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Abstract—Clustering in high dimensional spaces is a very 

difficult task. Dealing with DNA microarrays is even more 

difficult because gene subsets are coregulated and coexpressed 

only under specific conditions. Biclusterng addresses the problem 

of finding such submanifolds by exploiting both gene and 

condition (tissue) clustering. The paper proposes a self-

organizing neural network, GH EXIN, which builds a 

hierarchical tree by adapting its architecture to data. It is 

integrated in a framework in which gene and tissue clustering are 

alternated and controlled by the quality of the bicluster. 

Examples of the approach and a biological validation of results 

are also given.   

Keytopics — Bioinformatics and Big Data, Gene Pattern 

Discovery and Identification, Biological Data Mining and Knowledge 

Discovery, Software Tools and Methods for Computational Biology 

and Bioinformatics, Microarrays 
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I.  BIOLOGICAL INTRODUCTION 

Cancer is a heterogeneous disease caused by the sequential 
accumulation of somatic and stochastic genetic alterations. 
Each cancer is characterized by a unique set of mutations. 
Such set of alterations impact both the prognosis and the 
sensitivity to treatments. Therefore, personalized therapies are 
required to increase the reliability of prognostic predictions 
and the efficacy of treatments [1]. In recent years, powerful 
tools have been developed for biomarker discovery and drug 
development in oncology, which rely on a technology called 
Patient-Derived Xenografts (PDXs) [2–4]. PDXs are obtained 
by propagating surgically derived tumor specimens in 
immunocompromised mice. Through this, cancer cells remain 
viable ex-vivo and retain the typical characteristics of different 
tumors from different patients. Building on these premises, 
PDXs are extensively exploited to conduct large-scale 
preclinical analyses for drawing statistically robust 
correlations between genetic or functional traits and sensitivity 
to anti-cancer drugs. In this context, we have been collecting 
metastatic colorectal cancer (mCRC) for the last ten years, and 
we generated the largest PDX biobank available worldwide in 
an academic environment. Such resource has been widely 
characterized at the molecular level [5]-[7] and has been 
leveraged to reliably anticipate clinical findings [8] with major 

therapeutic implications. Here it is proposed to exploit 
available transcriptional data obtained from mCRC PDXs 
through the Illumina bead array technology [9] to identify and 
validate novel predictive algorithms to instruct therapeutic 
decisions. 

II. INTRODUCTION 

The dataset stemming from the DNA microarrays is 
composed of the expression of 15396 genes in 146 mCRC 
murine tissues. Data are preprocessed by the logarithmic 
normalization and the z-score technique (column statistical 
scaling) in order to work on the same range and amplifying 
small distances.  

For each tissue two additional quantities are available: a 
discrete variable describing the cancer response to drugs, as 
three classes: regressive, stable and worsening cancer; a 
second continuous variable representing the cancer response to 
drugs after three weeks, estimated as the difference in size of 
the tumor. 

In sec.III, the computational approach for biclustering is 
detailed. It is based on the GH EXIN neural network, which is 
used in pairs for the gene and tissue selection. Sec.IV analyzes 
the results and sec.V gives an example of biological 
validation. Sec. VI yields the conclusions. 

III. COMPUTATIONAL APPROACH 

1. Biclustering 

Common requirements in analyzing gene data are the 

grouping of genes according to their expression under multiple 

conditions (tissues) and the grouping of conditions based on 

the expression of a number of genes. These can be achieved 

by using clustering techniques. However, many activation 

patterns are common to a group of genes only under specific 

experimental conditions. Indeed, subsets of genes are 

coregulated and coexpressed only under certain experimental 

conditions, but behave almost independently under other 

conditions. Finding these local expression patterns is the goal 

of biclustering [10] - [11], also known as two-way clustering 

or manifold (subspace) clustering, and is the key to uncover 

unknown genetic pathways. Basically, clustering can be 
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applied to either the rows or the columns of the data matrix, 

separately. Biclustering performs clustering in both 

dimensions, simultaneously. In this work it is achieved by 

alternating both row and column clustering on projected data 

derived from the previous steps. It searches for biclusters with 

constant values, with constant values on rows or columns and 

with coherent values, respectively. In [11] it is proved that the 

rank of the corresponding submatrices is less than or equal to 

three in the noiseless case. Hence, the numerical rank can be 

used as a figure of merit of the quality of the bicluster. 

Another index is the mean squared residue Hcc introduced by 

Cheng and Church [12], which takes in account the noise in 

data. It is expressed as: 

 

where Nc represents the total number of columns of the matrix, 

Nr represents the total number of rows and ri,j is the residue 

which is calculated as: 

 

The terms ai,j are the elements of the microarray matrix (rows 

and columns represent genes and tissues, respectively). C and 

R are the number of columns and of rows of the bicluster at 

hand, respectively. The second term is the average value along 

the ith row, the third term is the average value along the jth 

column while the last one is the average value within the 

whole bicluster. 

This index decreases as the values in the bicluster tends to 

be constant, differing for a constant on the rows or differing of 

a constant on the columns.  It goes to zero for the trivial 1x1 

bicluster. This fact implies additional controls on the biclusters 

in order to avoid this drawback. 
 

2. Neural Framework  

In order to detect biclusters in the gene expression matrix, 
gene and tissue clustering are alternated. At first a hierarchical 
clustering is achieved on genes in the tissue space, because it 
is the lowest dimensional space (in order to avoid the curse of 
dimensionality, which cannot be avoided if working on the 
gene space). Then another hierarchical clustering is performed 
on the tissues in the space of the genes associated to the best 
leaves produced in the first step (reduced gene space, as an 
orthogonal projection from the original space). The best leaves 
of the second step reduce the tissue space for the genes 
selected after the first step. This corresponds to another 
orthogonal projection.  

Resuming, each cluster (leave) decreases the 
dimensionality of the problem for the subsequent clustering, 
whose leaves yield a further dimensionality reduction. 
Considering that clustering implies a feature selection, this can 
be viewed as an orthogonal projection of the vectors. Indeed, 
selecting only some components results in setting the other 
components to zero. Considering that the basis is canonical, it 

corresponds to an orthogonal projection into the reduced 
subspace (cluster). 

These two steps, which are illustrated in fig.1, are repeated 
(alternated projections) until bicluster candidates are identified 
(see fig.2). There are several ways of estimating a hierarchical 
tree. Here a novel neural network (GH EXIN) has been 
devised ad hoc. It will be explained in the next section. The 
growth of the tree is controlled by the index Hcc. However, as 
seen before, the index tends to zero as the cardinality of the 
leaves decreases. In order to avoid trivial biclusters, before 
each clustering step, a check on the minimum number of data 
in the leaf (Cmin) is performed both in the tissue space and in 
the gene space (additional check).  

The choice of the quality index depends on the goal of the 
analysis. Other indices can be added (e.g. an index about the 
shape of the cluster) or replace Hcc. However, this choice 
remains basically heuristic and is an open problem. 

 

Fig.1: Neural biclustering pseudocode 

 

 

Fig. 2: Neural biclustering scheme: first two steps 



 
3. The GH EXIN neural network 

 The Growing Hierarchical (GH) EXIN neural network is 
the hierarchical variant of the quantization layer of the GCCA 
neural network [13]. Each neuron is equipped with a weight 
vector whose dimensionality is the same of the input space. 
The architecture is data-driven, in the sense that the number of 
neurons is determined by the training set by means of node 
creation or pruning. The weight computation (training) is 
based on the Soft Competitive Learning (SCL) paradigm, 
which requires a winner-take-most strategy: at each iteration, 
the winner and its neighbors change their weights. This law 
requires the determination of a topology (neighbors) which is 
achieved by the Competitive Hebbian Learning (CHL) rule, 
which is used for creating the neuron connections. For the 
determination of new neurons, thresholds are attached to 
neurons. 

 GH EXIN builds a hierarchical (divisive) tree whose 
vertices correspond to its neurons. At this aim, for each father 
neuron, the corresponding Voronoi set (set of data represented 
by the neuron) is estimated and another neural network is 
trained on this reduced dataset. Its neurons are the sons of the 
father neuron and determine a subdivision of the father’s 
Voronoi set. 

 For each leaf, a dedicated neural network is trained. Its 
initial structure is a seed, i.e. a pair of neurons, which are 
linked by an edge, whose age (attached scalar variable) is set 
to zero. The initial weight vectors and neuron thresholds are 
given by heuristics. 

For each epoch (presentation in a random way of the whole 
training set to the network) the basic iteration starts at the 
presentation of a new data, say x0. All neurons are ranked 
according to the Euclidean distances between x0 and their 
weights. The neuron with the shortest distance ( ) is the 
winner w1. If its distance is higher than the scalar threshold of 
the neuron (novelty test), a new neuron is created. Otherwise, 
there is a weight adaptation and a linking phase. 

Neuron creation. The weight vector is given by x0. The 
new neuron threshold is . It is a lonely neuron in the sense 
that no edges are created. 

Adaptation, linking and edge pruning. If a new neuron 
is not created, it is checked if the winner, whose weight is x-1, 
and the second winner, whose weight is x-2, are connected by a 
edge. If there is no edge, these two neurons are linked by an 
edge (whose age is set to zero) and the same age procedure as 
in [13] is used as follows. The age of all other links emanating 
from the winner is incremented by one; if a link age is greater 
than the agemax scalar parameter, it is eliminated. Weights are 
adapted by using SCL [13]:  x-1 and its direct topological 
neighbors (there is only one edge between the neuron and the 
neighbor) are moved towards x0 by fractions α1 and αn 
(learning rates), respectively, of the vector connecting the 
weight vector to the datum: 

 

 

  

 The thresholds of the winner and second winner are 
recomputed as the distance to their farthest neighbor. If a 
lonely neuron wins, or is a second winner, CHL is used for a 
new edge connecting it.  

Neuron pruning and Voronoi re-estimation. At the end 
of each epoch, if a neuron remains unconnected (no 
neighbors), two cases are possible. 

• If it is not lonely, it is pruned. 

• If not, it is pruned, but the associated datum is analyzed, 
by a new ranking of all the neurons of the network (i.e. 
also the neurons of the neural networks of the other leaves 
of the hierarchical tree). 

If it is outside the threshold of the winner (i.e. the hypersphere 
whose center is the winner weight and radius the associated 
threshold), it is labelled as outlier and pruned. If, instead, it is 
inside, it is assigned to the winner’s Voronoi set. If this winner 
belongs to the network of another leaf, it is re-allocated to the 
associated Voronoi set. 

 Stop criterion. Each leaf neural network is controlled by 
Hcc, because it is searching for biclusters (it is estimated by 
using the data of each Voronoi set). In particular, the training 
epochs are stopped when the estimated value of this parameter 
falls below a percentage of the value for the father leaf. 

 
Fig.3: GH EXIN pseudocode 

 



At the end of each training, Voronoi sets are estimated for 
each neuron. They are used as training set for the new leaves 
(new neural networks). This technique builds a vertical growth 
of the tree. The horizontal growth is generated by the neurons 
of each network. However, a simultaneous vertical and 
horizontal growth is possible. At the end of a training, the 
trees created by the neuron edges are checked. If subtrees 
(connected trees) are detected, each cluster is considered as a 
father, by estimating the centroid of the cluster (vertical 
growth) and the associated neurons as the corresponding sons 
(horizontal growth). 

The whole neural approach requires two groups of user 
dependent parameters: 

1. The GH EXIN parameters, i.e. the two learning rates 
and the scalar agemax for edge pruning; the two rates 
are constant values for SCL. However, they can be 
made decreasing in time and automatically scaled by 
using the Voronoi cardinality (conscience). The last 
one has to be lowered if more edges (and neurons) 
have to be pruned. In a sense, it controls, in an indirect 
way, the leaf cardinality. 

2. The biclustering quality indices, i.e. the percentage of 
Hcc, its maximum value and the minimum cardinality 
of leaves. They control the search and require a deep 
analysis (out of the scope of the paper). 

IV. ANALYSIS OF THE RESULTS 

Each time the neural biclustering algorithm runs the GH 

EXIN, a tree is built, either in the gene or in the tissue space, 

as it is shown in fig.4, for the gene clustering in the higher-

level leaves. The validity of the leaves is tested and possibly 

GH EXIN is called again in the corresponding projected space 

of each leaf. This procedure is recursively repeated until the 

cardinality of the tissues or the cardinality of the genes of a 

leaf is under the minimum threshold. At this point the leaf is 

saved and the algorithm continues by processing the other 

leaves. The order in which leaves are processed depend on 

their ranking, based on their Hcc value 

Low values of Hcc associated to an acceptable cardinality do 

not imply a final bicluster has been detected, above all for the 

presence of high noise in data. An additional analysis is 

required, which depends on several considerations. Here, the 

final leaves are studied from two different points of view: 

parallel coordinates and singular value decomposition (SVD), 

for the analysis of the numerical rank of the submatrices 

associated to the biclusters. 

Parallel coordinates are a powerful way of visualizing 

high-dimensional data. This kind of data visualization was 

invented during the 19th century and sharpened by Wegman in 

1990 [16]. A point in n-dimensional space is represented as a 

polyline with vertices on equally spaced parallel axes each of 

one representing a feature; the position of the vertex on the i-

th axis corresponds to the i-th coordinate of the point. In this 

way, all axes can be visualized in the same plot, unlike the 

classical orthogonal framework which can be visualized only 

for at most three coordinates. Coherent groups of polylines 

represent correlated variables, i.e. clusters.  

 
Fig.4: GH EXIN hierarchical tree (first levels) 

 

Fig. 5 shows this kind of plot by visualizing genes as 

samples (colored polylines) and murine tissues as features 

(parallel vertical axes) on a leaf of GH EXIN in the gene 

space, whose characteristics are shown in the top line of the 

figure.. Blue polylines represent all genes available in the 

dataset, while red polylines stand for genes collected in the 

19th gene cluster. The red grouping of polylines show 

coherency, which confirms the quality of gene clustering. A 

similar validation analysis is used after the GH EXIN 

clustering in the tissue space which is run after projecting the 

Voronoi set of the 19th gene leaf (cluster).  

 

 
Fig.5: Parallel coordinates of a cluster of gene 

 

Figs. 6 and 7 show two parallel coordinate plots in which 

vertical axes (here visualized as the corresponding abscissas in 

the coordinate axis) represent the 41 genes belonging to 

cluster 19, while polylines stand for murine tissues. In 

particular, blue polylines represent all the tissues and red ones 

the tissues grouped in the bicluster. The difference between 

the two images consists in a different setup of a parameter of 

the algorithm, Cmin2, which regulates the maximum number 

of tissues accepted in a bicluster. In the first case a higher 

value of the parameter is set, in order to find a bigger 

bicluster. However, both pictures show an excellent bicluster 

coherency revealing the goodness of GH EXIN as a tool for 

biclustering.  



The biclusters shown in both figures are coherent additive 

values biclusters in which the values vary both according to 

the rows (the axes in this case) and according to the columns 

(the polylines). This can be inferred from the pictures, because 

a difference is present between two gene expressions on 

different polylines but along the same axes, but this difference 

remains stable along the polyline. The same is also valid 

between two gene expressions on different axes of the same 

polylines. 

 

 
Fig. 6: Parallel coordinates of a bicluster 

 

 
Fig. 7: Parallel coordinates of a smaller bicluster 

 

This visualization tool can be considered as a first validation 

of the quality of the leaves. A second technique, based on the 

theory in [11], can be performed analyzing the singular values 

of the resulting bicluster matrices. According to the theory, in 

case of noiseless data, biclusters with constant values and with 

constant values on rows or columns have rank one, while 

biclusters with coherent values have rank three. The difficulty 

raises in case of noise, because there are no more zero singular 

values. Indeed, the size of the last values increases with the 

level of noise. It then becomes a problem in numerical rank 

estimation. The SVD of the matrix of the bicluster in fig.6 has 

the first two singular values (42.5 and 4.5) well separated from 

the other ones (the third one is equal to 1.5), considering also 

that the matrix has been scaled in the preprocessing stage). 

This result represents the sum of two biclusters of rank one, 

certainly, considering the associated parallel plot, two constant 

row biclusters. Indeed, fig. 6 shows two clusters (coherent 

polylines, whose thickness depends on noise level).  Hence, it 

can be deduced that a further clustering (and projection) is 

needed in order to have a single bicluster. Instead, the SVD of 

the matrix of the bicluster in fig.7 (see fig.8) has only the first 

singular value (32.5) well separated from the remaining ones 

(the second one is equal to 1.1). As also confirmed in fig.7, it 

represents a constant row bicluster. This result does not 

require a further analysis. 

 

 
Fig. 8: Singular values for leaf 14 

 

 

TABLE I.  BEST LEAVES IN TERMS OF BICLUSTERING QUALITY 

In order to better analyze genetic expressions common for 

different patients, the dataset has been divided into three parts 

(classes). This division follows the murine tissues response to 

anti-cancer drugs. At the end. three datasets have been 



derived, one for the mice which started recovering after three 

weeks of treatments, a second one for the mice which had a 

stable situation and at last one also for the case in which drugs 

had no effect and the cancer kept growing.  

 

This type of division has been maintained also in the 

summary table 1, where it has been reported the information 

about the cardinality of the biclusters, both in the tissue and in 

the gene space and the value of the Hcc index. In the table 

there are only the best biclusters for each class, ranked 

according to the class and the Hcc index.  

V. BIOLOGICAL VALIDATION 

As last step, as a biological feedback (validation), the 

scientific relevance of the selected genes has been taken in 

account. Among all the biclusters found, the one that grouped 

the most interesting genes in the cancer field has been the one 

that also had the lowest Hcc index value. Indeed, the 7 genes 

present in the bicluster are the following: 

 

• "CSAG1", "CSAG3", "CSAG3A", which belong to the 

same CSAG family. These genes are well known in 

literature as associated with chondrosarcomas, but they 

are also present in normal tissues. Furthermore, CSAG3 

and CSAG3A are gene coding the “Chondrosarcoma-

associated gene 2/3 protein” which is a “drug-resistance 

related protein, its expression is associated with the 

chemotherapy resistant and neoplastic phenotype. May 

also be linked to the malignant phenotype.” [14]  

• "MAGEA2”, "MAGEA3", "MAGEA12”, "MAGEA6", 

which belong to the same MAGEA family. These genes 

are melanoma antigens which “Reduce p53/TP53 

transactivation function” and also "Represses p73/TP73 

activity”. [15] Both p53 and p73 are tumor suppressor 

proteins which regulate cell cycle and induct apoptosis. 

 

The relevant issue is that these gene families are not only 

important by themselves, but this analysis suggests that, at 

least in the observed condition, they may also coregulate each 

other.  It is also important to notice that this bicluster 

phenomenon has been observed within the tissues belonging 

to the third class, the one where tissues unable to respond to 

drugs are present. 

VI. CONCLUSION 

GH EXIN is a powerful tool which is basically a vector 

quantizer whose architecture depends on a data-driven 

threshold. It has very few user dependent parameters and 

creates a hierarchical tree whose leaves depend on the choice 

of the quality index, as a stopping criterion. The choice of Hcc 

determines its use for searching biclusters. Two GH EXIN 

networks have been coupled in order to work on projected 

subspaces of the original microarray matrix. The outputs of 

this approach are not necessarily the final biclusters, mainly 

because of noise, but also in case of overlapping subsets. 

Hence, a post-processing is needed for refinement: it can be a 

visualization analysis, e.g. parallel coordinate, or an additional 

biclustering, or a linear or nonlinear projection [17], [18]. Also 

the algebraic study of the numerical rank of the subarrays can 

help in extracting more knowledge from data. Here, a 

biological validation has been presented for illustrating the 

quality of the results. 

Future work will deal with a neural pattern recognition 

step for the classification of bicluster genes according to their 

impact on the cancer growth, and a modeling of the 

corresponding process. 
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