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Abstract—Sound-squatting is a phishing attack that tricks
users into accessing malicious resources by exploiting simi-
larities in the pronunciation of words. It is an understudied
threat that gains traction with the popularity of smart-
speakers and the resurgence of content consumption exclu-
sively via audio, such as podcasts. Defending against sound-
squatting is complex, and existing solutions rely on manually
curated lists of homophones, which limits the search to a
few (and mostly existing) words only. We introduce Sound-
squatter, a multi-language AI-based system that generates
sound-squatting candidates for proactive defense that covers
over 80% of exact homophones and further generating thou-
sands of high-quality approximated homophones. Sound-
squatter relies on a state-of-art Transformer Network to
learn transliteration. We search for Sound-squatter gener-
ated cross-language sound-squatting domains over hundreds
of millions of emitted TLS certificates comparing with other
types of squatting candidates. Our finding reveals that
around 6% of generated sound-squatting candidates have
emitted TLS certificates, compared to 8% of other types of
squatting candidates. We believe Sound-squatter uncovers
the usage of multilingual sound-squatting phenomenon on
the Internet and it is a crucial asset for proactive protection
against sound-squatting.

1. Introduction

Cyber-squatting is a phishing attack that tricks users
into accessing malicious sites or content by relying on
the similarities of words. It is applied in various con-
texts, including fake domains [7], [15], phishing cam-
paigns [18], [19], and the hijacking of smart speakers [11],
[27]. Several cyber-squatting strategies are hypothesized
and demonstrated in practice, including simple/frequent
typos [1], [8], [20], [25], the visual similarity of words [7],
and collocation of common words [10], [14].

Sound-squatting is a phishing technique that leverages
words with pronunciations similar to legitimate domain
names to trick users. It receives relatively little attention
compared to other types of cyber-squatting and is poten-
tially gaining traction with the advent of smart speakers,
voice assistants [11], and the resurgence of content con-
sumption exclusively via audio, such as radio programs
and podcasts where some website is advertised. Detecting
this type of squatting is challenging due to variations
in pronunciation across languages and individuals [26].
Previous studies focus only on lists of English homo-
phones [15], thus lacking coverage in terms of non-
existing words, words with similar pronunciation (quasi-
homophones), and cross-language scenarios.

Several recent works longitudinally evaluate the occur-
rence of domain squatting using tools to create candidates
and verify the existence of the created domains. Even
further, some works evaluate the existence of Transport
Layer Security (TLS) certificates for supporting phish-
ing, certificates issued by actual Certificates Authorities
(CA) [5], [9], [17], [23]. However, these works focus only
on techniques such as typo-squatting, combo-squatting,
and homograph-squatting, ignoring sound-squatting.

We introduce Sound-squatter, an AI-based system that
is capable of automatically creating sound-squatting can-
didates. Sound-squatter generates candidates for any given
target name, works at the sub-word level, and allows con-
figurable approximations during the search for candidates.
It naturally supports multiple languages and the cross-
language scenario (described next). Sound-squatter is built
using a state-of-the-art Transformer Neural Network [24]
trained to produce candidates in any language. It receives
both the written form of the word (grapheme), its pro-
nunciation, represented using the International Phonetic
Alphabet (IPA), and the language the word belongs to. At
inference, Sound-squatter uses its sequence-to-sequence
model to find written alternatives with similar pronuncia-
tions in the target language.

Important, any sound-squatting protection mechanism
needs to consider multi-language scenarios. However, this
is not a trivial task since each language, accent, and
speaker’s proficiency level impacts the way people read
and understand words. Sound-squatter is a multi-language
model that can generate cross-language candidates, con-
sidering foreign pronunciations that are similar to the
given word.

We first validate Sound-squatter by comparing the list
it generates against known homophones. Here we find
that Sound-squatter can automatically generate around
80% of the known homophones for any specific language
and thousands of additional quasi-homophones, including
cross-language homophones if specified. Next, we collect
domain names as appeared in the past 24 days in the
TLS certificates using the Certificate Transparency (CT)
logs [12]. We then check whether sound-squatting candi-
dates for top-popular websites appear in the feed.

In summary, our contributions are as follows:

• A methodology for a multi-language sound-
squatting generation. We present a methodology
for generating multi-language and cross-language
sound-squatting candidates using contextual
phoneme-based generation. This approach can
be particularly useful for enhancing the security
of less central countries and correlated spoken
languages.
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• A broad study of the abuse of sound-squatting
in domain registration using CT logs. We con-
duct a comprehensive study of sound-squatting
abuse in domain registration by analyzing can-
didates generated by Sound-squatter using a set
of 200 million certificates collected on CT logs.
Our findings show that approximately 6.5% of the
generated candidates are registered, and around
8.2% of the target domains may be subject to
abuse.

• Comparison of sound-squatting and other
squatting techniques. We compare the search
results of sound-squatting with those of other
squatting techniques generated with state-of-
the-art algorithms. Our findings demonstrate
that sound-squatting poses a threat with different
behavior than, e.g. typo-squatting, but its potential
abuses are comparable to those of other squatting
techniques.

The use of Sound-squatter can provide protection
against attacks that target names such as brands. It offers
an affordable solution for searching squatting campaigns
in less controlled markets by automatically generating
potential domain names that attackers can abuse or have
already abused. Additionally, Sound-squatter can be used
to compile search lists to monitor certificate issuance
or domain registration, thus enhancing protection against
zero-day phishing campaigns.

In Section 2, we describe Sound-squatter, and in
Section 3, we validate it. Then, in Section 4.1, we dis-
cuss the results of domain name sound-squatting, and
in Section 4.2, we show our findings. We also discuss
related work in Section 5 before concluding the paper
in Section 6. In Appendix A, we provide background
information.

2. Sound-squatter: System Description

Sound-squatter is an AI-based system capable of creat-
ing sound-squatting candidates that relies on Transformer
Neural Network to translate from phonemes to graphemes.
The model operates as depicted in Figure 1. The genera-
tion pipeline consists of four main components:

1) The Grapheme to Phoneme (G2P) component
transforms an input word written in grapheme
form (such as the word eye) into its corre-
sponding International Phonetic Alphabet (IPA)
representation (such as /aI/ for British English).

2) The IPA Encoder component encodes the IPA
word into a vector latent representation.

3) The Grapheme Decoder (P2G) component in-
teractively decodes the vector representation into
characters to compose graphemes form that are
quasi-homophones of the input word (such as I)
in a target language.

4) The Post Processor component performs beam
search over the logits and selects tokens based
on the probability from the decoder’s output,
resulting in the generation of multiple quasi-
homophones from a single pronunciation.
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Figure 1: Architecture used during inference. The process
to generate candidates comprises an IPA Encoder that
maps the input to a latent space and a Grapheme Decoder
that several ways to reconstruct the input.

2.1. Grapheme to Phoneme

The Grapheme to Phoneme module is quite standard
and different options exist to derive the IPA representation
of a word grapheme, many of which that include multi-
language solutions. The most common ones are rule-
based and data-driven models. Rule-based G2P models
use hand-crafted rules to transliterate the pronunciation of
a word based on its orthographic features. These models
are relatively simple but require expert knowledge and
linguistic resources to be developed. Data-driven models
usually rely on machine learning and annotated data.

Sound-squatter can use any G2P model as long it
keeps consistency in the symbol usage. We chose to use
eSpeak NG (Next Generation) text-to-speech engine1 and
Epitran2 for transliterating orthographic text into IPA. We
chose two these models because, while eSpeak NG is a
better fit for our application in English-GB and English-
US, Epitran is more suitable for other languages, because
eSpeak NG often switch languages when transliterating
known words, which breaks the core idea of this proposal.

2.2. IPA Encoder and Grapheme Decoder

Sound-squatter key components are the IPA Encoder
and Grapheme Decoder. We use state-of-the-art Trans-
former Neural Networks [24]. Transformer rely on the
self-attention mechanism to learn how to translate a word
in IPA back into grapheme format. The output of IPA
Encoder is forwarded to Grapheme Decoder, which uses
the contextual information extracted from the input by
IPA Encoder, together with the current state of the output.
The Transformer is an auto-regressive model at inference
(See A.3), i.e., it can leverage its own past history of
predictions to forecast future states.

In particular, given an IPA input and the predic-
tions made for each of the previous (N − 1) characters,

1. https://github.com/espeak-ng/espeak-ng (accessed on 10/10/2022).
2. https://github.com/dmort27/epitran (accessed on 10/10/2022).

https://github.com/espeak-ng/espeak-ng
https://github.com/dmort27/epitran


Grapheme Decoder forecasts the probabilities of each
possible character being the N -th character. It is then the
role of Post Processor to look at these probabilities and
feed the history back to the Grapheme Decoder for the
new forecast.

For training we rely on labelled data and follow
standard algorithms used to train Transformer Neural
Networks for causal language models. We design our
solution as a single multi-language model, with the ex-
plicit capability of generating cross-language homophones
and quasi-homophones. We control the language used to
read the grapheme by changing the language or accent
of the G2P model. For example, the word “water” has
different pronunciations in English-US (/"wAt@ô/), English-
GB (/"wO:t@/). In the cross-language case, for example,
suppose we pronounce “water” in English-US and specify
that we want the grapheme form to be transliterated into
French-FR. In that case, the model can generate the quasi-
homophone “warères” (/waö@ö/), which does not exist as
a word in French-FR but has a similar pronunciation to
“water” in English-US.

To specify the language the transformer shall use to
transliterate the phoneme back into grapheme form, we
add a language context to the input by introducing a
special token called the “Language Special Token” (LST)
to provide contextualized information in the input. In a
nutshell, during training, the LST provides the input and
output language information to the transformer, which
learns to transliterate the phoneme based on the infor-
mation contained between them.

2.3. Post Processor: the Quasi-Homophone Gen-
eration

The Post Processor is the last element of the inference:
it receives as input the Grapheme Decoder’s probabilistic
forecasts of the next character, and it keeps track of
the history of predictions to feedback to Grapheme De-
coder. Because Grapheme Decoder operates as an auto-
regressive model at inference, we can generate more than
a candidate quasi-homophone by tweaking the history the
Post Processor feeds back. We use a Beam Search to pick
from amongst the tokens those whose probabilities add up
to p, also known as top-p strategy.

Figure 2 shows the exact output for four iterations.
At each step, the Post Processor stores C most-likely
predictions of Grapheme Decoder whose probabilities add
up to at least p and constructs alternative histories for the
next step. Figure 2 shows this process with a directed
graph diagram (with p = 0.8) starting from the IPA
representation of eye. After four iterations, the process
generates six ways to write eye. Each branch stops when
Grapheme Decoder outputs the special character EoS.

The number of iterations (M ), maximum number of
candidates predictions (K) and probability (p) are pa-
rameters that we can define manually. For this work,
we empirically define the parameters as follows: Post
Processor iterates M = N + 6 times, where N is the
size of the source string, and we limit exploration with
K = 100 and p = 0.8, where K is the maximum number
of possible candidates generated. These parameters have
been determined by manual inspection and depended on
the specific task and dataset.
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Figure 2: Illustration of the inference process with p =
0.8. At each inference step, we explore n next characters
whose probabilities add up to p. For readability, we round
probabilities in the figure.

TABLE 1: Dataset size for each chosen language.

Language Tag Language Region Data size

en-GB English United Kingdom 65118
en-US English United States 125923
fr-FR French France 245971

Total 437012

3. Sound-squatter: Training and Validation

In this section, we describe the training process and the
validation for our model. We selected three different forms
of pronunciation: English-US, English-GB, and French-
FR. We chose English because it is the most widely
used language on the Internet, and two English variations
to illustrate this factor is important in homophone-based
impersonation. We also chose French-FR because it is
also a not a phonetic language, which is more prone to
confusion during transliteration.

Phonetic languages have a close correspondence be-
tween pronunciation and written representation, with each
letter or character representing a specific sound. While
French and English have some phonetic elements, they are
less purely phonetic than languages with more straightfor-
ward sound-to-spelling correspondences, such as Italian
and Spanish.

3.1. Dataset and Training

The training dataset consists of the list of English-
US, English-GB, and French-FR words from the GNU
Aspell [3] word list. GNU Aspell is a free and open-
source spell checker containing word lists for multiple
languages. To acquire the pronunciation, we use rule-
based G2P tools: eSpeak NG for English-GB and English-
US and, Epitran for French-FR.

Table 1 shows the size of the dataset for each language.
In total, we use 437 012 words and their pronunciation.

We train the IPA Encoder and the Grapheme Decoder
with a batch size of 256 words. The training set contains
80% of the samples, and we preserve 10% for validation
and 10% for test sets. The maximum sequence length is
50 tokens. We use the validation set to select the best
model and the test set to verify over-fitting. We use the
Adam optimizer with LR = 0.0001, β1 = 0.9, β2 = 0.98,
ϵ = 10−9. We train the model for 10 epochs, which takes



around 10 minutes on a single NVIDIA Tesla v100. The
Transformer Network hyperparameters for the encoder
and the decoder are symmetric and are defined as follows:
the size of the hidden representation is 512, the embedding
dimension is 512, the number of heads is 8 and, the
vocabulary size is 123.

3.2. Model Validation

We verify whether the model generates homophones
by comparing its results against known sets of homo-
phones. We consider as homophones any group of words
having the same IPA sequence. Then, we select one word
for each set and ask Sound-squatter to generate candidates.
The expected result is a considerable intersection between
known homophones and generated candidates.

We randomly select from our validation data 2 000
pronunciations with more then one written form for each
language. We generate 42 716 candidates, i.e. on av-
erage, we produce 7.11 candidates per target. Sound-
squatter finds 77.86% of the known homophones, thus
showing that Sound-squatter can generate words with
the same exact pronunciation but different spelling. In
addition, Sound-squatter generates many possible alternate
spellings of the same target words. The remaining words
(28 012) are not necessarily existing dictionary words but
show similarities with the target word. We call them quasi-
homophones.

4. Domain Sound-squatting in the Wild

4.1. Search Methodology

Our approach to identifying the eventual presence of
cross-language sound-squatting domains involves a sys-
tematic process that begins with generating candidates
using Sound-squatter. This allows us to create a large
number of possible domains quickly and efficiently.

We select three languages: English-US, English-GB,
and French-FR. We generate the same and cross-language
sound-squatting for all possible combinations, resulting
in 9 combinations in total. As a baseline, we use the
AIL typo-squatting tool [16] to generate other-squatting
candidates for a given domain. Although it AIL tool also
includes homophone generation, we find that it generates
only 4 sound-squatting candidates in total, a negligible
amount compared to what Sound-squatter does.

As a starting point for identifying popular websites
likely to be targeted by squatting attacks, we consider
the list of top-accessed websites from SimilarWeb, a
leading website analytics provider. Next, we use the two
generative tools to generate candidates. Here, we stick to
the second-level domain due to the nature of the domain
impersonation we want to focus on.

To identify potential squatting domains, we search
for our candidate homophones on TLS certificates of
registered domains using CertStream 3 (Certificate Trans-
parency Logs). TLS certificates are used to secure web-
sites and provide information about the domain owner’s
identity. We extract all the server names to build a list of
all registered second-level domains to check against our

3. https://certstream.calidog.io/

TABLE 2: Generated candidates for cross-language
sound-squatting by language combination and for typo-
squatting.

Sound-squatting Other-squatting

Language G2P

Language P2G en-GB en-US fr-FR

en-GB 15 427 14 210 23 910
en-US 16 526 14 878 24 984
fr-FR 19 218 15 852 14 103

Overall 140 581 360 652

candidates. This is the most time-consuming part due to
the overwhelming amount of data. By searching on these
names, we can identify domains that potentially could
impersonate popular websites very early in their life-cycle.
This step is crucial in identifying squatting attacks.

4.2. Analysis of Registered Candidates

During 24 days from February 8 to March 3, 2023,
we collect a total of 208 652 973 certificate entries. These
certificates contain 44 876 072 unique registered domains,
of which 38 083 322 are unique 2nd-level domain names
4. These certificates were issued by 202 organizations
located in 46 different countries and across 4 037 Top
Level Domains (TLDs).

4.2.1. Quantitative analysis. From SimilarWeb5 we se-
lect the top 1 000 most accessed domains.6 Using Sound-
squatter we generate 159, 108 unique names from the
1, 000 candidates in the same 9 cross-language configura-
tion. Table 2 details the number of candidates by combi-
nation. Note that the amount of candidates is quite regular
for the same-language homophone generation. Still, when
the G2P is configured for fr-FR, there is a significant
increase in the number of generated candidates. Since fr-
FR is a complex, not phonetic language, the association
with en-US and en-GB gives some relevant possibilities
for the P2G module.

For comparison, the AIL typo-squatting tool generates
360 652 unique candidates from the same 1 000 domains,
using 14 different algorithms that modify the second-
level domain, such as omission, repetition, replacement,
double replacement, keyboard insertion, addition, strip
dash, vowel swap, add a dash, bit-squatting, homoglyph,
common misspelling, homophones, and singular pluralize.

Upon searching for these candidates in the stream of
certificates, we find 5 946 unique sound-squatting can-
didate names that cover 820 target domains potentially
being abused by over 13 495 registered domains. This
divergence between the number of names and domains can
be attributed to our search being limited to the second-
level domain, which considers domains with different
TLDs as a single name. For instance, for gugle.com

4. CT logs includes both new certificates and updates to existing
certificates

5. Accessed at 19/09/2022 using a free account
6. We collect the most popular domains that do not contain numbers

and acronyms or those that have a high likelihood of being randomly
generated because they are less likely to be used for sound-squatting
attacks. We filter out 174 to reach 1000 domains



TABLE 3: The percentage of sound-squatting candi-
dates generated for each language combination and other-
squatting that were found to exist in at least one domain
registered.

Sound-squatting Other-squatting

Language G2P

Language P2G en-GB en-US fr-FR

en-GB 10.26% 10.40% 4.63%
en-US 9.20% 9.60% 4.48%
fr-FR 10.84% 11.62% 9.40%

Overall 6.25% 8.98%

TABLE 4: Total of targets potentially abused by sound and
other-squatting. Notice that some domains are present in
a single combination.

Sound-squatting Other-squatting

Language G2P

Language P2G en-GB en-US fr-FR

en-GB 520 503 444
en-US 497 478 450
fr-FR 570 556 532

Overall 820 959

and gugle.tv being two different domains targeting the
same google domain. Table 3 shows the percentage of
candidates registered. Interestingly, the ratio for the same
language is similar across all languages.

Table 4 details the number of candidate domains that
we find to be potentially abused. Note that some domains
are potentially abused in a unique cross-language combi-
nation since the global unique abused domains are 820.
This provides strong evidence that sound-squatting also
considers cross-language homophones. Considering other-
squatting, we find 32 408 names potentially being abused
for 51 371 unique registered domains, which represents
a total of 8.98% of the generated candidates, for com-
pleteness, 30 586 names were exclusively found by AIL.
In total, 959 domains are potentially squatted by at least
one candidate using the typo-squatting technique. All in
all, the number of candidates found by sound- and other-
squatting domains are similar.

In summary, the Venn Diagram of names shows the set
of candidates generated by Sound-squatter, the set of can-
didates generated by AIL tool and all the names present in
the collected certificates. It clearly shows that the cross-
language sound-squatting has a small intersection with
the set of other-squatting with 4 124 domains being found
exclusively by Sound-squatter.

4.2.2. Quality of quasi-homophones. We finally as-
sess the quality of the set of homophones and quasi-
homophones generated by Sound-squatter. Soundex [21]
and Levenshtein Normalized Index of Similarity (or Lev-
enshtein ratio) [13] are normally used to evaluate the
quality of homophones. The Soundex algorithm is used
to calculate valid phonetic representation. Specifically,
we compare targets with candidates using Soundex. We
consider bad those with low quality scores. The Leven-
shtein ratio measures candidates with the original target’s
spelling. It returns a value in between 0 (dissimilar) and 1
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Figure 3: Venn Diagram of the generated names compar-
ing the sound-squatting and other-squatting technique. The
dashed border for CT Logs names indicates that we are
only comparing with our 24 days of observation.

TABLE 5: Top 20 in SimilarWeb Rank and the registered
squatting domains found for each. We consider the TLD.

Squatting Type

Target Domain Other Sound Intersection

google 236 69 10
youtube 145 103 4
facebook 97 23 4
instagram 82 2 1
twitter 78 34 1
baidu 121 146 7
yandex 56 19 4
xvideos 172 15 0
xnxx 163 15 7
wikipedia 71 22 5
pornhub 112 41 3
amazon 317 79 6
yahoo 108 57 6
tiktok 115 78 2
live 344 26 4
linkedin 74 7 1
reddit 80 99 8
whatsapp 144 46 6
xhamster 212 24 0
netflix 108 28 6

(identical). We consider bad those candidates with a Lev-
enshtein ratio distance smaller than 0.5. We find 140 581
sound-squatting candidates to pass both filters, i.e., only
around 11% are of bad quality.

4.2.3. Comparative behaviour in popular domains.
In Table 5, we compare the most popular domains in
the SimilarWeb Rank and the number of registered do-
mains found in the dataset by technique. Notice again
the commonly found names are very few. The behaviour
for sound-squatting is quite different from that for typo-
squatting, for instance. Sound-squatting tends to be more
successful in less known domains, where the written form
is less certain. Other-squatting instead targets the most
popular brands to profit from user mistakes and not brand
unfamiliarity. This is particularly worrisome, for instance,
in a scenario where a domain might be said and the
users need to phonetically transcribe it, e.g., in audio
advertisements.
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Figure 4: We compute the P (Squatting | X)/P (Squatting). Where X is Organization, Country or TLD. A divergence
in the ratio indicates some bias in the attackers choice for squatting.

4.2.4. Issuer and TLD characterization. The issuer field
on a certificate contains important information such as the
organization’s name and other identifying data. Using this
data, we compute the P (Squatting | X)/P (Squatting),
with X being either i) the subsets of Top-10 certificate
organizations, ii) issuer’s country, or iii) TLD of the
registered domain (Figure 4). Any ratio different from 1
(it is indicated by a vertical line) is an indication of a
correlation between the variables, i.e., less (< 1) or more
(> 1) probable of hosting abused domains.

In Figure 4a, we notice that ratio for ZeroSSL and
Google Trust is way above 1 suggesting high correla-
tion between these organization and squatting. Conversely,
Microsoft shows an extremely low probability of issuing
a squatting-related certificate.

Figure 4b also suggests that the probability of having
a squatting attack given a certificate issued in France is
10 times the average squatting rate in the dataset. Here
it is worth mentioning that we train Sound-squatter also
on French words so we expect more possible victims in
FR CAs. The TLD data on Figure 4c indicates, instead,
that the most popular TLDs do not seem to be particularly
targeted for squatting as the probability ratio is at most
1. A possible reason for this is linked to the costs and
availability in the registration of new domains with these
TLDs.

5. Related Work

Nikiforakis et al. discovered sound-squatting as a
phishing technique by generating candidates from a static
database of English homophones [15]. They replaced
words in domains with homophones, evaluate, and cat-
egorize the candidates. Sonowal and Kuppusamy focus
on phoneme-based squatting for visually impaired people
[18], [19]. They propose systems to detect phoneme-
based phishing in the accessibility interface and evaluate
exposure to phishing in email campaigns, proposing a
manual technique to detect phishing emails.

In [9], the authors evaluate how CAs are involved
in the HTTPS phishing ecosystem. In particular, what
insecure practices of CAs can lead to the increase of
the attacks. It show the high risk that squatting domains
present in a TLS environment due to end-users, who
may have just glanced at the browser’s address bar, can

believe the squatting domains to be legitimate. The au-
thors focus their report on combos, typo, and homograph
squatting. While [17] follows a similar methodology to
uncover the target embedding squatting technique that
embeds an entire target domain, unmodified, using one or
more subdomains of the actual domain. Using all HTTPS
certificates they perform a longitudinal analysis of how
target-embedding impersonation has evolved.

While [17] describes a methodology to uncover target
embedding squatting. The authors perform a longitudinal
analysis of how this technique has evolved using all
HTTPS certificates.

6. Conclusion

We introduced Sound-squatter, an AI-powered cross-
language sound-squatting generator. We used Transformer
trained to model both the phoneme representation and
the pronunciation of words, producing high-quality ho-
mophones, and not-existing words with similar pronunci-
ations. We added context to the input to control the target
languages during inference via Language Special Token.

We validated Sound-squatter’s capability to find
known homophones in English-US, English-GB, and
French-FR, explored the possibility of cross-language
sound-squatting, and compared it with other-squatting
techniques. We selected the most popular domains
and generated sound-squatting and typo-squatting
candidates for these domains. Upon searching for these
candidates in the stream of certificates, we found that
sound-squatting is not covered by traditional squatting
techniques (intersection between sound and other
squatting represents 2.3% of Sound-squatter candidates).
Yet, sound-squatting is as potentially popular as other-
squatting mechanisms, but it tends to target less-know
domains than other-squatting. We also extracted metrics
from certificates that may have contained impersonating
domains and presented the results as a preliminary study
of a possible sound-squatting abuse investigation.

For future work, we plan to investigate the use of
Sound-squatter for the protection of smart speakers and
software packages’ names. We also plan to investigate
multi-modal models to include sound features directly in
the model training.
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TABLE 6: Examples of phonemes for American English
with the grapheme and some examples (source [6]).

Type Phoneme Grapheme
Consonant S sham, ocean, sure, special, pension
Consonant v vine, of, stephen, five

Vowel æ cat, plaid, laugh
Vowel eı bay, maid, weigh, straight, pay

A. Background

A.1. Cyber-squatting and sound-squatting

Cyber-squatting is a type of attack where malicious
actors impersonate legitimate resources [4], often through
domain-squatting, which involves registering fake domain
names to divert traffic from popular websites. In 2018,
over 657 k domain names impersonating 702 popular
brands [22] were identified through an in-depth search
of more than 224 million DNS records [22]. Sound-
squatting, a form of domain-impersonation, exploits the
assumption that targets may confuse words with similar
pronunciations and can occur in various contexts, such
as with Alexa voice assistant abuses. Mitigating sound-
squatting requires extra DNS checks and purchasing po-
tential squatted domains, but to do so effectively, targeted
brands need to know which names attackers might use to
impersonate them. Sound-squatter helps generate ranked
candidate names to proactively mitigate the problem.

A.2. International Phoneme Alphabet (IPA)

The International Phonetic Alphabet represents
phonemes with standard symbols (IPA) [2]. Table 6

http://aspell.net
https://capec.mitre.org/data/definitions/616.html
https://capec.mitre.org/data/definitions/616.html
https://ail-project.github.io/ail-typo-squatting/
https://ail-project.github.io/ail-typo-squatting/


shows that some phonemes may be equivalent to more
than one grapheme. Some languages are phonetically
consistent, like Italian and German, where most
graphemes correspond to a single phoneme. Other
languages, like English, are not phonetically consistent,
leading to pronunciation confusion, and are more
susceptible to sound-squatting attacks.

Sound-squatter uses IPA to encode the input words.
There exist solutions that translate any word in the cor-
responding IPA. For instance the eSpeak NG (Next Gen-
eration) Text-to-Speech engine supports more than 100
languages. Sound-squatter uses it to derive the input IPA
given a target word and language.

A.3. Transformers Neural Networks

Transformers are a reality in the deep neural network
community. Initially proposed for translation [24], they
have been used as the means to achieve natural language
processing (NLP), computer vision (CV), and speech
processing. Transformers consist of an encoder and de-
coder, each with N identical blocks, including MultiHead
Attention and feed-forward layers. The decoder adds a
cross-multihead attention mechanism that computes the
attention between input and previous states of the target.
During training, it uses a mask to learn multiple states.
In inference, the decoder receives the previous states
generated to compute cross-attention, allowing correct
prediction of the next character in a word or the next
word in a sentence.

Sound-squatter uses Transformers to generate words
at the character level and using a beam search to generate
more than one single candidate. In consequence, Sound-
squatter generates alternative ways to write the same input
IPA sequence.
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