
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Deep Neural Network Architecture Search for Accurate Visual Pose Estimation aboard Nano-UAVs / Cereda, Elia; Crupi,
Luca; Risso, Matteo; Burrello, Alessio; Benini, Luca; Giusti, Alessandro; Jahier Pagliari, Daniele; Palossi, Daniele. -
ELETTRONICO. - (2023), pp. 6065-6071. (Intervento presentato al convegno 2023 IEEE International Conference on
Robotics and Automation (ICRA) tenutosi a London (UK) nel 29 May 2023 - 02 June 2023)
[10.1109/ICRA48891.2023.10160369].

Original

Deep Neural Network Architecture Search for Accurate Visual Pose Estimation aboard Nano-UAVs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICRA48891.2023.10160369

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2980543 since: 2023-07-20T07:25:06Z

IEEE

This paper has been accepted for publication in the IEEE ICRA 2023 conference
©2023 IEEE.

Deep Neural Network Architecture Search for Accurate Visual Pose
Estimation aboard Nano-UAVs

E. Cereda1, L. Crupi2, M. Risso2, A. Burrello3, L. Benini34, A. Giusti1, D. Jahier Pagliari2, and D. Palossi14

Abstract— Miniaturized autonomous unmanned aerial vehi-
cles (UAVs) are an emerging and trending topic. With their form
factor as big as the palm of one hand, they can reach spots
otherwise inaccessible to bigger robots and safely operate in
human surroundings. The simple electronics aboard such robots
(sub-100 mW) make them particularly cheap and attractive but
pose significant challenges in enabling onboard sophisticated
intelligence. In this work, we leverage a novel neural architec-
ture search (NAS) technique to automatically identify several
Pareto-optimal convolutional neural networks (CNNs) for a
visual pose estimation task. Our work demonstrates how real-
life and field-tested robotics applications can concretely leverage
NAS technologies to automatically and efficiently optimize
CNNs for the specific hardware constraints of small UAVs.
We deploy several NAS-optimized CNNs and run them in
closed-loop aboard a 27-g Crazyflie nano-UAV equipped with a
parallel ultra-low power System-on-Chip. Our results improve
the State-of-the-Art by reducing the in-field control error of
32% while achieving a real-time onboard inference-rate of
∼10 Hz@10 mW and ∼50 Hz@90 mW.

SUPPLEMENTARY VIDEO MATERIAL

In-field tests: https://youtu.be/dVCScckvcg8.

I. INTRODUCTION

Nano-sized unmanned aerial vehicles (UAVs) are gaining
significant momentum due to their reduced form factor (sub-
10 cm) and weight (sub-40 g), which allows them to fulfill
sensitive missions, such as in GPS-denied narrow spaces
and human proximity. Moreover, the simplified sensory,
mechanical, and computational sub-systems available aboard
these platforms make them particularly cheap and attractive
compared to their bigger counterparts. However, making
them fully autonomous, i.e., no external/remote infrastruc-
ture or computation, is still challenged by their simplified
electronics, e.g., sub-100 mW compute power, which is 1-2
orders of magnitude less than mobile phones’ processors.

These constraints hinder the adoption of standard algo-
rithmic pipelines, which often rely on memory/compute-
intensive sophisticated planning/localization/mapping algo-

This work was partially supported by the Secure Systems Research Center
(SSRC) of the UAE Technology Innovation Institute (TII) and the Swiss
National Science Foundation (SNSF) through the NCCR Robotics.

1E. Cereda, A. Giusti, and D. Palossi are with the Dalle Molle Institute
for Artificial Intelligence, USI and SUPSI, Lugano, 6962, Switzerland
name.surname@idsia.ch

2L. Crupi, M. Risso, and D. Jahier Pagliari are with the Department of
Control and Computer Engineering, Politecnico di Torino, Turin, 10129,
Italy name.surname@polito.it

3A. Burrello and L. Benini are with the Department of Electrical,
Electronic, and Information Engineering, University of Bologna, Bologna,
40136, Italy name.surname@unibo.it

4L. Benini and D. Palossi are also with the Integrated Systems Laboratory,
ETH Zürich, Zürich, 8092, Switzerland

rithms, and heavy pre-trained perception convolutional neural
networks (CNNs). Therefore, running these methods aboard
nano-UAVs is unfeasible. In this context, tiny CNNs in-
creasingly define the State-of-the-Art (SoA) of autonomous
nano-drones [1], [2]. First, they can be trained to operate on
data from very limited sensors, such as ultra-low power, and
tiny cameras with poor resolution/dynamic range. Second,
CNNs have predictable and fixed computational and memory
requirements at inference time. Third, the system designer
can tune such requirements to fit the available resources on
the robot by defining a suitable network architecture.

Roboticists integrating CNNs in larger robots can often
overlook the third aspect, relying on standard SoA architec-
tures such as ResNet50 [3] that easily fit in the available
resources. In contrast, thoroughly defining a suitable custom
CNN is crucial when developing nano-class robot systems.
The choice of the neural network architecture determines
whether the model can run on the robot and directly impacts
two critical parameters that affect the robot’s behavior: i)
prediction performance and ii) real-time throughput.

For many years, the only approach to fulfill the require-
ments posed by this complex optimization scenario with
contrasting objectives (i.e., obtaining accurate yet deployable
CNNs) was to resort to a manual, tedious, error-prone, and
time-consuming iterative hyper-parameters tuning based on
heuristics and rules-of-thumb. Nowadays, the go-to approach
to perform such optimization is based upon the neural archi-
tecture search (NAS) paradigm [4], [5]. NAS tools enable an
automatic exploration over an arbitrarily large search space
of different network topologies and hyper-parameters set-
tings. Furthermore, many novel NAS approaches can directly
optimize complex cost functions by combining different
objectives [5], [6], [7], such as regression performance and
the network’s computational complexity.

In this work, we exploit a novel computationally efficient
NAS technique [7], able to generate Pareto-optimal CNN
architectures in the accuracy vs. model size, to optimize a
vision-based human pose estimation task. First, we contribute
by enhancing the functionalities of an existing NAS engine,
which is needed to explore two different seed CNNs: PULP-
Frontnet [2] and MobileNetv1 [8]. Then, we thoroughly
analyze and deploy multiple CNNs on our target nano-drone
robotic platform. Ultimately, the delivered CNNs improve the
SoA baseline [2] at least for one metric among size (up to
5.6× smaller), speed (up to 1.5× faster), and accuracy (up to
32% lower horizontal displacement error). The improvement
in accuracy is finally confirmed by a challenging in-field
testing setup, with a never-seen-before environment.

ar
X

iv
:2

30
3.

01
93

1v
1

 [
cs

.R
O

]
 3

 M
ar

 2
02

3

https://youtu.be/dVCScckvcg8

II. RELATED WORK

Neural architecture search. NAS tools assist designers in
the design phase of DNNs by automatically exploring a large
space of architectures defined as combinations of different
layers and/or hyper-parameters. On constrained platforms,
these tools usually minimize an objective function that de-
pends both on task accuracy and non-functional cost metrics
(e.g., memory footprint, latency, or energy consumption).
Early NAS algorithms were based on evolutionary algo-
rithms (EA) [4] and reinforcement learning (RL) [5]. These
methods can explore arbitrary search spaces, and optimize
any cost function by iteratively sampling a network, training
it to convergence to evaluate performance, and then using
this information to drive the following sampling.

However, their extreme flexibility implies poor scalability,
due to their computational requirement, i.e., thousands of
GPU hours, even for simple tasks. Instead, differentiable
NAS (DNAS) [9], [6] has been proposed to mitigate this
issue. Early DNASes exploit supernets, i.e., networks whose
layers’ outputs are obtained as a weighted sum of multiple
alternative sub-layers (e.g., different types of convolution)
applied to the same input [9]. The weights assigned to
each alternative are optimized during training, based on an
accuracy/complexity-dependent loss, and the final network
is obtained by selecting, for each layer, the alternative
associated with the largest weight at the end of the search.
Compared to EA/RL approaches, DNAS trades some flexibil-
ity in the definition of the optimization target, which must be
differentiable, in exchange for a search process that requires a
single training. However, the convergency of a supernet is i)
not trivial, and ii) still expensive (in terms of GPU memory),
since multiple alternatives are instantiated for each layer.

Mask-based DNAS are a further step toward lightweight
architecture search. They replace the supernet with a single-
path DNN, usually referred to as seed [10], [11], [7], and
their search space is composed of sub-architectures obtained
from the seed by subtraction (e.g., eliminating some channels
in each convolution). In practice, these sub-networks are
simulated at training time using trainable masks, which
prune part of the seed. As in supernet DNASes, the masks are
optimized during training, but since the seed is much smaller
than a supernet, the time and memory overhead compared
to regular DNN training is minimal. On the one hand,
mask-based DNASes can only produce networks derived
from the seed; on the other, this allows for a much more
fine-grained search space exploration. For instance, they
can easily generate convolutions with an arbitrary number
of channels (e.g., 17, 25, or 31 for a 32-channel seed):
prohibitive with a supernet approach [7].

Nano-drones. Deploying CNN models for autonomous
navigation on a nano-drone introduces severe sensorial,
computational, and memory constraints due to limited form
factor, payload, and energy availability. Solutions built
around commercial off-the-shelf (COTS) microcontroller
units (MCUs) [12], [13] can afford only minimal neural
architectures to achieve real-time performance, such as [13]

with 27 kMAC (multiply-accumulate operations) per frame
at 100 Hz. These approaches are thus suitable only for
low-dimensional input signals, not for processing camera
images. More advanced visual approaches [2], [14] have been
enabled by careful hardware-software co-design, exploiting
general-purpose ultra-low-power multi-core System-on-Chip
(SoC) [15], integrated software deployment pipelines [16],
[17] and manually-tuned CNN architectures. These techno-
logical breakthroughs enabled PULP-Frontnet [2], a model
with 14.7 MMAC (3 order of magnitude larger than [13]), to
achieve an inference rate of 48 Hz while consuming 96 mW,
aboard a COTS Crazyflie 2.1 nano-drone.

An open research question still revolves around CNN’s
complexity/memory reduction, as answering it would pave
the way toward i) better energy utilization on battery-
limited devices, and ii) enabling multi-tasking systems, yet
not reached on nano-drones. Recent works [18], [19] have
aimed at reducing CNNs’ memory footprint with minimal
degradation in accuracy, achieving up to 27× reductions in
computation with just 4% lower accuracy [19], but still at
the cost of extensive manual fine-tuning of the architectures.
In this work, we leverage NAS techniques to efficiently and
automatically cope with this problem in a robotic domain.

Human pose estimation. We consider the robotic problem
of monocular relative pose estimation of a human subject
from an autonomous nano-drone. Despite the remarkable
accuracy of SoA computer vision approaches [20], [21],
[22], they are still far from the reach of nano-drones due to
the required amount of computational resources [22] (∼10s
GMAC). To date, the PULP-Frontnet CNN [2] represents one
of the few examples of a human pose estimation task fully
executed aboard a Crazyflie nano-drone in real-time. While
complex CNNs manage to estimate entire skeletons [21]
or even dense 3D mesh representations [22] of the person,
PULP-Frontnet minimizes its prediction to a 3D point in
space (x, y, z) and a rotation angle w.r.t. the gravity z-axis
(φ). MobileNetv1 [8] is another SoA CNN vastly used for
vision-based classification tasks, which has also been proven
accurate (e.g., 68.2% top-1 accuracy on ImageNet) when
streamlined down to the same power envelope allotted on our
nano-drone [23], [17]. For these reasons, we choose PULP-
Frontnet and MobileNetv1 as seed models for our NAS,
and we will refer to the PULP-Frontnet model as the SoA
baseline (FSoA) for the in-field comparison.

III. METHODOLOGY

A. Seed deep neural networks

In this work, we use a mask-based DNAS tool to optimize
three seed models: one based on the shallow PULP-Frontnet
architecture, and two based on a deeper MobileNetv1. PULP-
Frontnet is composed by 6 convolutional layers requiring
304 k parameters and up to 14.7 MMAC. The design of the
network was first introduced in [2] specifically for deploy-
ment on a nano-drone. On the other hand, MobileNetv1 [8]
is a deeper network formed by 27 different convolutional
layers, which mostly differ from the PULP-Frontnet by

Fig. 1. Left: the proposed masking scheme. Right: three possible outcomes
of the channel search process on a four-filters layer. θ0 = θ1 = 1 and
θ2 = θ3 = 0 means that the first two channels are kept alive, while the
second two are removed. Only the second and last channels are kept alive
in the second example, and only the first channel in the last one.

the separable depthwise and pointwise convolutional lay-
ers instead of traditional ones. Our two MobileNetv1 seed
networks vary by width multiplier, a hyperparameter that
controls the size of the feature maps throughout the model:
we consider width multipliers of 1.0 (M1.0) and 0.25 (M0.25),
corresponding to respectively 3.21 M and 204 k parameters.

B. Network architecture search

We optimize the network architecture using a mask-based
DNAS tool, namely pruning in time (PIT) [7], whose scope
is to search for smaller and more lightweight networks which
hold almost the same accuracy as the seed models. PIT shows
low memory and execution time overheads (only ∼30% of
the training time), several orders of magnitude lower than
other NAS engines [4], [5], [9]. Additionally, the availability
of good reference architectures for our task that can be
used as seed fits well with a mask-based approach, which
efficiently explores different sub-networks contained within
the seed.

The NAS we propose performs a fine-grained search of
the number of output channels in all convolutional layers
of a 2D CNN. The approach is derived from the channel
search scheme originally described in [7] for 1D Temporal
Convolutional Networks. Figure 1 summarizes our NAS
functionality: for each convolutional layer in the seed, its
weight tensor W , with Cout output channels, is isolated, and
the correspondent searchable tensor WΘ is built as:

WΘ = W �H(θ) (1)

where � is the Hadamard product, θ is a trainable mask
vector of Cout elements, in which each component θi
represents the mask for a specific channel, and H is the
Heaviside step function used to binarize θ. Depending on
the binarized values of H(θi) the correspondent i-th output
channel of W may be kept alive (H(θi) = 1) or removed
(H(θi) = 0). Therefore PIT finds models which only vary in
the number of channels w.r.t. the seed networks. Compared
to its original version proposed in [7], we also added support
for jointly exploring the channels of pointwise and depthwise
layers, the two main layers in depth-separable convolutional
blocks and basic components of MobileNet architectures.

To do so, we used shared masks to select the number of
channels of these two layers, since the output channels of
a depthwise convolution are completely determined by the
preceding pointwise layer.

The obtained network is inserted in a normal training
loop where W and θ are trained in conjunction to solve
the following optimization problem:

min
W,θ
L(W ; θ) + λR(θ) (2)

where L is the task-specific loss function (i.e., the same
loss function as the seed CNNs) and R is a regularization
loss term representing a cost metric to be optimized (e.g.,
n. of parameters, n. of operations, etc.). λ is the so-called
regularization strength, a hand-tuned scalar term used to
balance the two losses. Once loss terms of Eq.2 are defined,
λ represents the main knob upon which the designer can
act to drive the search towards more accurate or less costly
networks. For our use case, we considered λ ∈ [5 · 10−11 :
5 · 10−5]. As regularization loss R, we used a differentiable
estimate of the number of parameters of the network as a
function of the NAS mask values. In this way, we can bias the
exploration phase towards architectures that are both small
and accurate.

C. System design

Robotic platform. Our target robotic platform is the
Bitcraze Crazyflie 2.11, a 27 g nano-quadrotor. This drone
features a main STM32 MCU in charge of basic functionali-
ties, such as state estimation and control loops. In our in-field
deployment, it is extended with a 5 g commercial AI-deck
companion board [1]. The AI-deck features an additional
MCU: the GreenWaves Technologies GAP8, which embodies
the parallel ultra-low power paradigm [15] through a RISC-
V-based multi-core SoC. These two processors communicate
via a bidirectional UART interface. The GAP8 is designed
with two power domains: a single-core fabric controller
(FC) that orchestrates the interaction with external memo-
ries/sensors and offloads computationally intensive kernels
on a second 8-core cluster (CL) domain. The SoC’s memory
hierarchy relies on 64 kB of low-latency L1 memory shared
among all cluster cores and 512 kB of L2 memory within
the FC domain. The GAP8 also features two DMA engines
to efficiently automate data transfers from/to all memories
and external peripherals, such as 8 MB off-chip DRAM and
a QVGA monochrome camera, both available on the AI-
deck. However, it provides neither data caches nor hardware
floating-point units, dictating explicit data management and
the adoption of integer-quantized arithmetic, respectively.

Deployment tools. To fulfill the platform’s requirements,
we exploit two tools to i) train integer-only neural networks
and ii) automatically and optimally generate C code for
the target network. The first tool, the open-source NEMO
library [16], based on the PyTorch framework, is used to
train the network in three sequential steps. First, NEMO

1https://www.bitcraze.io/products/crazyflie-2-1/

Fig. 2. Pareto curves of the networks extracted from the NAS in the clock
cycles vs. MAE space (lower is better).

trains a full-precision floating-point network to minimize
the sum of the L1 loss for the pose estimation vector
(x, y, z, φ). We use the SGD optimizer with a lr of 0.001
over 100 epochs, selecting at the end the model which
achieved the lowest validation loss. After, we convert this
model into a fake-quantized network. In this stage, weights
and activations are still represented as float32 values, but
their magnitude can assume only a discrete (256 for 8-bits
quantization) set of values. Given the support offered by
the optimized kernels for GAP8, we use linear per-layer
quantization and PACT [24] in this fine-tuning step. We
choose to use 8-bit quantization since it is natively supported
by the SIMD operations in the RISC-V ISA extensions,
which allow the execution of four int8 MACs within a
single cycle. To maximize the accuracy of the network, we
initialize the fake-quantized network with the floating point
weights, and we perform 100 additional train epochs with
the same parameters. The final step is the creation of the
integer deployable network. Compared to the fake-quantized
network, all the tensors are represented by integer numbers
and a float scale factor. Tensors t are approximated as

t ≈ εt · t∗ , (3)

where t is the fake-quantized tensor, t∗ is the integer-only
tensor, and εt is the scale floating point factor. Therefore, the
network can run entirely in the integer domain by multiplying
and accumulating only integer values.

The CNN deployment is based on the open-source PULP-
NN library [25], which encompasses optimized 8-bits fixed-
point arithmetic kernels. In particular, it exploits the eight
general-purpose cores of the CLUSTER of GAP8 SoC and
the ISA-specific optimizations to maximize kernels’ per-
formance. Given a theoretical maximum of 32 MAC/cycle
(4 MACs can be executed thanks to the int8 SIMD for
each of the 8 cores), PULP-NN is able to reach a peak
of 15.6 MAC/cycle for squared-size images. Note that the
library peak is obtained by perfectly re-using data in the
register file, reducing the number of necessary loads and
stores per each MAC. If no data is stored in the register

TABLE I
TEST SET EXPERIMENT RESULTS

Network MAE R2 score

x y z φ x y z φ

Trivial 0.46 0.61 0.17 0.55 0.0 0.0 0.0 0.0
FSoA [2] 0.19 0.18 0.09 0.44 0.80 0.65 0.55 0.26
Fsmall 0.20 0.20 0.09 0.44 0.79 0.65 0.51 0.24
M0.25

small 0.17 0.20 0.08 0.44 0.84 0.63 0.62 0.22
M1.0

small 0.17 0.18 0.07 0.42 0.83 0.67 0.62 0.28

file for data re-use, two loads would be required for MAC
inputs and one store to save the result in memory, reducing
the theoretical peak to 8 MAC/cycle. On the other hand, the
PULP-NN kernels consider data to be stored in the shared L1
64 kB memory, relegating their applicability to small layers.

To cope with this constraint, we employ a second open-
source tool, DORY [17]. This tool automatically produces
template-based C code, which wraps the PULP-NN kernels,
managing the different levels of memories of GAP8 (i.e., L1,
L2, and the external RAM) and orchestrating the tensors’
movements. In particular, DORY exploits a tiling approach
to separate layers into small nodes whose tensors can fit the
L1 memory of the system. Thanks to this, the kernels can
be directly executed in these nodes. DORY produces indeed
the C routines, which i) execute the kernels of the small
nodes with tensors stored in L1, and ii) double-buffer the
movements of tensors from L2 to L1, to always have data
ready for kernel execution. Notice that since the DMA is not
blocking, the calls to the kernels are always overlapped with
the asynchronous DMA calls.

Closed-loop control. We deploy our models as part of the
same closed-loop control system from [2], which allows to
maintain the drone at a desired 3D pose in front of the person.
Four main components are involved: i) the CNN model
outputs a point-in-time pose estimate from a single image,
ii) a Kalman filter produces smooth temporally-consistent
sequences of poses, and iii) a velocity controller computes
the drone’s desired pose from the subject’s current pose and
generates velocity setpoints to bring the drone to the desired
pose. iv) the Crazyflie’s low-level control, responsible for
motor actuation and stabilization. We adopt a Kalman filter
decoupled between the model’s four outputs, by assuming
diagonal process and observation noise covariance matrices.
The velocity controller is also decoupled between linear
velocity control, whose goal is to reach the specified target
position, and angular velocity control, which keeps the
subject centered in the image frame.

IV. RESULTS

A. NAS Pareto analysis

In Figure 2, we show and analyze the architectures found
by our NAS algorithm. We compare on one axis the inference
latency (number of clock cycles), whereas, on the other, we
report the mean absolute error (MAE), expressed as the sum
of L1 errors on (x, y, z, φ) between the networks predicted

Fig. 3. R2 score of the four deployed models (higher is better).

values and the ground truth. The trivial predictor, i.e., a
network that always predicts each output as its mean value
in the test set, represents a lower bound to the models’
MAE. From our three seed network architectures, the NAS
search discovers eight new models, most of which lie on the
global Pareto front in the space of MAE vs. the number of
cycles. The found architectures range from 1.27M to 3.69M
execution cycles, with corresponding MAE values from 1.31
to 0.84. In detail, PULP-Frontnet models occupy the left-
most section of the Pareto curve, being very lightweight but
less accurate. The middle is populated by models derived
from the MobileNet 0.25× seed. Finally, the most accurate
architectures are derived from MobileNet 1.0×. This seed
architecture is too big to fit in the GAP8’s L2 memory.
However, our NAS algorithm can shrink it enough to find
great solutions: absolute top-performing models that only
increase latency by 15% compared to FSoA [2].

From the global Pareto front, we select four models
to deploy and further analyze. The first is FSoA, which
corresponds to the original PULP-Frontnet, the current state-
of-the-art, and our baseline. The Fsmall architecture is the
fastest model, still achieving a MAE roughly equivalent to
FSoA. M1.0

small is the most accurate architecture found by
the NAS, but also the most expensive in terms of latency.
M0.25
small represents the most balanced trade-off between the

two metrics, with both better than or equivalent to FSoA.
In the following sections, we further analyze the selected
architectures’ performance on the test set and their behavior
in the field in a closed-loop system.

B. Regression performance

In Table I and Figure 3, we break down the models’ regres-
sion performance in the four output variables, (x, y, z, φ).
For each output, in addition to the MAE values, we report
the coefficient of determination R2, a standard adimensional
metric that represents the fraction of variance in the target
variable explained by the model2. Compared to the MAE, the
R2 score quantifies the quality of a regressor independently
of the target variable’s variance and is, therefore, better suited

2R2 = 1 −
∑

i
(yi−ŷi)2/

∑
i
(yi−ȳ)2 with yi the ground-truth output

and ŷi the model prediction for each test sample i, ȳ the mean of ground-
truth outputs. An R2 = 1.0 corresponds to a perfect regressor, while the
trivial regressor achieves R2 = 0.0.

TABLE II
COMPUTATION AND MEMORY FOOTPRINT FOR INFERENCE ON ONE

FRAME (F: PULP-FRONTNET, M: MOBILENET).

Network Params MAC Cycles Memory P [mW] T [fps]

FSoA [2] 304 k 14.7 M 3.2 M 499 kB 92.2 45.3
Fsmall 44 k 7.6 M 1.5 M 231 kB 81.3 71.6
M0.25

small 65 k 7.4 M 2.2 M 591 kB 86.9 51.2
M1.0

small 54 k 12.4 M 3.7 M 415 kB 88.3 32.7

for comparing regression performance between different
variables. Performance on all outputs shows trends consistent
with those on the aggregated loss, confirming M1.0

small as the
top performing on all outputs except for x, where M0.25

small

performs slightly better. In Figure 3, we see that all models
can predict x and y best while φ is the most difficult to
estimate, matching the findings of background work.

C. Onboard performance assessment

We assess the onboard performance of the CNNs se-
lected in the previous Section IV-A. To nail down the
computational, power, and memory requirements, we profiled
our models, running them on the GAP8 SoC and using a
RocketLogger data logger [26] (64 ksps). For these experi-
ments, we test three SoC operating points: minimum power
consumption with FC@25 MHz CL@25 MHz VDD@1 V,
most energy-efficient with FC@25 MHz CL@75 MHz
VDD@1 V, and maximum performance with FC@250 MHz
CL@170 MHz VDD@1.2 V, as shown for the PULP-
Frontnet baseline [2]. Table II summarizes the analysis on the
four CNNs, showing that NAS models significantly reduce
parameters (up to -85% w.r.t. FSoA), MACs, clock cycles,
and memory (all three around -50%). Power and throughput
figures for the operative point used in the in-field experiments
(max. performance) are also reported. Figure 4 shows the
relation between power and throughput, across the three
operative points. We see that the two smaller models M0.25

small

and Fsmall improve upon the baseline FSoA in both regards,
resulting in higher energy efficiency. Figure 5 breaks down
the power usage of the entire system. Crazyflie electronics
plus the AI-deck cost 4.8% of the total budget, almost
saturating the power that can be allocated to sensing and
computing [27]. As the GAP8 accounts for 24% of that,
there is a clear benefit in best optimizing its workload.

D. In-field experimental evaluation

We further validate the proposed networks in a closed-
loop, in-field experiment. We ask a human subject to follow
a predefined path, while the drone is tasked to stay in front
of them at eye level, at a distance of ∆ = 1.3 m. For
consistency, we adopt the same test setup proposed by [2],
with a 50 s path composed of 8 phases of increasing difficulty
for the model (walking straight along different directions,
walking along a curve, and rotating in place). To ensure
repeatability between different runs of the experiment, we
ask the subject to completely ignore the drone’s behavior and
instead synchronize each step to the beats of a metronome.

Fig. 4. Throughput vs. power consumption for the four models at various
operative points.

Fig. 5. Nano-drone’s power breakdown, running the M0.25
small model.

The experiment is performed with both a subject and an
environment outside of our training set, stressing the models’
generalization capabilities. We perform four experiment runs
for each of the four models, plus one baseline run in which
the drone is controlled using perfect information about the
subject’s pose from a mocap system, a total of 17 test flights.

Table III summarizes our results in this experiment. We
provide quantitative measures of three aspects of the system’s
performance: overall path completion, inference accuracy,
and control accuracy. We measure path completion for each
model in terms of total flight time over the four runs and
mean percentage of path completed, interrupting a run as
soon as the person completely leaves the camera field of
view. In the challenging never-seen-before environment used
for this experiment, the two PULP-Frontnet models struggle
to complete the path (especially Fsmall, which reaches
only 35% on average), while the two MobileNet models
consistently maintain the tracking until the end. We mark
metrics corresponding to incomplete runs with an asterisk
because they cannot be directly compared with other runs.

Inference accuracy then evaluates the models in isolation,
measuring their ability to correctly estimate the subject’s
position w.r.t. to the drone. As in the reference work, here
we do not consider the z component because the target
height is approximately constant in our task. We report the
MAE, to allow direct comparison with offline performance
on the test set reported in Section IV-B. As expected, abso-

TABLE III
IN-FIELD EXPERIMENT RESULTS

Network
Flight

time [s]
Completed
path [%]

MAE Mean pose error

x y φ exy [m] eθ [rad]

Mocap 165 100 0.0 0.0 0.0 0.18 0.21
FSoA [2] 140 85 0.33* 0.12* 0.77* 0.72* 0.78*
Fsmall 58 35 0.81* 0.53* 0.55* 0.65* 0.42*
M0.25

small 165 100 0.25 0.11 0.52 0.49 0.59
M1.0

small 165 100 0.31 0.13 0.52 0.58 0.59

Fig. 6. In-field control errors distribution (lower is better). Boxplot whiskers
mark the 5th and 95th percentile of data.

lute performance decreases significantly due to the different
environments. At the same time, we see that the best in-
field regression performance comes from M0.25

small, instead
of M1.0

small as on the test set. One explanation is the lower
number of parameters in the former model, which makes it
less prone to overfitting and thus generalize better.

Finally, control accuracy evaluates the whole system’s
precision in tracking the subject as it moves along the path.
We compare the drone’s actual pose against the desired pose,
measuring two errors: the absolute position error exy (i.e.,
the distance between the two poses in the horizontal plane)
and the absolute angular error eθ (i.e., the difference in
orientation). M0.25

small is the best on both metrics, confirming
itself as the best-performing in-field. In Figure 6, M0.25

small is
the model with the lowest variance in absolute position error,
further explaining its better performance. In addition, visu-
ally inspecting the drone’s behavior shows that the M0.25

small

model is noticeably more accurate than the baseline FSoA. To
complement our results, we provide a supplementary video
of the four model’s behavior in the in-field experiments.

V. CONCLUSION

This system paper presents a practical use case on NAS
technologies applied for a challenging robotic visual per-
ception human pose estimation task on nano-drones. Start-
ing from two seed CNNs (i.e., PULP-Frontnet and Mo-
bileNetv1), we select four Pareto-optimal models to be
deployed aboard a resource-constrained (i.e., sub-100 mW)
nano-quadrotor. We assess the capabilities of the CNNs with
a thorough analysis: from their regression performance on a
disjoint test set, an onboard performance evaluation (power
consumption and throughput), down to an in-field closed-
loop test in a never-seen-before environment. Our best model
improves the SoA by reducing the in-field control error of
32% with a real-time inference rate of ∼50 Hz@90 mW.

REFERENCES

[1] D. Palossi, F. Conti, and L. Benini, “An open source and open hard-
ware deep learning-powered visual navigation engine for autonomous
nano-uavs,” in 2019 15th International Conference on Distributed
Computing in Sensor Systems (DCOSS), 2019, pp. 604–611.

[2] D. Palossi, N. Zimmerman, A. Burrello, F. Conti, H. Muller, L. M.
Gambardella, L. Benini, A. Giusti, and J. Guzzi, “Fully onboard ai-
powered human-drone pose estimation on ultralow-power autonomous
flying nano-uavs,” IEEE Internet of Things Journal, vol. 9, no. 3, pp.
1913–1929, 2022.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[4] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.
Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in
International Conference on Machine Learning. PMLR, 2017, pp.
2902–2911.

[5] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2820–2828.

[6] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” arXiv preprint arXiv:1812.00332,
2018.

[7] M. Risso, A. Burrello, F. Conti, L. Lamberti, Y. Chen, L. Benini,
E. Macii, M. Poncino, and D. J. Pagliari, “Lightweight neural archi-
tecture search for temporal convolutional networks at the edge,” IEEE
Transactions on Computers, 2022.

[8] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[9] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[10] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and
E. Choi, “Morphnet: Fast & simple resource-constrained structure
learning of deep networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 1586–1595.

[11] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu, T. Xu,
K. Chen, et al., “Fbnetv2: Differentiable neural architecture search
for spatial and channel dimensions,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
12 965–12 974.

[12] G. Shi, W. Hönig, Y. Yue, and S.-J. Chung, “Neural-swarm: Decen-
tralized close-proximity multirotor control using learned interactions,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 3241–3247.

[13] W. Zhao, J. Panerati, and A. P. Schoellig, “Learning-based bias
correction for time difference of arrival ultra-wideband localization of
resource-constrained mobile robots,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 3639–3646, 2021.

[14] D. Palossi, F. Conti, and L. Benini, “An open source and open hard-
ware deep learning-powered visual navigation engine for autonomous
nano-UAVs,” in 2019 15th International Conference on Distributed
Computing in Sensor Systems (DCOSS), 2019, pp. 604–611.

[15] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold RISC-V
core with DSP extensions for scalable IoT endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, Oct 2017.

[16] F. Conti, “Technical report: Nemo dnn quantization for deployment
model,” arXiv preprint arXiv:2004.05930, 2020.

[17] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and
F. Conti, “Dory: Automatic end-to-end deployment of real-world dnns
on low-cost iot mcus,” IEEE Transactions on Computers, pp. 1–1,
2021.

[18] M. Navardi, A. Shiri, E. Humes, N. R. Waytowich, and T. Mohsenin,
“An optimization framework for efficient vision-based autonomous
drone navigation,” in 2022 IEEE 4th International Conference on
Artificial Intelligence Circuits and Systems (AICAS), 2022, pp. 304–
307.

[19] L. Lamberti, V. Niculescu, M. Barciś, L. Bellone, E. Natalizio,
L. Benini, and D. Palossi, “Tiny-pulp-dronets: Squeezing neural net-
works for faster and lighter inference on multi-tasking autonomous

nano-drones,” in 2022 IEEE 4th International Conference on Artificial
Intelligence Circuits and Systems (AICAS), 2022, pp. 287–290.

[20] X. Sun, B. Xiao, F. Wei, S. Liang, and Y. Wei, “Integral human pose
regression,” in Proceedings of the European Conference on Computer
Vision (ECCV), September 2018.

[21] D. C. Luvizon, D. Picard, and H. Tabia, “2d/3d pose estimation and
action recognition using multitask deep learning,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
5137–5146.

[22] R. A. Güler, N. Neverova, and I. Kokkinos, “Densepose: Dense human
pose estimation in the wild,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

[23] A. Capotondi, M. Rusci, M. Fariselli, and L. Benini, “Cmix-nn: Mixed
low-precision cnn library for memory-constrained edge devices,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 5,
pp. 871–875, 2020.

[24] J. Choi, S. Venkataramani, V. Srinivasan, K. Gopalakrishnan, Z. Wang,
and P. Chuang, “Accurate and efficient 2-bit quantized neural net-
works,” in Proceedings of the 2nd SysML Conference, vol. 2019, 2019.

[25] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “Pulp-nn:
A computing library for quantized neural network inference at the
edge on risc-v based parallel ultra low power clusters,” in 2019 26th
IEEE International Conference on Electronics, Circuits and Systems
(ICECS). IEEE, 2019, pp. 33–36.

[26] L. Sigrist, A. Gomez, R. Lim, S. Lippuner, M. Leubin, and L. Thiele,
“Rocketlogger: Mobile power logger for prototyping iot devices:
Demo abstract,” in Proceedings of the 14th ACM Conference on
Embedded Network Sensor Systems CD-ROM, 2016, pp. 288–289.

[27] R. Wood, B. Finio, M. Karpelson, K. Ma, N. Pérez-Arancibia,
P. Sreetharan, H. Tanaka, and J. Whitney, “Progress on ‘pico’ air
vehicles,” The International Journal of Robotics Research, vol. 31,
no. 11, pp. 1292–1302, 2012.

	I Introduction
	II Related work
	III Methodology
	III-A Seed deep neural networks
	III-B Network architecture search
	III-C System design

	IV Results
	IV-A NAS Pareto analysis
	IV-B Regression performance
	IV-C Onboard performance assessment
	IV-D In-field experimental evaluation

	V Conclusion
	References

