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CaBuAr: California Burned Areas dataset for
delineation

Daniele Rege Cambrin, Luca Colomba, Paolo Garza

Abstract—Forest wildfires represent one of the catastrophic
events that, over the last decades, caused huge environmental
and humanitarian damage. In addition to a significant amount
of carbon dioxide emission, they are a source of risk to so-
ciety in both short-term (e.g., temporary city evacuation due
to fire) and long-term (e.g., higher risks of landslides) cases.
Consequently, the availability of tools to support local authorities
in automatically identifying burned areas plays an important
role in the continuous monitoring requirement to alleviate the
aftereffects of such catastrophic events. The great availability
of satellite acquisitions coupled with computer vision techniques
represents an important step in developing such tools. This paper
introduces a novel open dataset that tackles the burned area
delineation problem, a binary segmentation problem applied to
satellite imagery. The presented resource consists of pre- and
post-fire Sentinel-2 L2A acquisitions of California forest fires that
took place from 2015 to 2022. Raster annotations were generated
from the data released by California’s Department of Forestry
and Fire Protection. Moreover, in conjunction with the dataset,
we release three different baselines based on spectral indexes
analyses, SegFormer, and U-Net models.

Index Terms—Earth Observation, Deep Learning, Burned
Area Delineation, Semantic segmentation

I. INTRODUCTION

The Earth Observation (EO) field has greatly increased the
number of applications in the last decades thanks to the greater
data availability, storage capacity, and computational power
of modern systems. In fact, leveraging data acquired by Sen-
tinel [1], Landsat [2], and MODIS [3] missions as an example,
it is possible to retrieve information at a continental scale in a
short amount of time. This, in conjunction with the develop-
ment of modern methodologies in the field of machine learning
and deep learning, represents an extremely interesting area
of research for scientists and authorities from different fields,
such as governments and first responders involved in disaster
response and disaster recovery missions. Phenomena such as
climate change and extreme climate events have a tremendous
societal, economic, and environmental impact, also leading
to humanitarian and environmental losses (e.g., higher risk
of landslide due to a forest fire). Indeed, leveraging EO and
modern deep learning methodologies can provide useful tools
in the area of disaster management and disaster recovery.
Within the research community, numerous previous works
proved the effectiveness of computer vision architectures in
the field of disaster response, such as flood delineation [4],
change detection [5], [6] and burned area delineation [7]–[9].
This paper fits in the last mentioned context. Specifically, we
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release a dataset to tackle the burned area delineation problem,
i.e., a binary image segmentation problem that aims to identify
areas damaged by a forest wildfire. Tackling such a problem
with modern methodologies requires great data availability.
However, the time and cost needed to produce high-quality
annotations severely limit the ability to investigate ad-hoc
solutions in the EO field. For these reasons, we propose a
new dataset related to forest fires in California, collecting
data from the Sentinel-2 mission [10]. The dataset is publicly
available to the research community at https://huggingface.co/
datasets/DarthReca/california burned areas. Compared to the
few other datasets about wildfires [11], [12], our dataset covers
a larger area and spans more years.

Ground truth masks for the task of binary image segmen-
tation were generated starting from the public vector data
provided by California’s Department of Forestry and Fire
Protection [13] and rasterized. Satellite acquisitions, i.e., the
raw input data, were instead collected from the Sentinel-2
L2A mission through Copernicus Open Access Hub. More
precisely, we collected and released both pre-fire and post-fire
information associated with the same area of interest.

The contributions of this paper can be summarized as
follows:

• A novel image segmentation dataset tailored to burned
area delineation consisting of Sentinel-2 pre- and post-
fire acquisitions. We provided more samples than existing
datasets to facilitate the training of (large) deep learning
models.

• Three different baselines were evaluated on the pro-
posed dataset: one consisting of the evaluation of several
burned area indexes and the Otsu’s automatic threshold-
ing method [14], one based on the SegFormer model [15],
and one based on the U-Net model [16].

The paper is structured as follows. Section II introduces the
related works; Section III introduces the collected dataset and
the preprocessing steps performed, whereas Section IV and
Section V formally introduce the task and the experimental
settings and results. Finally, Section VI concludes the paper.

II. RELATED WORKS

Before the development of deep learning-based methodolo-
gies, domain experts based their analyses on satellite imagery
leveraging spectral index computation and evaluation. Con-
sidering the SAR context, thresholding-based techniques have
been adopted to distinguish between flooded and unflooded
areas [17]. Different analyses have been performed on various
tasks concerning several spectral indexes such as in cloud
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detection (cloud mask) [18], water presence (WP, NDWI) [19],
[20] and vegetation analysis (NDVI) [21].

Considering the burned area delineation problem, domain
experts have developed several indexes: NBR, NBR2, BAI,
and BAIS2 [19]. They are computed using different spectral
bands to generate an index highlighting the affected areas
of interest. Such techniques are often coupled with thresh-
olding methodologies: either fixed or manually calibrated
threshold values are chosen [22], or automatic thresholding
algorithms are used [23]. Additional studies evaluate index-
based techniques with additional in-situ information, namely
the Composite Burned Area Index (CBI), which indeed pro-
vides insightful information but does not represent a scalable
solution because in-situ data are incredibly costly to collect.
Furthermore, studies confirmed that finding a unique threshold
that is region- and vegetation-independent is difficult [24].
These methods assume that burned and unburned areas are
linearly separable, which is usually untrue.

More recently, researchers started adopting supervised
learning techniques to solve several tasks in computer vision
and EO. More precisely, CNN-based models proved their
effectiveness in image classification and segmentation tasks,
achieving state-of-the-art performances compared to index-
based methodologies [25], [26]. Deep models proved their
effectiveness in similar tasks covering wildfire detection [27]
and spreading [28], too. The main drawback is the need
for a significant amount of labeled data, possibly covering
heterogeneous regions with different morphological character-
istics, to learn better representations. Over the years, many
of the proposed frameworks limit their analyses to a few
samples collected from a limited number of countries or
locations [29]. In a few cases, larger datasets were adopted to
tackle the semantic segmentation problem, without disclosing
the dataset [30].

In the EO domain, different public datasets are available
to the research community tackling different problems, such
as flood delineation [17], [31], deforestation [32], wild ar-
eas monitoring [33], sustainable development goal monitor-
ing [34], crop classification and segmentation [35] but, to
the best of our knowledge, only two public datasets are
available for the burned area delineation problem covering
some countries in Europe [11] and Indonesia [12]. Our dataset
collects more data than the formers, considering more wildfires
and a larger area. It comprises pre- and post-fire Sentinel-2
L2A data about California forest fires.

Table I shows a comparison between the three datasets. The
proposed dataset consists of the highest number of considered
wildfires (340), globally covering the largest amount of burned
areas (28 million pixels covering 11.000 km2) and a higher
total covered surface (450000 km2). Figure 1a shows the
covered areas. Even though the proposed dataset has the
greatest amount of burned surface, it achieves the lowest
percentage of burned area compared to the others. However,
the CaBuAr dataset provides the highest number of training
samples in supervised (supervised learning in binary segmen-
tation, highest amount of burned areas) and unsupervised cases
(self-supervised learning, highest area covered). It is notorious
that more curated data provide better machine learning models,

124 122 120 118 116 114
Longitude

32

34

36

38

40

42

La
tit

ud
e

California
Satellite tiles

(a) Tiles map

124 122 120 118 116 114
Longitude

34

36

38

40

42

La
tit

ud
e

(b) Wilfires map

Fig. 1: In (a) is shown the satellite tiles coverage: Califor-
nia administrative boundaries (red) vs satellite tiles of the
proposed dataset (blue). In (b) is shown the location of the
wildfires (red) inside the California boundaries (blue).

TABLE I: Comparison between datasets. TD is the time differ-
ence between pre-fire and post-fire acquisitions. MP expresses
the number of burned pixels in millions. The highest value in
each line is highlighted in bold, except for the resolution case
in which the lowest numerical value is highlighted.

CaBuAr (ours) [11] [12]

Region California Europe Indonesia
Mission Sentinel-2 Sentinel-1/2 Landsat-8
Resolution 20m 10m (S2) 30m
Image size 5490 × 5490 up to 5000 × 5000 512 × 512
Raw data ✓ ✗ ✓
Channels 12 12 8
Forest Fires 340 73 227
Start-End date Jan, 2015 - Dec, 2022 July, 2017 - July, 2019 Jan, 2019 - Dec, 2021
Total surface ∼450000 km2 ∼19000 km2 ∼46000 km2

Burned surface ∼28 MP/∼11000 km2 ∼20 MP/∼2000 km2 ∼8 MP/∼7000 km2

Post-fire ✓ ✓ ✓
Pre-fire ✓ ✓ ✗
TD ∼1 year ≤ 2 months /

and the dataset provides many ready-to-use samples without
leveraging other sources. Images are larger in terms of pixels
(5490) and disclosed as raw data in the original and unaltered
state, as directly collected from satellite instrumentation. On
the other hand, the European dataset provides data collected
from a third-party service for which preprocessing operations
are performed. The availability of raw data enables researchers
to apply the preferred preprocessing steps without any loss of
information. Furthermore, the monitored range of dates of the
new dataset spans from 2015 to 2022, whereas the other two
datasets span a smaller time period.

III. DATASET

The newly created dataset comprises L2A products of
Sentinel-2, a European Space Agency (ESA) mission. The area
of interest is California, with the geographical distributions of
the events shown in Figure 1b. We collected images of the
same area before and after the wildfire. It is essential to note
that the L2A product contains RGB channels and other spectral
bands in the infrared region and ultra blue for a total of 12
channels. Depending on the band, they have a resolution of
10m, 20m, or 60m per pixel.
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Fig. 2: Example of pre-fire and post-fire RGBs and relative
masks.

A. Preprocessing

The California Department of Forestry and Fire Protection
publicly provides the ground truth vector information, which
we converted into raster images. Each pixel contains a binary
value: 1 in the burned area and 0 in the case of undamaged
areas. Although the registered wildfires span from 1898 to
2022, we collected data only for wildfires from 2015 to 2022
because there were no Sentinel-2 images before 2015. We
gathered the Sentinel-2 images directly from Copernicus Open
Access Hub.

To minimize the effects of vegetation regrowth and post-
wildfire modifications, images are collected within one month
after the wildfires are fully contained and extinguished. A total
number of 340 acquisitions associated with 340 wildfires were
downloaded, each being of size 5490 × 5490 pixels with a
resolution of 20m per pixel. The few Sentinel-2 bands with
different resolutions were either upsampled or downsampled
with bicubic interpolation to reach the target resolution.

Pre-fire images have the same size and resolution as the
post-fire acquisitions. To enforce coherence and similar sea-
sonal and phenological conditions, we downloaded pre-fire
data considering a temporal window of 4 weeks, centered
one year before the date post-fire data were collected. For
example, given a post-fire acquisition collected in 2018/04/01,
we downloaded the products available between 2017/03/18
and 2017/04/15, with center 2017/04/01. This ensures similar
climatic and seasonal conditions, thus limiting environmental
changes as much as possible. In some cases, retrieving these
products was impossible due to data unavailability, i.e., not
all wildfires have a pre-fire acquisition satisfying such a
constraint. Given the 340 wildfires considered in this study,
208 have pre-fire availability satisfying the abovementioned
constraint.

The dataset was randomly split into five non-overlapped
folds to perform cross-validation.

TABLE II: Association between code and comment.

comment meaning
0 Affected area is in the incomplete region
1 Image is incomplete
2 Small burned area
3 Mask has a small offset
4 Mask is totally wrong
5 Extensive burned area
6 Clouds over the burned area
7 Too many clouds over the image
8 Wildfire ongoing
9 Snow on the burned area
10 Mask seems smaller than the burned area
11 Mask seems bigger than the burned area
12 Mask is in the missing data area
13 Part of the mask is outside the area

B. Manual inspection

After collecting data, we manually evaluated each post-
fire image using RGB channels. This was done to (i) discard
invalid samples and (ii) enrich the dataset with metadata and
comments based on our subjective evaluation. We remark that
such comments are not helpful for the final prediction task but
can be used to better characterize the data. Our evaluation is
associated with each satellite acquisition.

Each image has a metadata field with a list of numeric
codes generated from the manual inspection. Figure II reports
the code-to-comment association. As can be seen, different
climatic conditions can be found in the dataset. Figure 3
reports some examples of post-fire images. For each post-
fire acquisition, Figure 3 reports its RGB version (first line),
its binary mask (second line), and the comment(s) assigned
to it (on top of the RGB image). For instance, the second
acquisition has two comments: 2 and 11. We noted that some
masks seem to overestimate the burned area. However, our
perception refers to the RGB version of the images, i.e., to a
subset of the available information. Moreover, our subjective
perception can be biased also because the regions at the
borders of burned areas are usually less damaged than the
central ones. These notes must be extended to other mask-
related comments, but they are rarer. Comments are almost
equally distributed among the folds. All the 340 acquisitions
do not include any comments that can negatively affect results
and the dataset’s quality (i.e., 4, 8, and 12).

Finally, each pre-fire image was manually inspected to
verify its validity, but no new comment types were added.
All invalid pre-fire acquisitions were discarded.

IV. TASKS

The proposed dataset can be used as a benchmark for differ-
ent tasks in supervised and unsupervised scenarios. Having at
our disposal two sets of images, called PS and PR, containing
post-fire samples and pre-fire ones, respectively, the tasks we
considered in this paper can be formulated as follows:
(a) Binary segmentation through machine learning methods

based on post-fire acquisitions only. It involves a su-
pervised learning algorithm (AS) to perform pixel-level
prediction based on samples from PS. AS labels pixels of
images as burned or undamaged, creating a binary mask
for each new image.
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Fig. 3: Sample of post-fire RGBs and masks with the associ-
ated comments.

(b) Binary segmentation through machine learning models
based on pre-fire and post-fire acquisitions. It involves a
supervised learning algorithm (AS) to perform pixel-level
prediction considering samples from PS and PR.

(c) Binary segmentation through spectral indexes. It involves
a spectral index (SI ) designed for burned area identifi-
cation. Taking samples from PS, SI outputs a value for
each pixel, creating a matrix PS′. Then a binary mask
burned-unburned can be made thresholding PS′.

(d) Binary segmentation through differential spectral indexes.
It involves a spectral index (SI ) designed for burned area
identification based on the comparison of pre and post-
wildfire images. Taking samples from PS and PR, SI

outputs a value for each pixel creating a matrix PS′ and
PR′. Then a binary mask burned-unburned can be made
thresholding the difference PS′ − PR′.

V. EXPERIMENTS

Our experiments test various classical threshold-based and
deep learning-based methods considering three different data
settings:

1) Usage of all the available post-fire images (Setting 1,
tackling Tasks (a) and (c)).

2) Usage of the subset of post-fire images for which the
corresponding pre-fire image is available, without using
the pre-fire image to train the models (Setting 2, tackling
Tasks (a) and (c)).

3) Usage of post-fire and pre-fire images. Thus, two input
images are considered for each area. Spectral indexes in
this setting were evaluated by computing the difference
between pre-fire and post-fire indexes (Setting 3, tackling
Tasks (b) and (d)).

The code for the experiments can be found at https://github.
com/DarthReca/CaBuAr.

A. Experimental settings

The encoder of SegFormer is initialized with the original
weights for Image-Net duplicated four times to handle the
12 available channels for Sentinel-2 L2A acquisitions. U-Net
is instead randomly initialized. The batch size was set to 8.
We used the AdamW optimizer with an initial learning rate
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(b) Settings (2) and (3).

Fig. 4: Burned pixels percentage per image per fold.

TABLE III: Spectral bands used by indexes. VNIR (Visible
and Near InfraRed), SWIR (ShortWave InfraRed) and Visible
are exploited.

Index Ultra-Blue Visible VNIR SWIR

NBR ✗ ✗ B8 B12
NBR2 ✗ ✗ ✗ B11,B12
BAI ✗ B4 B8 ✗

BAIS2 ✗ B4 B8A,B7,B6 B12

of 0.001, decreased by a factor of 10 every 15 epochs, and
a weight decay of 0.01 for every considered model. We used
the well-known Dice loss [36] as the loss function. All models
were trained on one Tesla V100 32GB GPU. The testing was
made using the weights associated with the best validation
loss.

Due to the size of the original input images (5490× 5490),
we split them into patches of size 512×512. Furthermore, due
to class imbalance, we kept only those patches containing at
least one pixel associated with the positive class and no clouds
over the area of interest (Comment 6 in Table II). A total of
534 patches for setting (1) and 356 for settings (2) and (3)
were obtained.

The statistics and performances reported in the remainder
of the paper refer to the data obtained after the split-and-
filter process mentioned earlier. All training and evaluation
procedures were performed with a cross-validation approach.
The same criterion was applied for spectral indexes method-
ologies to obtain comparable results, despite the absence of a
trainable model. The reported values are expressed as mean
and standard deviation computed over the five folds.

In Figure 4, we highlight the percentage of burned pixels
per image in each fold. Even if data were split randomly, Fold
0 is characterized by a larger variability in terms of the number
of burned pixels per image.

B. Spectral Indexes

We evaluated several spectral indexes (NBR, NBR2, BAI,
BAIS2) for the burned area delineation task. In Table III,
we summarized the spectral bands exploited by the various
indexes, and it is possible to note many bands are common to
many of them. They take as input some bands of a Sentinel
product and output a value for each pixel. This value is
generally thresholded to create a binary mask providing the
burned/unburned information for each pixel.

In particular, to assess the performances on the dataset,
we computed the Separability Index [19] (see Table IV),
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TABLE IV: Separability Indexes (SI) and metrics computed
for each setting and each evaluated index.

Setting Index SI F1 Score IoU

(1)

NBR 0.294 0.150±0.231 0.103±0.180
NBR2 0.224 0.226±0.269 0.159±0.209
BAI 0.044 0.040±0.121 0.026±0.086

BAIS2 0.027 0.194±0.292 0.148±0.252

(2)

NBR 0.320 0.106±0.196 0.071±0.150
NBR2 0.349 0.243±0.278 0.172±0.218
BAI 0.052 0.037±0.115 0.024±0.079

BAIS2 0.002 0.086±0.174 0.057±0.138

(3)

dNBR 0.247 0.114±0.212 0.079±0.168
dNBR2 0.189 0.218±0.281 0.157±0.225
dBAI 0.040 0.066±0.161 0.045±0.127

dBAIS2 0.027 0.047±0.126 0.030±0.099

Image NBR NBR2 BAIS2 BAI Ground Truth

(a) Predictions

(b) Zoomed predictions

Fig. 5: Example of segmentation using Otsu’s method for
different indexes. In (b), the zoom was applied to the top-
left corner of images in (a), boxed in red. This is done to
show more clearly an area with false positive predictions.

which quantifies how well the index under analysis discerns
between burned and unburned regions, i.e., a higher value of
SI implies that classes are more separable from each other.
We apply Otsu’s thresholding method to quantify the indexes’
segmentation performances. Results are shown in Table IV,
which confirm the poor performances in terms of F1-Score and
IoU. Additionally, the availability of pre-fire images (Setting
(3)) does not significantly improve the evaluation metrics.

Figure 5 shows an example of predictions for the cited
indexes applying Otsu’s method. In this example case, BAI
and NBR achieve the best scores, but many “disturbances”
affect the final result in the unburned regions. Figure 5b, which
is a zoom on an actual unburned area, shows that many false
positive points are inside the considered unburned area. We
refer to this situation as “disturbances”.

C. Deep learning models

We tested two deep learning architectures for semantic
segmentation: a CNN (U-Net [16]) and a Vision Transformer
(SegFormer [15]). We decided to take into account two dif-
ferent versions of SegFormer (B0, the smallest version, and
B3, a mid-range version) that differ only in size and so in the
number of parameters. U-Net, SegFormer-B0, and SegFormer-
B3 consist of 31M, 3.8M, and 47M parameters, respectively.

TABLE V: Metrics calculated for each deep learning model
evaluated.

Setting Metric SegFormerB3 SegFormerB0 U-Net

(1) F1 Score 0.620±0.009 0.686±0.004 0.707±0.004
IoU 0.497±0.008 0.563±0.004 0.583±0.004

(2) F1 Score 0.583±0.014 0.654±0.003 0.705±0.002
IoU 0.447±0.012 0.535±0.003 0.577±0.002

(3) F1 Score 0.533±0.003 0.499±0.009 0.625±0.002
IoU 0.401±0.003 0.370±0.007 0.494±0.002

Image SegFormerB3 SegFormerB0 U-Net Ground Truth

Fig. 6: Examples of prediction with deep learning models.

To deal with Setting (3), the two input images (pre- and post-
fire) are concatenated along the channel axis, creating patches
of size 24× 512× 512 (C ×H ×W ). We reported the results
for the different settings and models in Table V.

Without any specific pre-training, U-Net provides in every
setting the best performance. SegFormer-B0, which is also
lighter than U-Net, provides comparable performance, having
some difficulties only with Setting (3). SegFormer-B3 does not
justify the greater complexity considering its results. In this
case, pre-fire images do not provide any improvements too.
This can be justified because of the curse of dimensionality
that affects almost all machine learning models. In fact, the
concatenation approach we applied increases the number of
features without increasing the number of input samples. An
open research direction is the design of more sophisticated
models to exploit both images effectively.

Figure 6 reports the predictions of these models on the same
input sample shown in Figure 5. The most evident difference
is deep models tend to be more precise and less affected by
false positives in the unburned areas (i.e., there are fewer
“disturbances”). Looking attentively at Figure 5b, many false
positive points can be seen. The greatest problem of thresh-
olding techniques is that they try to find a linear separation
between classes, which is frequently unrealistic. This is why
deep learning models, which support non-linearities, perform
better [37], [38]. The substantial variability of the threshold
technique, shown by the higher variance (see Table IV), could
be caused by the fact some areas are more separable than
others.

VI. CONCLUSION

This paper introduced a new dataset for burned area delin-
eation containing samples with different morphological fea-
tures of the terrain and different sizes of burned regions. The
dataset includes both pre-fire and post-fire data.

We provided baselines based on different approaches to
assess the quality of basic methods and encourage further
research activities. This publicly available dataset can benefit
researchers and public authorities for further tasks, such as
recovery planning, constant monitoring of affected areas, and
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developing deep learning models for burned area delineation.
We plan to extend the dataset to new regions and satellite
acquisitions continuously. The collection of satellite acquisi-
tions is made publicly available to encourage future use and
research activities.
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