg_eqaccess ∨
¬v2xeg_eqdr

electoral_democracy↔ v2xel_frefair ∧ v2x_elecoff ∧ v2x_cspart

Table A.4: Formulas extracted from the MNIST dataset.

Formulas

even↔ (zero ∧ ¬one ∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (two
∧ ¬zero ∧ ¬one ∧ ¬three ∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (four ∧ ¬zero ∧
¬one ∧ ¬two ∧ ¬three ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (six ∧ ¬zero ∧ ¬one ∧ ¬two
∧ ¬three ∧ ¬four ∧ ¬five ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (eight ∧ ¬zero ∧ ¬one ∧ ¬two ∧ ¬three
∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬nine)

odd↔ (one ∧ ¬zero ∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (three
∧ ¬zero ∧ ¬one ∧ ¬two ∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (five ∧ ¬zero ∧ ¬one
∧ ¬two ∧ ¬three ∧ ¬four ∧ ¬six ∧ ¬seven ∧ ¬eight ∧ ¬nine) ∨ (seven ∧ ¬zero ∧ ¬one ∧ ¬two ∧
¬three ∧ ¬four ∧ ¬five ∧ ¬six ∧ ¬eight ∧ ¬nine) ∨ (nine ∧ ¬zero ∧ ¬one ∧ ¬two ∧ ¬three ∧ ¬four
∧ ¬five ∧ ¬six ∧ ¬seven ∧ ¬eight)

Table A.5: Formulas extracted from the CUB dataset. For the sake of brevity only
the rules extracted for the first three classes have been reported.

Formulas

Black_footed_Albatross ↔ has_bill_length_about_the_same_as_head ∧ has_wing_pattern_solid
∧ ¬has_upper_tail_color_grey ∧ ¬has_belly_color_white ∧ ¬has_wing_shape_roundedwings ∧
¬has_bill_color_black

Laysan_Albatross↔ has_crown_color_white ∧ has_wing_pattern_solid ∧ ¬has_under_tail_color_-
white

Sooty_Albatross ↔ has_upper_tail_color_grey ∧ has_size_medium_9__16_in ∧ has_bill_color_-
black ∧

. . .
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