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Abstract: Nowadays, the circular economy is gaining more and more attention in sectors where the
raw material supply is critical for both cost and geo-political reasons. Moreover, the environmental
impact issue calls for recycling. From this perspective, the recovery of rare earth elements represents
a strategic point. On the other hand, the high cost and the dangerous standard recovery methods
that apply to NdFeB magnets limits options for traditional recycling. A new mechanical method
is proposed, not requiring hydrogen, high temperature, or chemical processes, but instead using
an impact mill designed to operate in vacuum. A traditional impact mill operating in a glove box
filled with Ar atmosphere has also been used for comparison. The obtained NdFeB powders were
analyzed in terms of magnetic properties and chemical composition, particularly in terms of the
oxygen content.

Keywords: recycling; NdFeB powder; NdFeB magnets; powder metallurgy; mechanical process;
impact mill; anisotropy; oxidation; magnetic characteristic; circular economy

1. Introduction

Decarbonization, reduction of greenhouse gas emissions, and improvement in overall
health are the main aims in several countries where some actions concerning environmental
policies have been taken. The most popular way of reducing air pollution consists of
introducing electric or hybrid vehicles (EV or HEV) [1–3]. Different strategies have been
proposed and studied regarding this topic, and some tools like life cycle assessment
(LCA) are used to analyze the product or processes [4–6]. LCA consists of a Life Cycle
Inventory (LCI) analysis and Life Cycle Impact Assessment (LCIA), where LCI involves
the compilation and quantification of inputs and outputs for a product throughout its life
cycle. The adoption of LCA permits understanding and evaluating the magnitude and
implication of the potential environmental impacts by considering all the steps related to
the product’s life, from the design to its re-use [7]. Therefore, recycling plays an important
role in ecological aspects and economic savings. In some industrial sectors recycling is
essential, while in other sectors it shows high potential [8], also resolving the problems of
raw material supply [9,10].

The introduction of EV or HEV led to the necessity of evaluating new material solutions
for battery systems and electrical machines. Nowadays, different types of electric motors
are used; one is the permanent magnet synchronous machine (PMSM), which shows
high torque density and good dynamic behavior [11–13]. However, the PMSM contains
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Rare Earth elements, which significantly affects the cost of the device [14]. The high cost
depends on various aspects: the extraction process is expensive and the price depends on
the market and geopolitical situations, as Rare Earth elements are located in a few areas of
the planet [15–19]. The Neodymium price variation changed significantly in the last decade:
30 $/kg in 2009, then 300 $/kg in 2011. After that, the price decreased to 60 $/kg in 2018
then increased again until 220 $/kg at the end of 2022, reaching a critical point. The same
situation involves the Dysprosium powder used to produce the best NdFeB grade magnets,
where the price was 750 $/kg in 2022. Some solutions are proposed to solve this issue [15]:
opening new mines, researching new magnetic materials [20–22], designing appliances
without NdFeB magnets [23], and recycling [24–28]. All listed points have aspects open
to criticism: opening new mines faces ecological permission problems in many countries,
while new magnetic research is generally based on alloys that are not cost-effective, the use
of ferrite magnets (as substitutions for NdFeB) increase volume and weight with an overall
reduction of performances, making them not applicable to many industrial sectors.

NdFeB recycling is based on existing recovery techniques [29–37]. The hydrometal-
lurgical method is a chemical process in which the material is crushed and leached; its
extraction is obtained through particular solvents. This technique is expensive and complex.
Another is based on the pyrometallurgical method, which consists of recovering REO (Rare
Earth Oxides) at high temperatures (1500 ◦C). The obtained REO need to be processed again
via the typical extraction process of rare earth, which involves transporting REO in a few
areas of the planet. The more popular NdFeB recycling technique is hydrogen decrepitation
(HD), where the material is crushed by means of the adsorption of hydrogen. There are
various dangerous aspects of the process, due to the use of hydrogen and very highly
reactive NdFeB powder; for this reason, this method is also considered rather expensive.
Moreover, the recycled product should be reused immediately without going through
several production chain stages.

This paper analyzes an alternative method for producing NdFeB recycled powder,
based on a cheaper mechanical process, without the use of hydrogen. The focus is to
develop a more suitable, cheaper, and safer recycling process for industrial criteria. The
goal of the research is to develop a reliable process able to guarantee the production of
powders ready to be re-used, without changing the chemistry of the starting material. A
vacuum impact mill has been designed and used to produce NdFeB powders. The device is
a prototype of an attritor capable of working in a vacuum or controlled atmosphere, and it
was designed and produced by the authors in Politecnico di Torino. The mill is composed
of two chambers, both containing a controlled atmosphere during the operational phase.
All of the grinding processes in this work were conducted within a vacuum. The proposed
mechanical grinding process is a technique already used for the fracture, surface finish and
coating of the powder, continuously. In the proposed work, the process is non-continuous,
so when all the magnets are ground and reduced to a powder, the mill can be disassembled
and loaded again with new material. Moreover, the activity does not require chemical
preparations and does not result in high costs.

For comparison, a conventional impact mill was used, placing it in an inert environ-
ment in a glove box filled with Argon gas. NdFeB powders obtained in different conditions
have been characterized and tested.

2. Materials and Methods

Hard disks used in computers in the last 15 years have been collected by RISTA s.r.l.,
an Italian Company working in the field of waste recovery and environmental sustainabil-
ity. Magnets have been disassembled from the supports through an automatic precision
system developed by OSAI Automation System, a leading Italian Company in the field of
automation and LASER for industrial processes. The position of the magnets is shown in
Figure 1. The variety of the magnets appears in several dimensions (Figure 2) related to
different magnetic properties. Diversification of magnets was not implemented, and also
the nickel protection coating was not removed [38].
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Magnets were demagnetized before the crushing process. This was performed at
350 ◦C in a vacuum to avoid oxidation.

The crushing and grinding processes were performed using an impact mill (Figure 3).
The scheme of its advanced version, that works in vacuum, is reported in Figure 4. Two
types of impact mill have been evaluated. The first mill is made by a high-speed DC electric
motor and a chamber with blades, which is filled with the recovered magnets to be chopped
and transformed into recycled powder. The equipment has been placed in a glove box of
approx. 0.5 m3 (Figure 5a,b). Before starting the milling process, an Ar purging of 15 min
has been carried out, and Ar backfilling has been adopted throughout the whole process.

The second mill consists of a vacuum impact system designed for this specific purpose
(Figure 6a,b). It is made up of different parts. One part consists of a chamber with a high-
speed DC motor, electrically and mechanically sealed off from the (second) chamber where
the powder is collected, which is then separated by a mechanical grid from a glass storage
container for the recycled NdFeB powder. A sealing gasket was used to retain vacuum.

Powders’ granulometry and distribution size have been analyzed with the Malvern
Mastersizer 3000, equipped with Aero S for dry dispersion.

The obtained powders were analyzed using X-ray diffraction (XRD) analysis (Bruker
New D8 ADVANCE ECO diffractometer equipped with a Cu Kα [1.5406 Å] radiation
source) and compared to the NdFeB reference standard (PDF 00-036-1296).
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Figure 5. Impact mill in glove-box and the washing in Argon: exterior aspect of the glove box (a) and
the impact mill used with this configuration (b).

Furthermore, powders were examined by means of X-ray fluorescence (XRD) analysis
(Thermo Scientific EDX-7000) to evaluate the amount of neodymium and iron. The oxygen
content (wt. %) of the two set of powders was obtained by means of an elemental analyzer
(LECO ONH836).
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Figure 6. Vacuum impact mill: mill (a) and system connection with the pump (b).

The powders’ magnetic performance has been evaluated by means of a Permanent
Magnet Hysteresisgraph (Laboratorio Elettrofisico I-200 A/S, equipped with Powder test-
ing fixture).

All produced powders were stored in vacuum glass bottles. This operation is manda-
tory to avoid powder oxidation and to facilitate transport. Figure 7 illustrates the scheme
from the recovery of NdFeB magnets from hard disks to powder characterization.
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Figure 7. The scheme represents different steps of the proposed technique: supply of disused
hard disks, recovery of NdFeB magnets, crushing with two different impact mills, and recycled
powder characterization.

3. Experimental Results

After the milling process, powders have been sieved between 50 µm and 500 µm.
Their distribution size is reported in Figure 8.
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3.1. Chemical and Microstructural Analyses

The presence of oxygen has been investigated through elemental analysis for both
impact mill processes. Results are reported in Table 1, where the operation with a vacuum
impact mill highlights an oxygen content highly reduced in comparison to the process in
the Argon-washed glove box [39].

Table 1. Elementary analyses (LECO-ONH) as a function of different processes with impact mills.

Type of Impact Mill Operation Oxygen Content wt.%

Operation in a glove box (Argon) 1.59
Operation in Vacuum Impact Mill 0.375

In order to preserve the magnetic properties of the material, the value of oxygen
should be minimized; in fact, the obtained value is similar to a general indication of 0.4%,
as reported in the literature [40–42]. The result of the vacuum impact mill confirms two
things: firstly, the process does not add further oxidation; secondly, the recycled powder
can be used immediately and not stored like an REO.

Considering the oxygen contents of the two powders and the magnetic properties
of the different systems (ref par 3.2), only results relative to vacuum-processed powders
will be reported. Several batches of materials were used that were derived from magnets
recovered from landfills. The analyzed lots were found to be free of Dy and Pr. As reported
later in the text, this does not affect the basic magnetic characteristics.

Table 2 shows the chemical composition of the powder obtained in vacuum evaluated
by XRF.

Table 2. XRF composition of recycled powder in vacuum impact mill.

Elements Composition %

Fe 63.394
Nd 28.514
Ni 5.653
V 1.053
La 0.987
Cu 0.182
Ca 0.087
Nb 0.057
Zr 0.039
Os 0.020
Mo 0.013
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It is possible to note that Iron and Neodymium are about 63.4% and 28.5%, respectively,
which are typical amounts for NdFeB recycled materials [43]. These values correspond to
medium Rare Earth element scraps. Additionally, the presence of Nickel is high due to the
protective coating, which was not removed before the crushing and grinding process.

The recycled powder was tested through the XRD; the obtained spectrum is shown
in Figure 9, blue line. The cell results are as follows: space group is P42/mnm, lattice
parameters are a = 8.7865 Å, c = 12.1822 Å. The crystallite size was 96 nm. For verification,
the NdFeB standard lattice parameters (PDF 00-036-1296, measured as bulk sample) are
reported: space group is P42/mnm, a = 8.7933 Å and c = 12.1799 Å. The experimental
spectrum shows the errors with respect to standard lattice parameters of 0.0773% for a
and 0.01888% for c. This comparison confirms the similarity of the recycled powder to
an NdFeB permanent magnet, evidencing the lack of oxidation effect [44]. Therefore, the
magnetic phase is maintained. The comparison of the recycled powder spectrum and
NdFeB reference is reported in Figure 9, blue and red lines, respectively.
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3.2. Magnetic Characterization and Magnetographic Observation for Recycled Powder

Figure 10 shows the demagnetization curves for two recycled powders obtained
through the mechanical process, using impact mills. The exact quantity of powder for both
techniques is filled in a particular holder. The holder with powder is magnetized and then
characterized by a permanent magnet hysteresisgraph. The obtained results are used to
compare the process effect, without estimating the final magnetic properties of a possible
magnet. The coercivity fields in a vacuum impact mill increase by 33% with respect to the
operation in argon. A slight reduction in remanence has been noted for the process in a
vacuum. The difference in the coercivity field is due to the oxygen content, which is 4 times
higher than the typical reference value.
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Figure 10. Demagnetization curves for two impact mill processes.

With the magnetic characterization of the powders, it is possible to study the den-
sity effect on magnetic performances (Figure 11). The density is changed by inserting
the powder into a specific cylinder with dimensions 15 mm in diameter and 20 mm in
height. Three density values have been implemented. The starting density (low density)
corresponds to the density obtained after the powder is added into the calibrated cylinder
(Figure 12a,b). The second density measurement (medium density) corresponds to the
density obtained after manual powder compaction through the hysteresisgraph joke and
dedicated expansion pole (Figure 12b). The third density value (high density) is similar to
the second, but also considers an orientation through an external magnetic field.
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The demagnetization curves for the three densities of recycled NdFeB powder pro-
cessed in vacuum are reported in Figure 13. As expected, the low-density sample shows
the lowest magnetic characteristic, while the medium density one has a higher magnetic
remanence. The demagnetization curve of the high-density recycled powder has the best
coercivity properties, at the expense of a reduction in magnetic remanence. After anal-
ysis using the magnetographic method described in Figure 14, the presence of residual
anisotropy can be observed, especially in Figure 14b,c. This parasitic phenomenon does
not permit maximizing the magnetic performance of recycled NdFeB powder. The solution
consists of using a specific magnetic orientation with a dedicated tool [45].
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4. Conclusions

This paper investigated the quality and properties of NdFeB powders obtained from
hard disk scraps.

The vacuum milling process represents an industrially viable and safe alternative to
generate immediate re-usable powders from Nd-Fe-B magnets, rather than using more
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complex and expensive processes to recover Nd, Pr and Dy through use of hydrogen
and/or chemical solvents. XRD and XRF analyses confirmed the good quality of the
recycled powder, without any trace of added oxides. Furthermore, elemental analyses
evidenced that a low amount of oxygen is present after operations in a vacuum impact
mill, making this technique preferable to washing in an inert atmosphere. This is possible
owing to simple equipment: heat treatment in the vacuum at 350 ◦C, and milling by means
of a pump.

Although the presence of residual anisotropy represents a drawback, it does not
necessarily imply negative potentiality of the proposed method, since this presence can be
reduced with particular arrangements in the stages during the molding processes of the
magnets. In this context, further activities will be performed to obtain recycled magnets
through the use of dedicated tools, based on magnetic orientation.
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37. Chung, H.; Prasakti, L.; Stopic, S.R.; Feldhaus, D.; Cvetković, V.S.; Friedrich, B. Recovery of Rare Earth Elements from Spent
NdFeB Magnets: Metal Extraction by Molten Salt Electrolysis (Third Part). Metals 2023, 13, 559. [CrossRef]

38. Orefice, M.; Eldosouky, A.; Škulj, I.; Binnemans, K. Removal of metallic coatings from rare-earth permanent magnets by solutions
of bromine in organic solvents. RSC Adv. 2019, 9, 14910–14915. [CrossRef]

39. Meakin, J. Targeted Hydrogen Decrepitation of Ndfeb Magnets from Large Commercial Assemblies. Master’s Thesis, School of
Metallurgy and Materials, University of Birmingham, Birmingham, UK, 2013.

40. Fidler, J.; Schrefl, T.; Hoefinger, S.; Hajduga, M. Recent developments in hard magnetic bulk materials. J. Phys. Condens. Matter
2004, 16, S455–S470. [CrossRef]

41. Method for Producing Sintered Ndfeb Magnet. European Patent EP2071597B1, 23 July 2007.
42. Corfield, M.R.; Harris, I.R.; Williams, A.J. Influence of oxygen content on grain growth in Pr–Fe–B/Nd–Fe–B sintered magnets. J.

Alloys Compd. 2008, 463, 180–188. [CrossRef]
43. Zhang, Y.; Gu, F.; Su, Z.; Liu, S.; Anderson, C.; Jiang, T. Hydrometallurgical Recovery of Rare Earth Elements from NdFeB

Permanent Magnet Scrap: A Review. Metals 2020, 10, 841. [CrossRef]
44. Li, D.; Horikawa, T.; Liu, J.; Itoh, M.; Machida, K.-I. Electromagnetic wave absorption properties of iron/rare earth oxide

composites dispersed by amorphous carbon powder. J. Alloys Compd. 2006, 408–412, 1429–1433. [CrossRef]
45. Nlebedim, I.; Ucar, H.; Hatter, C.B.; McCallum, R.; McCall, S.K.; Kramer, M.; Paranthaman, M.P. Studies on in situ magnetic

alignment of bonded anisotropic Nd-Fe-B alloy powders. J. Magn. Magn. Mater. 2017, 422, 168–173. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11837-020-04409-9
https://doi.org/10.1016/j.wasman.2016.07.029
https://doi.org/10.1039/D2RA05876F
https://doi.org/10.3390/met13030559
https://doi.org/10.1039/C9RA01696A
https://doi.org/10.1088/0953-8984/16/5/007
https://doi.org/10.1016/j.jallcom.2007.09.057
https://doi.org/10.3390/met10060841
https://doi.org/10.1016/j.jallcom.2005.04.109
https://doi.org/10.1016/j.jmmm.2016.08.090

	Introduction 
	Materials and Methods 
	Experimental Results 
	Chemical and Microstructural Analyses 
	Magnetic Characterization and Magnetographic Observation for Recycled Powder 

	Conclusions 
	References

