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Abstract
In this paper, we study the multi-depot k-traveling repairman problem. This prob-
lem extends the traditional traveling repairman problem to the multi-depot case. Its
objective, similar to the single depot variant, is the minimization of the sum of the
arrival times to customers. We propose two distinct formulations to model the prob-
lem, obtained on layered graphs. In order to find feasible solutions for the largest
instances, we propose a hybrid genetic algorithm where initial solutions are built
using a splitting heuristic and a local search is embedded into the genetic algorithm.
The efficiency of the mathematical formulations and of the solution approach are
investigated through computational experiments. The proposed models are scalable
enough to solve instances up to 240 customers.
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1 Introduction

In recent years, among practitioners and researchers, there has been a growing con-
cern about the investigation of different problems arising in the class of Traveling
Repairman Problem (TRP). Originally proposed in the repair and maintenance ser-
vice context, this problem class has recently received attention from practitioners and
researchers, stimulated by the wide range of applications of the problem in fields
where the minimization of the sum of arrival times to customers is more important
than other objective functions. Routing problems for emergency operations and post-
disaster relief activities [4], home delivery services [23] and disk-head scheduling [3]
and other customer-centered problems are examples of elective applicative fields.

The Multi-Depot k-TRP (MDk-TRP) generalizes the traditional single depot TRP
to the multi-depot case and consists in minimizing the sum of the arrival times to the
customers visited by a homogeneous fleet of k vehicles, housed at different depots. The
introduction of cumulative costs into the objective function (i.e. the arrival time instead
of the travel time as common in most routing problems) poses severe computational
challenges [28] and the presence of multiple depots makes the problem even more
complicated.

There is a lack of contributions on this problem variant, when compared to the
standard multi-depot vehicle routing problem [25], even though it better reflects many
real-world logistics systems. In the field of city logistics, for instance, widespread cus-
tomer positions coupledwith the sustainability challenge compelled the use ofmultiple
distribution centers (also called satellites) [30]. This two-tier system is advantageous
since each customer can be visited by vehicles from the closest satellite, reducing
traffic jams and decreasing the level of emissions of associated pollutants.

The characteristics of spread customer positions, and multiple distribution centers
is not only related to the last mile distribution system. Also in the health-care context,
especially from the perspective of the design and optimization of emergency logistic
systems in the aftermath of a disaster, relevant problems have been often modeled as
a multi-depot routing problem [40,43]. Disasters can be devastating to communities
and governments, and decision-making, in this customer-centric setting, needs to be
quick and efficient since it becomes crucial to plan life-saving relief plans. There
are numerous areas of disaster relief management for which the benefits of using
multiple distributions centers are valuable. Timely delivery of medical supplies or
reliefs, post-disaster assessment and recovery, are all linked to effective, customer-
oriented multi-depot routing problems [45].

In this paper, we present two mathematical formulations for the MDk-TRP and we
develop a genetic algorithm. Extensive computational experiments, run on a set of
benchmark instances, show the efficiency of the proposed approach. The remainder of
this paper is organized as follows. InSect. 2,weprovide a detailed reviewof the relevant
literature. In Sect. 3, we describe the problem and present two new mathematical
formulations using the concept of layered network. In Sect. 4, we explain the proposed
genetic algorithm in detail. Section 5 presents the computational results carried out
on a set of benchmark instances. Finally, our major conclusions and future research
directions are presented in Sect. 6.
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2 Related works

The TRP, also known as the minimum latency problem or the delivery man problem,
has been extensively studied by a large number of researchers who proposed several
exact and non-exact approaches. In [20] and [2] exact enumerative algorithms were
developed, in which lower bounds are derived using a Lagrangian relaxation. An
enumerative algorithm that makes use of lower bounds obtained from a linear integer
programming formulation was proposed in [9]. A metaheuristic method which is
based on a Greedy Randomized Adaptive Search Procedure (GRASP) and Variable
Neighborhood Search (VNS)was proposed in [37]. A general VNSmetaheuristic [24],
was able to outperform the one suggested by [37].

The generalization of the TRP to the case with multiple identical vehicles (k-TRP)
was first presented in [8]. In [21], the authors proposed an exact branch-and-price-
and-cut algorithm for the multi-vehicle TRP with a distance constraint. An ad hoc
label-setting algorithm with bi-directional search strategy is developed to solve the
pricing problem. They tested 180 instances with up to 50 nodes and obtained an
average gap less than 0.5%. In [28], a new and efficient mathematical formulation for
the k-TRP, defined on amulti-layer network, was presented, then solved by an iterative
greedy metaheuristic approach. In [1], five mathematical models for the multi-vehicle
TRP are introduced. The first three models are derived from the classical and flow-
based formulations, while the last two ones are generalizations of the time-dependent
TRP formulation. The authors tested the formulations with instances up to 80 nodes
and 16 vehicles, where the largest instance is solved in 86 s. The authors showed that
the last two models perform better in terms of computational time. Interesting variants
of k-TRP with service level as well as with profits or under uncertainty on travel times
have been recently investigated [4,5].

A generalization of the TRP, which considers a demand associated to each node
and adds capacity constraints is known as the Cumulative Capacitated Vehicle Routing
Problem (CCVRP) [17]. In the last decade, a flourishing literature stream has been
dedicated to the study of mathematical models [36], exact algorithms [22], as well
as heuristic and metaheuristic approaches [18,29,35] for the class of CCVRPs. The
investigation of heuristic and metaheuristics approaches for the CCVRP was con-
ducted in [26] where a memetic heuristic procedure was developed; an adaptive large
neighbourhood metaheuristic was proposed in [34]. In [39], the authors designed a
hybrid metaheuristic algorithm for the min-max CCVRP enhanced with a two-stage
adaptive variable neighbourhood search. An exact column generation approach was
developed in [12], and later, the same authors proposed a heuristic approach in [13].
In [27], the authors introduced two new mathematical models for the CCVRP and
proposed an iterated greedy algorithm outperforming other existing methods in the
literature. Recently, in [11] was studied the CCVRP under uncertainty of demands,
for which an approximation algorithm was developed.

The MDk-TRP is a variant of k-TRPs which considers the presence of multiple
depots. Despite the richness of contributions for the multi-depot vehicle routing prob-
lem (interested readers are referred to [25,33,38] and references therein), a few papers
deal with multi-depot variant of the TRP. We cite [19], where a three-index mathe-
matical model is proposed for the multi-depot CCVRP. The authors also proposed a
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partial optimization metaheuristic that decomposes the problem into sub-problems,
later solved using either an approximate or an exact approach. To overcome the com-
putational challenge posed by large-scale multi-depot CCVRP instances, a simple and
efficient heuristic was proposed in [44] able to outperform the heuristic presented in
[19] in terms of solution quality, computational time, as well as stability.

3 Mathematical models

The MDk-TRP is defined on an undirected graph G = (V , E) where V = C ∪ D
represents the vertex set composed of the set of customers C of cardinality n and the
set of potential depots D of cardinality m. The set E denotes the edge set. Each edge
(i, j) ∈ E has associated a travel time ti j for which the triangular inequality holds.
According to the application at hand, this traveling cost can be interpreted as distance,
time, fuel consumption, etc. A homogeneous fleet of k vehicles is dispatched from
the m potential depots to visit all the n customers. Decisions also entail the selection
of a subset of depots to host the vehicles and the determination of the number of
vehicles to be sited at each active depot. The objective is to find a feasible routing plan
such that the sum of the arrival times is minimized. Since the objective function is
defined as the total latency (total waiting time), the travel time between the last visited
customer by the vehicle and the depot to come back is not concerned. Therefore, we
apply the terms tour and path (route) interchangeably throughout the paper. Strong
mathematical models for the k-TRP [28] use a multi-layer network representation.
The layered network is described as follows.

Let L be the set of levels L = {1, . . . , r , . . . , N }, where N = n − k + 1, and each
level includes a copy of all the customers amended also with the depot in levels from
2 to N . Each path ends in the first level and starts in a copy of the depot in some level.
In fact, the level number represents the position of the customer: the customer in the
first level is the last one, the customer in the second level is the last but one, and so on.
By using this network, it is easy to enforce the restriction that two distinct vehicles
cannot visit the same customer, neither in the same level nor in different levels. In the
next section, we will present two variants of the layered network enabling two new
mathematical formulations for the MDk-TRP.

3.1 First formulation

Hereafter, we present the first mathematical formulation for the MDk-TRP. To extend
the network to the multi-depot context, we add copies of the depots from levels 2 to
N . Figure 1 illustrates this approach.

In Fig. 1, customers are displayed by squares and depots by circles. Node 0 denotes
an auxiliary depot to specify the start of each path. As it can be seen, for each level,
all the copies of the depots in the set D are linked to the corresponding starting node
0 at the same level. In other words, when the node 0 is active, one of the depots must
be associated to it indicating the start of the path.
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Fig. 1 Layered network for the MDk-TRP: first graphical representation

The variables are defined as follows. Let xri be a binary variable that takes value 1
iff customer i ∈ C is visited at level r ∈ L . If xri = 1, customer i is active at level r
and there are r − 1 customers to be visited after in the same route. Let yri j be another
binary variable that is set to 1 iff j ∈ C is visited right after i ∈ C ∪ {0} and there are
exactly r customers to be visited after node i . Finally, wr

i j represents a binary variable
that takes value 1 iff j ∈ C is the first customer to be visited (at level r , r ≥ 2) by a
vehicle dispatched from the depot i ∈ D and there are r customers to be visited after.
In other words, wr

i j = 1 only if yr0 j = 1, and 0 otherwise.
The first mathematical model is expressed as follows.

min : z1 =
∑

i∈D

∑

j∈C

∑

r∈L
r ti jw

r
i j +

∑

i∈C

∑

j∈C
j �=i

∑

r∈L
r �=N

rti j y
r
i j (1)

∑

r∈L
xri = 1 i ∈ C (2)

∑

r∈L

∑

j∈C
yr0 j = k (3)

∑

i∈C
x1i =

∑

r∈L

∑

j∈C
yr0 j (4)

∑

j∈C
j �=i

yri j = xr+1
i i ∈ C, r ∈ L, r �= N (5)

yr0 j +
∑

i∈C
i �= j

yri j = xrj j ∈ C, r ∈ L, r �= N (6)

yN0 j = xNj j ∈ C (7)

123



M. E. Bruni et al.

∑

i∈D
wr
i j ≥ yr0 j j ∈ C, r ∈ L (8)

xri ∈ {0, 1} i ∈ C, r ∈ L (9)

yr0 j ∈ {0, 1} j ∈ C, r ∈ L (10)

yri j ∈ {0, 1} i, j ∈ C, i �= j, r ∈ L, r �= N (11)

wr
i j ∈ {0, 1} i ∈ D, j ∈ C, r ∈ L (12)

The objective function (1) minimizes the sum of arrival times to customers; here the
coefficient r counts the number of times the travel time of a link is considered in the
evaluation of the total latency. Constraints (2) guarantee that each customer is visited
exactly once. Constraints (3) and (4) ensure the generation of exactly k routes. The
constraints in (5)–(7) are the connectivity constraints and show the relation between
the binary variables xri and yri j . Constraints in (5) require that any customer i visited
at the upper level r + 1 should be connected to exactly one customer (let say j) at
level r by traversing edge (i, j). Constraints (6) impose that any customer j visited
at level r should be linked to exactly one recently visited customer (let say i) by
traversing edge (i, j) or linked directly to the auxiliary node by traversing edge (0, j)
in the same level. Constraints (7) require that customers visited at level N should be
visited right after the node 0 by the link (0, j) in the same level. Constraints (8) show
the relation between binary variables wr

i j and yr0 j ; if y
r
0 j = 1, customer j is the first

visited node at level r , hence it should follow the depot (let say i) in the same level
r . Finally, constraints (9)–(12) establish the nature of the variables. This formulation
has n[N (m + n + 1) − (n − 1)] binary variables.

3.2 Second formulation

Another variant of the multi-depot layered network can be obtained by replacing each
copy of node 0 in levels 2 to N , with m nodes, indexed from 1 to m, representing the
multiple depots. In this way, levels from 2 to N include a copy of each customer and
of each depot. In the first level, only the customer copies are present. Each tour in the
network is represented by a route that ends in a first level customer and starts in a copy
of the depot. Figure 2 illustrates this approach.

The way in which the layered network is defined implies that the linkage variables
yr0 j are replaced with binary variables y

′
i jr with i inD and j ∈ C . Clearly, in this case,

variables wr
i j are no longer needed.

The second mathematical formulation is presented as follows.

min z2 =
∑

i∈D

∑

j∈C

∑

r∈L
ti j r y

′
i jr +

∑

i∈C

∑

j∈C
j �=i

∑

r∈L
r �=N

ti j r y
′
i jr (13)

∑

r∈L
xir = 1 i ∈ C (14)

∑

r∈L

∑

i∈D

∑

j∈C
y′
i jr = k (15)
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Fig. 2 Layered network for the MDk-TRP: second graphical representation

∑

i∈C
xi1 =

∑

r∈L

∑

i∈D

∑

j∈C
y′
i jr (16)

∑

j∈C
j �=i

y′
i jr = xir+1 i ∈ C, r ∈ L, r �= N (17)

∑

i∈V
i �= j

y′
i jr = x jr j ∈ C, r ∈ L, r �= N (18)

y′
i j N

= xi N i ∈ D, j ∈ C (19)

xir ∈ {0, 1} i ∈ C, r ∈ L (20)

y′
i jr ∈ {0, 1} i ∈ D, j ∈ C, r ∈ L (21)

y′
i jr ∈ {0, 1} i, j ∈ C, i �= j, r ∈ L, r �= N (22)

Similar to (1), the objective function (13) is the waiting time of all customers and it is
composed of two terms: the first one accounts for links originating from depots and
the second one for the other links. In a similar way, the set of constraints (2)–(7) are
equivalent to the set of constraints in (14)–(19) and the last set of constraints in (20)–
(22) describe the nature of the variables. This new formulation reduces the number of
variables to n[(N (n + m) − (n − 1)].

We should mention that for the special case of |D| = 1 (single depot), both models
reduce to the classical k-TRP which is known to be NP-hard [16].

4 Metaheuristic approach

In this section, we describe a genetic algorithm to overcome the computational
intractability of large size MDk-TRPs. In the following subsections, we first pro-
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vide the outline of the metaheuristic approach an then detail the algorithm elements
and the search mechanism.

4.1 Outline of the genetic algorithm

Genetic algorithms are evolutionary algorithms inspired by the theory of evolution,
that use concepts such as natural selection, reproduction, genetic heritage and muta-
tion [15]. Genetic algorithmsmay be enhanced with local search and/or other heuristic
schemes. In this case, they are called hybrid genetic algorithms. Several routing prob-
lems have been successfully addressed by genetic algorithms [31,41,42].

Let P and P̂ denote the old and the new population composed of ps individu-
als (solutions/chromosomes); es represents the size of elite solutions, μr shows the
mutation rate and p∗ denotes the best solution with the fitness value f (p∗) . The
pseudo-code of the proposed metaheuristic is presented in Algorithm 1. First, in
Lines 2–6, the population set P is filled with randomly generated initial solutions
{p1, . . . , pi , . . . , pps }. In Line 7, the individuals are evaluated and sorted in non-
decreasing order with respect to the fitness measure (see Sect. 4.4); also the best
solution p∗ is updated (Line 8).

A pre-specified portion es ∈ [0.1, 1] of the fittest individuals, let say the elite
solutions, are selected to directly go into the next population P̂ (Lines 10–14). Then,
a loop is run for ps − es iterations where at each iteration, a new individual of P̂
is generated (Lines 15–30). Line 16 shows the tournament selection, a procedure
which chooses a pair of parents from the population to be recombined using the
crossover operator (Lines 17–18). The offsprings generated within the crossover phase
are denoted with p̂(.). In a local search procedure, the offsprings are educated (Line
19) and only the offspring with the lowest objective value ( p̂) is passed into the next
generation (Lines 20–29). In Line 28, the mutation rate μr is updated appropriately
(seeMutation rate update in Sect. 4.9). After, the new population set P̂ is sorted (Line
31) and the sets P, P̂ are updated. Lines 34–43 refer to the random restart mechanism
which is, in fact, a diversification strategy that modifies the non-elite individuals in the
population andupdates themutation rate, if necessary (Sect. 4.9). The algorithmends at
Line 45 and the best solution p∗ is returned. Lines 9–44, are executed until the stopping
criterion is met. In particular, we set a certain number of iterations proportional to the
problem size.

4.2 Solution representation

Each solution in our algorithm is uniquely encoded by two ordered lists: one, called
service pattern, with size n representing a giant tour, without trip delimiters. The order
of the customers follows the visit order in the k routes. To specify the starting point
of each route in the giant tour, we consider another list, called depot assignment, with
size k, whose qth element contains the index of the first customer visited in the qth

route and the index of the depot assigned to the route q. This TSP-like encoding style
simplifies the implementation of crossover and mutation operators since it is easy to
retrieve information from the solution [41].
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Algorithm 1 The proposed metaheuristic algorithm

1: Initialization: i, j ← 1, ps , es , μr , P, P̂ ← ∅, p∗ ← 0, f (p∗) ← ∞
2: while (i ≤ ps ) do
3: pi ← I ni tial.Solution()

4: P ← P ∪ {pi }
5: i ← i + 1
6: end while
7: P ← f i tness.sort(P)

8: p∗ ← p1, f (p∗) ← f (p1)
9: while stopping criterion is not met do
10: j ← 1
11: while (|P̂| < es ) do
12: P̂ ← P̂ ∪ {p j }
13: j ← j + 1
14: end while
15: while (|P̂| < ps ) do
16: (p1, p2) ← Parent .Selection(P)

17: p̂(.) ← Crossover(p1, p2)
18: p̂(.) ← Mutation( p̂(.), μr )

19: p̂(.) ← Local.Search( p̂(.))

20: if f ( p̂1) < f ( p̂2) then
21: p̂ ← p̂1
22: else
23: p̂ ← p̂2
24: end if
25: P̂ ← P̂ ∪ { p̂}
26: if f ( p̂) < f (p∗) then
27: p∗ ← p̂
28: Mutation.rate.Update(μr )

29: end if
30: end while
31: P̂ ← f i tness.sort(P̂)

32: P ← P̂
33: P̂ ← ∅
34: if (no improvement after a pre-specified number of iterations) then
35: Mutation.rate.Update(μr )

36: for (es < i ≤ ps ) do
37: pi ← random.solution()

38: if f (pi ) < f (p∗) then
39: p∗ ← {pi }
40: Mutation.rate.Update(μr )

41: end if
42: end for
43: end if
44: end while
45: return p∗

Figure 3 displays the chromosome structure for a solution with three depots and
ten customers:

d3− > c5− > c8− > c9
d1− > c2− > c4− > c7
d1− > c3− > c1− > c6− > c10
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Fig. 3 Chromosome structure: a solution with three depots and ten customers

4.3 Initialization

The initialization procedure generates a pool of ps feasible solutions and it is composed
of two phases, including the giant tour generation and the splitting heuristic.

In the giant tour generation phase, an ordered sequence of customers is built in
a greedy fashion. To do this, first, a non-visited customer is selected randomly. The
giant tour is completed on the basis of the least-cost criterion until all the customers
are inserted.

After, we apply a polynomial splitting heuristic proposed in [6,32] to find the
optimal splitting points over the giant tour. This specifies the first customer to be
visited in each route and also the optimal depot assigned to it. Obviously, once the
starting point of a route is determined, we can retrieve it easily from the giant tour.
The splitting can be done by solving a shortest-path problem on an auxiliary acyclic
graph defined as A = (N ,D) in which N = {0, 1, 2, . . . , n} and D is the set of
possible subsequences of customers in the giant tour. The shortest path from 0 to n is
calculated usingBellman’s algorithm for directed acyclic graph (formore information,
see [6,32]).

4.4 Fitness evaluation: biased fitness criterion

The performance of any population-based algorithm is affected by the fitness measure
that enables to evaluate and order the individuals. We use the fitness criterion to select
individuals for mating and to determine offsprings to keep in the next generation. In
particular, we apply the biased fitness function criterion, f (pi ) which is defined, for
the individual pi , as follows [41,42].

f (pi ) = f i t(pi ) +
(
1 − es

ps

)
× dc(pi ) (23)

where f i t(pi ) refers to the rank of pi in the population, with respect to the objective
value (total latency criterion) and dc(pi ) is the rank of pi with respect to the diversity
contribution (�P(pi )) which is the average distance to its NC closest neighbours as
given in (24).

�P(pi ) = 1

|NC |
∑

p j∈NC

σ H (pi , p j ) (24)
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σ H (pi , p j ) is the normalized Hamming distance which quantifies the differences
between two solutions pi and p j in terms of the visited customers and the depot
assignment patterns. In general,NC is set to nc × |P| where nc is an input parameter
[41]. The inclusion of a diversity criterion into the fitness evaluation helps to avoid
early convergence to local optimal solutions.

4.5 Parent selection

The parent selection procedure (Parent .Selection(P)) returns two different parents
from the population set to generate newoffsprings. Thefirst parent is selected randomly
(with uniform probability) from the top 50% solutions, evaluated and ranked based
on the biased fitness criterion while the second parent is chosen randomly from the
whole population.

4.6 Crossover operators

The genetic search progress is obtained by two essential genetic operations, including
crossover (recombination) and mutation operators. As the name indicates, a crossover
operator recombines the information of two parents based on some operator-specific
rules and generates one or more offsprings (in our case, two offsprings), represent-
ing new solutions. Generally, the crossover operator exploits a better solution while
the mutation operator explores a wider search space. In particular, we propose three
crossover operators as follows:

– One-point crossover
This operator picks a unique point randomly chosen in the range of φ ∈ (1, n),
known as "crossover point" which divides each parent’s giant tour into two seg-
ments with lengths of φ and n−φ. The left segment of the first parent’s giant tour
and the right segment of the second parent’s giant tour are directly copied into the
first offspring. By changing the order of parents and with the same crossover point,
the giant tour of the second offspring is built. The same process is repeated for
the depot assignment lists of both parents where the cutting point, here, is picked
from (1, k), to be within the depot assignment list size.

– Two-point crossover
This operator is similar to One-point crossover in which two random "crossover
points" φ1, φ2 are selected to divide each parent’s giant tour into three segments,
including φ1, φ2 − φ1, and n − φ2 customers. The middle segment of the first
(second) parent’s giant tour is copied exactly into the first (second) offspring as the
middle part of its giant tour and the first and the third segments in the second (first)
parent’s giant tour are copied into the first and third segments of the offspring’s
customer service. In order to preserve the structure of the routes, the "crossover
points" φ1, φ2 are selected in a biased way and pointing to the start of routes. The
same procedure is also followed for depot assignment lists.

– Uniform crossover
In the uniform crossover, each gene is selected randomly from one of the corre-
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sponding genes of the parents with equal probability. The same rule is followed
for building the depot assignment list.

4.7 Mutation

The mutation operator modifies the offsprings and acts as a diversification mecha-
nism to avoid getting trapped into local optimal solutions. We propose four mutation
operators that modify only the giant tours of the offsprings.

– Intratour 3-swap
This operator randomly selects one route. If it visits more than three customers, a
3-swap intratour operator is run swapping the position of three randomly selected
customers. Otherwise, three random positions in the giant tour are selected and
their contents are swapped. The latter case, in general, can be regarded as a 3-swap
intertour move.

– Intertour 5-swap
This operator selects five randomly positions in the giant tour and swaps their
contents.

– Scramble
The scramble operator selects randomly a segment of the giant tour, and rearranges
its content in a random fashion.

– Inversion
Similar to the Scramble, the Inversion operator picks randomly a segment and
reverses the order of the elements.

It is worth noting that after the mutation and the crossover, a repair mechanism
is run to retain the feasibility of the solution, if needed. In general, the feasibility is
checkedwith respect to set of visited customers and the number of dispatched vehicles.

If some of the customers have not been visited, they are inserted in the position
leading to the least increase into the objective function. We should note that since the
giant tour contains exactly n elements, in the latter case, there exist at least another
customer visited more than once. Hence, whenever a non visited customer is inserted,
one of the repeated customers is removed from the tour. Moreover, in the case that
more than k vehicles have been dispatched, the extra tours with the highest latency
are found and discarded.

4.8 Local search

The local search procedure explores the 2-swap neighbourhood and updates the cur-
rent solution whenever an improving move is detected (based on the first improving
strategy). The neighbourhood is searched iteratively and the solution is updated until
no further improvement is possible. The solution is modified to keep feasibility (from
an open depot at least one vehicle should depart) and a right balancing among differ-
ent tours (this measure is a proxy for near optimality of the solution). Each subtour is
assigned to the best depot, based on the total latency criterion. Then, if it yields to an
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improving solution, the tour lengths are rebalanced. A tour to can be splitted, if it is
beneficial in terms of total latency, if the number of dispatched vehicles is less than k.

4.9 Diversificationmechanism

In order to diversify the solution pool, the algorithm applies two different diversi-
fication strategies as given below. As we mentioned earlier, a diversity criterion is
also included into the fitness evaluation avoiding the premature convergence of the
population.

– Random restart In case the best solution (incumbent) is not updated within a
pre-specified number of iterations, a strong diversification mechanism is applied.
In particular, all the non-elite solutions in the population are replaced with new
randomly generated ones.

– Mutation rate update The mutation probability is dynamically modified on the
basis of the search history.Whenever this restart mechanism is executed, the muta-
tion rate is increased to diversify the search.
If the best solution is modified after the local search and the mutation rate value is
greater than its initial value, the mutation rate is decreased to intensify the search.

5 Computational experiments

In this section, we report on the computational experiments carried out with the aim
of testing the proposed models as well as the solution approach. We first assessed
the efficiency of the two mathematical formulations, implemented using the AMPL
optimization language [10] and solved byGurobi 8.1.0 [14] within a time limit of 7200
s. To have a comparison, we also re-implemented (excluding the constraints on the
capacity of vehicles) the models proposed for the multi-depot CCVRP, namely the one
proposed in [19] and [44]. We refer to these models by the authors’ names and denote
our first and second mathematical formulations in Sect. 3 by F1 and F2, respectively.
As test bed, we considered three sets of instances taken from the literature [7,19]1.
The algorithm was coded in C++ language and all the experiments were executed on
an Intel Core i5, with 2.4 GHz CPU and 8 GB RAM.

5.1 Results obtained considering benchmark instances

Tables 1 and 2 report the computational results obtained by Gurobi, in solving the
mathematical models within the time limit. For each considered model, we report the
objective value of the best solution found (OF), the computational time, in seconds,
(CPU ), and the optimality gap (Gap), in percentage, reported by Gurobi. The Tables
also report when time limit T L is reached and a dash for instances in which no feasible
solution within the time limit was found. The instance name is reported in the column
with the header “Instance”.

1 http://www.bernabe.dorronsoro.es/vrp/; https://github.com/elalla/MDCCVRP.
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From the results in Table 1, we can observe that F1 and F2 found the optimal
solutions for all the instances. The models adapted from [19] and [44] were able to
find the optimal solution for the smallest instanceswith 10 customers. For the instances
with 25 customers, after two hours, we observed considerably optimality gaps of at
least 29% (Lalla’s model) and 38% ( Wang’s model). For all the instances with more
than 50 customers, themodels provided feasible solutions with optimality gap of about
53% and 99%, respectively. we should remark that, in this respect, the two models
were proposed for the multi-depot CCVRP. Nevertheless, our models could be used to
set good lower bound in reasonable computational time. In fact, in terms of solution
time, F1 and F2 are significantly faster than the othermodels, and the largest Ir instance
including 100 customers is solved to optimality in about 76 s.
Table 2 summarizes the results for the set of p and pr instances, including up to 288
customers with a fleet size of k = 35 [7]. As shown in Table 2, the results of the
proposed models F1 and F2 are superior to those obtained from other existing models.
In particular, model F1 finds optimal solutions in at least 70% of cases, only in three
cases no feasible solution is found and for those cases not solved to optimality, the
gap is always less than 5%.

In addition, while, compared to F2, model F1 involves more binary variables, its
computational time is significantly lower for all the instances solved to optimality.
This behaviour is not related to the tightness of its LP relaxation bound. Tables 3 and
4 report the values of the linear relaxations of F1 and F2 and the gaps with respect
to the Best Known Solution (BKS), in percentage. Both F1 and F2 present similar
LP relaxation bounds, except for instances p08, p10, p18, pr01 and pr05 where the
difference is less than 0.01%.

In the following, we present the results of the genetic algorithm. Specifically, we
considered a population size of 25 individuals (ps = 25); the initial mutation rate
was set to 1

6 and its possible values lie in the set μr = 1
γ
, γ ∈ {1, 2, . . . , 6}. The

elitism rate es was set to �40% × ps and the parameter nc was set to 0.2. The

maximum number of iterations was set to 104× f
ps

where, depending on the instance,
f ∈ {1, 2, 5, 10, 15, 20}. Finally, the random restart mechanism is activated every 100
iterations without incumbent update. The genetic algorithm was tested considering
two different configurations: with one-point crossover and scramble operators used
for reproduction andmutation, respectively and with operators chosen randomly (with
uniform probability) among the set of operators defined in Sects. 4.6 and 4.7.

Table 5 summarizes the metaheuristic results. Columns 1–4 show the instance
features; Columns 5 and 6 represent the objective value of the BKS (obtained from
model F1 or F2), and its corresponding solution time (he symbol “–" in the Column
with header OF denotes that the solver could not obtain any feasible solution within
the time limit). Columns 7 and 8 report the splitting algorithm results, including the
best objective value (OF) and the relative gap, in percentage, (Gap) calculated with
respect to the Gurobi OF , if available; otherwise denoted by “–". Columns 9–12 and
13–16, respectively, display the results of the genetic algorithm with and without the
random selection of the operators. The columnwith heading�T reports the percentage
time fraction, calculated as (�T = CPUheu

C PUGurobi
×100) where CPUheu and CPUGurobi

denote the CPU of the metaheuristic and Gurobi, respectively.
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Table 3 Linear relaxations for the set of lr instances

Instance BKS F1 relaxation F2 relaxation

OF Gap(%) OF Gap(%)

lr01 545.69 545.69 0 545.69 0

lr02 832.69 832.69 0 832.69 0

lr03 832.78 830.81 0.24 830.81 0.24

lr04 2082.28 2082.28 0 2082.28 0

lr05 1827.41 1827.41 0 1827.41 0

lr06 1786.95 1786.95 0 1786.95 0

lr07 5424.57 5424.57 0 5424.57 0

lr08 3737.38 3733.37 0.11 3733.37 0.11

lr09 3802.88 3796.40 0.17 3796.40 0.17

lr10 2786 2786 0 2786 0

lr11 2909.27 2909.27 0 2909.27 0

lr12 3171.75 3166.19 0.18 3166.19 0.18

lr13 8293.42 8287.28 0.07 8287.28 0.07

lr14 7273.03 7253.90 0.26 7253.90 0.26

lr15 8626.13 8625.13 0.01 8625.13 0.01

lr16 5306.50 5251.50 1.03 5251.50 1.03

lr17 6141.07 6098.79 0.69 6098.79 0.69

lr18 5804.19 5781.86 0.39 5781.86 0.39

Avg. 0.18 0.18

The results show that the average solution time of the heuristic over all the instances
is less than 3 min, compared to Gurobi that in 12% of cases could not find any feasible
solution within two hours. The effectiveness of the method is also confirmed by the
average �T values reported in Columns 12 and 16 which are around 15% and 22%,
respectively. This means that the metaheuristic is about 7 and 5 times faster than
Gurobi.

In addition, the metaheuristic finds optimal solutions for instances up to 25 cus-
tomers. Even the splitting algorithm performs well since average solution gap is below
12.37% and in 3 cases (for which theGurobi could not find any feasible solutionwithin
two hours), the splitting algorithm finds good feasible solutions. To have a clear idea
about the performance of the metaheuristic compared with the splitting algorithm,
we focus on the most challenging cases, for which Gurobi did not find any feasible
solution. For such cases, the metaheuristics provide solutions which are on average
9.60% (with a minimum of 5.80% and a maximum of 19.74%) better than the splitting
algorithm solution.

The results showa slightly better performance (about 0.20%), in terms of percentage
gaps, when the random selection is present (see Columns 11 and 15). Although, in this
case, the average computational time is lower, the speed up ratio �T deteriorates.

In summary, for small instances optimal solutions are obtained in a negligible
solution time, for medium instances good quality solutions can be obtained within
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Table 4 Linear relaxations for the set of p and pr instances

Instance BKS F1 relaxation F2 relaxation

OF Gap(%) OF Gap(%)

p01 660.34 652.78 1.14 652.78 1.14

p02 660.34 652.78 1.14 652.78 1.14

p03 906.24 899.68 0.72 899.68 0.72

p04 1881.48 1855.76 1.37 1855.76 1.37

p05 1871.62 1865.33 0.34 1865.33 0.34

p06 1460.60 1449.50 0.76 1449.50 0.76

p07 1453.64 1446.47 0.49 1446.47 0.49

p08 – 13,779.30 – 13,779.27 –

p09 12,464.53 11,905.67 4.48 11,905.67 4.48

p10 11,782.90 10,980.44 6.81 10,980.40 6.81

p11 11,529.61 10,875.72 5.67 10,875.72 5.67

p12 2769.07 2717.44 1.86 2717.44 1.86

p15 5618.84 5589.14 0.53 5589.14 0.53

p18 11,311.64 10,826.80 4.28 10,826.76 4.28

pr01 1167.74 1135.24 2.78 1133.4 2.78

pr02 2422.94 2347.78 3.10 2347.78 3.10

pr03 4287.30 4132.45 3.61 4132.45 3.61

pr04 5582.29 5465.36 2.11 5465.36 2.11

pr05 6782.96 6506.25 4.08 6506.24 4.08

pr06 – 8003.89 – 8003.89 –

pr07 1594.15 1568.62 1.60 1568.62 1.60

pr08 3817.70 3722.63 2.49 3722.63 2.49

pr09 5668.45 5452.80 3.87 5452.80 3.87

pr10 – 8304.91 – 8304.91 –

Avg. 2.53 2.53

acceptable computational time, and for the largest and the most challenging cases,
for which Gurobi does not report any feasible solution, the algorithm is able to find
solutions with gaps, calculated with respect to the lower bound, less than 23%,on
average.

5.2 Results considering a reduced fleet size

With the aim of assessing the impact of the fleet size on the model and on the heuris-
tic performance, we carried out an additional set of experiments, on the p, pr, and
lr instances, considering a different number of vehicles. As a matter of fact, we
observed that the optimal routes obtained considering the original datasets, contain
only a few vehicles, maybe because they were originally proposed for the multi-
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depot CCVRP. Therefore, we have considered a different number of vehicles, setting
k = max

{
m, � n

10�
}
, to make our problem more challenging.

Table 6 shows the results; for the sake of completeness, we also report the solutions
of bothLalla’s andWang’smodel imposing a time limit of twohours. The best objective
function value is highlighted in bold. As confirmed by the gap values reported in
Columns 7 and 10, the extant models could only solve to optimality the smallest Ir
instanceswith 10 customers. Formoderate instances,with 25 customers, the optimality
gaps after two hours are very high (at least 61.62% for the Wang’s model and 96.60%
for the Lalla’s one). When the number of customers is increased to 100, none of the
existing models could find any feasible solution within the time limit. Nevertheless,
both F1 and F2 solved all the set of lr instances to optimality, even if the decrease in
the fleet size considerably increases the solution time. We also observe that the second
formulation provides slightly better solutions, but in terms of solution time, model F1
is superior to F2.

Regarding the p and pr instances,we noticed that the existingmodels fail to findopti-
mal solutions. In particular, the Lalla’s model obtained feasible solutions for instances
up to 100 nodes and two depots. However, for the solved instances, the average gap
reported by this model is 84.47%. On the other hand, the Wang’s model solved a
similar number of instances (but it provided feasible solutions for instances up to 100
customers and four depots), reporting an average gap of 79.32.%. Regarding our for-
mulations, the model F2 could solve to optimality all but eight instances, for which the
reported gap is on average less than 1% and always below 12.20%. The first model F1
solves the majority of the instances to optimality. For seven cases, the model provides
feasible solutions with an optimality gap below 14.02% and for three instances no
feasible solution is found.

Table 7 reports themetaheuristic results for the instanceswith reduced fleet. Clearly,
the fleet size decrease makes the problem less computationally tractable as confirmed
by theGurobi average solution time (2881 s)which is almost twice the average solution
time reported in Table 5. Of course, this also affects the heuristic solution time which
is higher, but always less than 9 min.

Both the splitting and genetic algorithms provide optimal solutions for instances up
to 25 customers. Again, the randommechanism provides solutions with slightly lower
gaps (6.34% versus 6.48%). Concerning the speed up ratio, the genetic algorithm
without the random mechanism is faster.

To sum up, for small instances the proposed metaheuristics provide optimal solu-
tions in neglectable solution time and for larger instances with reasonable fleet size,
we obtain quite good feasible solutions with low solution times, but still in some cases
the relative gap is quite high.

6 Conclusions

In this study, we introduced the MDk-TRP, generalizing the k-TRP to the multi-depot
case, for which we presented two effective mathematical models based on a layered
network structure.We investigated the viability of solving themathematical models by
using off-the-shelf software. With respect to other two formulations adapted from the

123



The multi-depot k-traveling repairman problem

multi-depot CCVRP, the efficiency of the proposed models, in terms of both solution
and time, is very satisfactory. In particular, the formulations solved to optimality
instances up to 240 customers within two hours, and found feasible solutions for
instances of up to 249 customers. A population-based metaheuristic was designed,
including a splitting heuristic for generating good initial solutions and a local search.

The algorithm provided feasible solutions for the instances that could not be solved
by any of the models in competitive computational time.

Some interesting extensions of this paper can be investigated. For instance, since
we observed that the LP relaxation of the proposed formulations provide good lower
bounds, this can be a good starting point to develop an exact or amatheuristic approach.
Another research stream that is worth following is the incorporation of stochasticity
into model parameters, such as travel time uncertainty or a random presence of cus-
tomers.
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