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Abstract
Peridynamics (PD) is a nonlocal continuum theory capable of handling
fracture mechanisms with ease. However, its use involves high computational
costs. On the other hand, Carrera Unified Formulation (CUF) allows one to
use one-dimensional high-order finite elements, resulting in excellent accuracy
while improving computational efficiency. To address the high computational
cost of solving fracture problems, a coupling technique between these two
theories is necessary. Various approaches have been proposed to couple
peridynamic grids with finite element meshes in the literature. However, most
of these approaches are affected by arbitrary choices of blending functions and
tuning parameters or exhibit spurious effects at the interfaces. To overcome
these issues, we propose a simple coupling technique based on overlapping
PD/CUF regions and continuity of the displacement field at the interfaces. This
approach is verified through static analysis of classical beams and thin-walled
structures with applications in the aerospace industry.

K E Y W O R D S
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1 INTRODUCTION

Peridynamic (PD) theory has been introduced for the first time by Silling in Reference 1. This first formulation of the
theory was named bond-based peridynamics (BB-PD) and has the limitation that the Poisson’s ratio value is fixed (for
instance, 𝜈 = 0.25 in 3D models). A more general formulation of the theory that overcomes this restriction, namely the
state-based peridynamics (SB-PD), has been proposed in Reference 2. The main idea of the peridynamic theory relies on
the fact that two PD points in a solid body interact with each other when their distance is lower than the horizon radius,
called 𝛿. Thus, PD is a nonlocal theory, and it is based on integro-differential equations. For this reason, PD has been
widely used for dealing with discontinuous displacement fields, such as those in fracture mechanic problems,3,4 due to
the possibility of avoiding the shortcomings of classical continuum mechanics.

However, it should be highlighted that the nonlocal nature of PD theory leads to higher computational analysis costs
if compared with those from classical computational methods, that is, finite element method (FEM). Indeed, PD leads
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2 SCABBIA and ENEA

to solving systems with sparse, large, and not banded matrices, making the solution of fully 3D problems of practical
engineering interest impossible. Furthermore, the handling of the nonlocal boundaries requires specific methods, such
as, for example, References 5-8, to reduce the PD surface effect, that is, an undesired stiffness fluctuation near the external
surface of the body, and to impose the boundary conditions. If FEM is used at the external boundary of the body, these
problems are avoided altogether.

On these bases, researches are now focused on providing coupling strategies between FEM models and PD domains
in order to exploit the advantages of both numerical methods and adopt PD in relatively small regions of interest. Kilic
and Madenci9 propose a coupled method where an overlap region is identified. In this region, both peridynamic and finite
element equations are used at the same time. In Reference 10 and 11, a progressive morphing between local and nonlocal
interactions is adopted. A transition affecting only the constitutive parameters is employed to perform the coupling strat-
egy. Seleson and co-workers12,13 propose a strong coupling between local and nonlocal approaches for integrated fracture
modeling. In Reference 14, the coupling is achieved by the introduction of the partial stress concept for the connec-
tion of nonlocal models with different horizon radius. Sun and Fish15 introduced a superposition-based coupling model
between bond-based PD and FEM. A partial superposition of nonlocal (PD) and local (FEM) solution is considered. The
continuity of the solution is achieved by imposing appropriate homogeneous boundary conditions. Galvanetto and his
co-workers16,17 propose a coupling strategy based on the adaptive transformation of FEM nodes into PD particles, which
has shown to be effective for static, dynamic, and fracture problems and from one-dimensional to three-dimensional
models.16-21

It should be underlined that most of the aforementioned methods are able to couple FEM and PD domains of consis-
tent dimensions. However, some particular situations may need the adoption of 3D peridynamics domains in local zones
of the structure. In this case, the coupling of 3D FEM with 3D PD models may be unfeasible, due to the consequent huge
computational cost. An example of a coupling method between refined 1D models and a 3D bond-based perydinamic
grid is provided in Reference 22. The 1D models are based on the Carrera Unified Formulation (CUF), whose govern-
ing equations are formulated in terms of fundamental nuclei, which are invariant with the theory approximation order.
The coupling is realized through the adoption of Lagrange multipliers,23-25 which are applied at the interface between
the two domains in order to assure continuity. This technique demonstrates to be general and consistent, due to the fact
that Lagrange multipliers have a clear physical meaning. Results show that this method allows to obtain 3D-like accu-
racy solutions by adopting a one-dimensional refined model and 3D Peridynamic, thus reducing the computational cost.
Moreover, the use of Lagrange multipliers allows the possibility of introducing 3D PD regions only in zones of interest,
which can also be embedded into the FE domain. Nevertheless, some numerical distortions are detected at the FE-PD
interface, requiring some artificial expedient (i.e., overlapping region) to eliminate these errors.

In this work, the authors propose a different coupling method, which can fully exploit the CUF formulation’s poten-
tiality in combination with the 3D peridynamics domain and greatly reduce numerical error at the interface between two
different domains.26 This method is based on the continuity of the displacement field at the interface.16,19 The forces act-
ing at the interface are provided by introducing fictitious nodes beyond the interface itself: a fictitious FEM node is added
in the PD region, and some fictitious PD nodes are added in the FEM region. The coupling is then achieved by considering
that peridynamic forces are exerted only on PD nodes, while finite elements apply forces only on FE nodes. The effec-
tiveness of this strategy has already been proven when applied to couple classical FE elements with PD domains.16,17,19

Thanks to this improved coupling approach, the spurious effects that were present at the interfaces in Reference 22 can
be considerably reduced. Moreover, for the first time state-based peridynamics has been coupled with CUF formulation,
which allows the model to have no restrictions on the value of the Poisson’s ratio. The article is organized as follows:
Section 2 explains the basis of the state-based peridynamics formulation; high-order one-dimensional CUF-based ele-
ments are discussed in Section 3; then, the proposed coupling approach is described in Section 4; some numerical results,
such as thin-walled beams and a reinforced aeronautical panel, are discussed in Section 5; finally, the main conclusions
are drawn in Section 6.

2 STATE-BASED PERIDYNAMICS

The first formulation of the peridynamic theory, named bond-based Peridynamics,1 has been extensively exploited
for its simplicity of implementation. However, due to the assumptions of this formulation, the Poisson’s ratio is con-
strained to 𝜈 = 0.25 in 3D bodies. To overcome this limitation, the state-based formulation of the theory was introduced
in Reference 2. The state-based peridynamics is used in this work.
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SCABBIA and ENEA 3

2.1 Continuum formulation

Two peridynamic points, for instance x and x′ shown in Figure 1, interact through a bond that is identified by their relative
position vector

𝝃 = x′ − x. (1)

This interaction vanishes if the distance between the interacting points exceeds the value 𝛿, which is called horizon size.
Therefore, a peridynamic point interacts with all the points within a sphere centered in that point and with a radius equal
to 𝛿. The set of the points within this sphere is named neighborhood and denoted by . In the deformed configuration,
the relative displacement vector 𝜼 is defined as

𝜼 = u(x′, t) − u(x, t), (2)

where u is the displacement field. Note that the relative position vector at instant t between points x and x′ is given by
𝝃 + 𝜼.

The peridynamic equation of motion of point x is given by Silling et al.2

𝜌(x) ü(x, t) =
∫
x

(
T[x, t]⟨𝝃⟩ − T[x′, t]⟨−𝝃⟩

)
dVx′ + b(x, t), (3)

where 𝜌 is the material density, ü is the acceleration field, T is the force density vector state (force per unit volume squared),
dVx′ is the differential volume of a point x′ within the neighborhoodx and b is the external body force density field. The
notation T[x, t]⟨𝝃⟩ means that the force density scalar state T depends on point x and instant t and is applied to the bond
vector 𝝃. In quasi-static conditions, the equilibrium equation of point x is given as

−
∫
x

(
T[x]⟨𝝃⟩ − T[x′]⟨−𝝃⟩

)
dVx′ = b(x). (4)

Note that T[x]⟨𝝃⟩ and T[x′]⟨−𝝃⟩must have the same magnitude in bond-based peridynamics, whereas may have different
magnitudes in state-based peridynamics (see Figure 1).

In the following, we define some quantities that will be useful to compute the force density vector state T[x]⟨𝝃⟩.
The reference position scalar state x, which represents the bond length in the initial configuration, and the extension
scalar state e, which represents the elongation (or contraction) of the bond in the deformed configuration, are defined
respectively as

x⟨𝝃⟩ = ||𝝃||, (5)

e⟨𝝃⟩ = ||𝝃 + 𝜼|| − ||𝝃||. (6)

F I G U R E 1 Reference configuration of the body at instant t0 (on the left) and deformed configuration at instant t (on the right). When
the bond 𝝃 between points x and x′ is deformed, the force density vector states T = T[x, t]⟨𝝃⟩ and T′ = T[x′, t]⟨−𝝃⟩ arise within the bond.
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4 SCABBIA and ENEA

On the other hand, the weighted volume m and the dilatation 𝜃 of a point x are defined respectively as

m(x) =
∫
x

𝜔 x2dVx′ , (7)

𝜃(x) = 3
m(x) ∫x

𝜔 x edVx′ , (8)

where 𝜔 is a prescribed spherical influence function. We adopt in this work the Gaussian influence function:

𝜔 = exp
(
−
||𝝃||2

𝛿
2

)
. (9)

In ordinary state-based peridynamics, the force density vector state is aligned with the deformed direction vector state
(unit vector in the direction of the corresponding bond):

M⟨𝝃⟩ =
𝝃 + 𝜼

||𝝃 + 𝜼||
. (10)

Therefore, adopting the linear peridynamic solid model,2 the force density vector state is computed as

T[x]⟨𝝃⟩ =
𝜔⟨𝝃⟩
m(x)

[
(3K − 5𝜇) 𝜃(x) x⟨𝝃⟩ + 15𝜇 e⟨𝝃⟩

]
M⟨𝝃⟩, (11)

where K is the bulk modulus and 𝜇 is the shear modulus.

2.2 Discretization

The peridynamic body is discretized by the meshfree method with a uniform grid spacing h, which is arguably the most
commonly used method.27-29 Each node represents a cell with a volume V = h3. Consider a node i and its neighborhood
i, as shown in Figure 2. We define as 𝛽, called quadrature coefficient, the fraction of volume cell that lies within i.
The value of the quadrature coefficient 𝛽 is comprised between the extreme values 0 (if the cell is completely outsidei)
and 1 (if the cell is completely outsidei). Clearly, a node is considered part of the neighborhood only if the quadrature
coefficient of its cell is 𝛽 > 0. The computation of the quadrature coefficients in 3D peridynamics can be carried out in
several ways (see, for instance, References 29-31). For simplicity, we adopt the method illustrated in Reference 32 for this
work.

The relative position vector of the bond ij that connects nodes i and j can be computed as

𝝃ij = xj − xi, (12)

where xi and xj are the position vectors of the two nodes. Similarly, the relative displacement vector of the bond is
evaluated as

𝜼ij = uPD
j − uPD

i , (13)

where uPD
i and uPD

j are the displacement vectors of the peridynamic nodes. The reference position scalar state and the
influence function of the bond are computed as

xij = ||𝝃ij||, (14)

𝜔ij = exp

(

−
||𝝃ij||2

𝛿
2

)

. (15)
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SCABBIA and ENEA 5

F I G U R E 2 The neighborhoodi of a node i consists of the nodes with 𝛽 > 0, where 𝛽 is the quadrature coefficient computed as the
fraction of the cell volume lying within the neighborhood.

Under the assumption of small displacements (||𝜼ij||≪ ||𝝃ij||), the deformed direction vector state and the extension scalar
state are respectively given as

Mij =
𝝃ij + 𝜼ij

||𝝃ij + 𝜼ij||
≈

𝝃ij

||𝝃ij||
, (16)

eij = ||𝝃ij + 𝜼ij|| − ||𝝃ij|| ≈ 𝜼ij ⋅Mij. (17)

In the discretized model, the integrals over a neighborhood are numerically computed as the summation of the inte-
grand evaluated for each node contained in that neighborhood. Therefore, the weighted volume m and the dilatation 𝜃
of a node i are given as

mi =
∑

j∈i

𝜔ij x2
ij 𝛽ijV , (18)

𝜃i =
3

mi

∑

j∈i

𝜔ij xij eij 𝛽ijV , (19)

where 𝛽ij is the quadrature coefficient of the bond ij and V is the volume of the cell of node j. Therefore, the force density
vector state is computed as

Tij =
𝜔ij

mi

[
(3K − 5𝜇) 𝜃i xij + 15𝜇 eij

]
Mij. (20)

Now, we can write the equilibrium equation of a node i in the discretized form (multiplying both sides of the equation
by the cell volume Vi = V) as follows:

−
∑

j∈i

(
Tij − Tji

)
𝛽ijV 2 = bi V , (21)

where bi is the external force density vector applied to node i. Equation (21) can be rewritten in the standard form

KPDUPD = FPD
, (22)
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6 SCABBIA and ENEA

where KPD is the peridynamic stiffness matrix, UPD is the peridynamic displacement vector and FPD is the peridynamic
force vector.

3 HIGH ORDER 1D FINITE ELEMENTS

The major shortcoming of the perdynamic theory is that the resulting stiffness matrix is sparse and generally not
banded. Furthermore, the nonlocal nature of this method makes the computational costs arise exponentially. Therefore,
researchers are working on coupling peridynamics with finite elements. In this work, 3D PD domains are coupled with
1D FEs, based on the Carrera Unified Formulation (CUF). This formulation is known in the literature as capable of
generating high-order theories with great accuracy and considerably reducing the overall computational weight.33

3.1 The Carrera unified formulation

Let’s consider a generic beam structure aligned along the y-axis and measuring l in length and Ω in cross-section. In
this formulation, the cross-sectional shape of the beam has no influence on its validity. In the CUF’s framework, the 3D
displacement field of this beam can be formulated as follows:

u(x, y, z) = F𝜏(x, z)u𝜏(y), 𝜏 = 1, 2, … ,M, (23)

where u(x, y, z) is the displacement vector; F𝜏 are the cross-section expansion functions; u𝜏 is the generalized displacement
vector; M is the number of terms in the expansion. The subscript 𝜏 indicates summation. In addition, F𝜏 and M may be
freely chosen. Based on the selected expansion functions, the class of the 1D CUF model is determined. A first example is
denoted by the Taylor expansion (TE) models, which have been widely employed in CUF’s framework, as in References 34
and 35. In the case of TE models, Mclaurin polynomials of truncated order N are employed to expand the generalized
displacements u𝜏 around the beam axis. TE models could be very efficient for different problems. However, some errors
can be detected if complex structures are investigated. In order to solve these kinds of problems, Lagrange expansion (LE)
models are employed. In this case, Lagrange-like polynomials are used to expand the generalized displacements around
the beam axis. The most important feature of LE models is that they make use of local expansions of pure displacement
variables. The main advantage is that LE models allow a more refined discretization in specific regions of interest, leading
to a higher solution accuracy. Furthermore, LE models enables to reproduce 3D-like solutions at a global-local scale.

3.2 Finite element approximation

Using 1D finite elements, the generalized displacement u𝜏 is approximated along the beam axis:

u𝜏(y) = Ni(y) u𝜏i, i = 1, 2, … , p + 1 (24)

where p is the number of nodes for each element. In Equation (24), the index i means summation. The generalized
displacements are expressed as a function of the unknown nodal vector, u𝜏i, and the 1D shape functions, Ni. Note that
Equation (24) does not depend on the adopted refined 1D theory.
The governing equations are written using the principle of virtual work. For linear static problems, it is formulated in the
following way:

𝛿Lint = 𝛿Lext (25)

where 𝛿 is the virtual variation, Lint the work of the internal strain energy, and Lext the work of the external forces. The
internal work expression reads as:

𝛿Lint =
∫l ∫Ω

𝛿𝝐T𝝈 dΩ dy (26)
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SCABBIA and ENEA 7

where 𝝈 and 𝝐 are the vectors of 3D stresses and strains. By replacing the constitutive and geometric equations along with
Equations (23) and (24), the internal work formula can be reformulated as follows:

𝛿Lint = 𝛿uT
sjK

𝜏siju𝜏i (27)

where K𝜏sij is the 3 × 3 fundamental nucleus of the element stiffness matrix of the refined 1D beam theory. Using the four
indexes ∕tau, s, i, and j, the fundamental nucleus can be expanded to form any refined beam model. Then, after expansion
of the stiffness matrix and after assembly over the whole domain, Equation (25) is written as follows:

KFEUFE = FFE
, (28)

where KFE is the stiffness matrix, UFE is the vector of the FE nodal unknowns and FFE is the vector of external forces.

4 IMPROVED COUPLING

Given its high computational cost, peridynamics is preferably used only in regions where cracks are likely to propagate,
whereas the rest of the body can be modeled by methods derived from classical continuum mechanics, such as the
Carrera Unified Formulation (CUF). The coupling of high-order 1D FEs with a peridynamic grid of nodes has already
been achieved via the use of Lagrange multipliers.22,36 However, the numerical solution obtained with this method
exhibits undesired fluctuations of the solution near the interfaces.

An improved method to couple finite element method (FEM) and peridynamics (PD) has been developed
in References 16-20. This method, based on the continuity of the displacement field at the interfaces, is reviewed in the
following subsection. Inspired by that, we develop a method to couple high-order 1D FEs and PD nodes.

4.1 1D coupling of FEs and PD nodes

Consider a 1D body, in which a region is discretized with 1D FEs and another region with equispaced PD nodes, as
shown in Figure 3. Each PD node represents a portion of the 1D body of length Δx and is positioned at the cen-
ter of this portion. Therefore, the PD node closest to the interface is distant Δx∕2 from the interface itself, as shown
in Figure 3A. On the other hand, the closest FEM node lies exactly at the interface. For simplicity, the length Δ𝓁 of
the FEs is considered to be constant. The length Δ𝓁 of the FEs and the PD spacing Δx are not necessarily equal to
each other.

The improved coupling method is based on the continuity of the displacement field at the interface.16,19 The forces
acting at the interface are provided by the introduction of fictitious nodes beyond the interface itself: a fictitious FEM
node is added in the PD region and some fictitious PD nodes are added in the FEM region.

On the one hand, the new fictitious FEM node is positioned, for simplicity, at a distance Δ𝓁 from the interface,
as shown in Figure 3B. Its displacement is determined by interpolation of the displacements of the real PD nodes
surrounding it. Since the fictitious FEM node lies in the PD region and cannot "feel" FEM forces, it is not sub-
jected to the force of the fictitious FE. However, that force is applied to the real FEM node at the interface. Note
that, due to the displacement interpolation, the force of the fictitious FE depends on the displacements of the real
PD nodes.

On the other hand, some fictitious PD nodes are introduced in the FEM region to complete the neighborhoods
of the real PD nodes near the interface, as shown in Figure 3C. The displacements of the fictitious PD nodes can be
determined by means of an interpolation of the real FEM nodes. The forces of the fictitious bonds, that is, the bonds
crossing the interface, are applied only to the real PD nodes because the fictitious PD nodes lie in the FEM region. Note
that, due to the displacement interpolation, the forces of the fictitious bonds depends on the displacements of the real
FEM nodes.

In the case of a linear displacement field, the force applied to the FEM node at the interface through the fictitious FE
(see Figure 3B) is equal to the sum of the forces applied to the real PD nodes through the fictitious bonds (see Figure 3C).26

The concepts of this improved coupling method are hereinafter extended to couple a 3D peridynamic grid with high-order
1D elements (or CUF elements), as shown, for instance, in Figure 4.
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8 SCABBIA and ENEA

(A)

(B)

(C)

F I G U R E 3 Coupling between 1D FEs and peridynamic nodes: the described interpolations ensure the continuity of the displacement
field at the interface. (A) Initial geometry with real FEs (blue lines) of length Δ𝓁 and real PD nodes (red squares) with a uniform spacing Δx.
The bonds are represented by the red line (𝛿 = 2Δx) and the interface between FEM and PD regions is represented by a yellow dashed line.
(B) Introduction of a fictitious FE in the PD region to provide the force acting on the real FEM node at the interface. The displacement of the
fictitious FEM node (empty circle) is determined by interpolation of the displacements of the real PD nodes. (C) Introduction of some fictitious
PD nodes in the FEM region to provide through the fictitious bonds (red dashed lines) the forces acting on the real PD nodes near the interface.
The displacements of the fictitious PD nodes (empty squares) are determined by interpolation of the displacements of the real FEM nodes.

4.2 Interpolation of PD nodal displacements with FEM

In state-based peridynamics, each node interact with all the nodes within a distance of 2𝛿.37 Therefore, the fictitious PD
nodes are added within the FEs up to a distance of 2𝛿 from the interfaces,20 as shown in Figure 5. The displacements of
these nodes can be evaluated by interpolating the displacements of the FE nodes.

Let us consider, for instance, a fictitious PD node p with a position vector xp = {xp, yp, zp}⊤. Since its position is known,
it is straightforward to determine within which FE node p lies. Hence, the FE shape functions Ni and the expansion
functions F𝜏 of that element are used to compute the displacement of node p:

uf -PD(xp, yp, zp) =
∑

i

∑

𝜏

Ni(yp)F𝜏(xp, zp)uFE
𝜏i , (29)

where f -PD stands for “fictitious peridynamic” nodes. By repeating Equation (29) for each fictitious PD node, we obtain
the following system of equations:

Uf -PD = If -PDUFE
, (30)

where UPD
f is the peridynamic displacement vector of the fictitious peridynamic nodes, If -PD is the fictitious PD interpola-

tion matrix and UFE is the vector of the FE nodal unknowns. Note that the dimensions of If -PD are 3Nf -PD × 3NFE, where
Nf -PD is the number of fictitious PD nodes and 3NFE is the number of the FE nodal unknowns.

4.3 Interpolation of FE nodal displacements with PD

To begin with, let us consider a simple case in which the FE sections are perpendicular to the FEs. As shown in Figure 6,
the fictitious FE nodes are introduced so that the sections associated to those nodes lie over the plane of the real nodes
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SCABBIA and ENEA 9

F I G U R E 4 Coupling of high-order 1D FEs (blue region) with 3D peridynamic nodes (red squares). The yellow surfaces are the
interfaces between FEM and peridynamic regions.

F I G U R E 5 Coupling of FEs (blue region) with 3D peridynamic nodes (red solid squares): the fictitious PD nodes (red empty squares)
are added within the FEs up to a distance of 2𝛿 from the interfaces (yellow surfaces).

closest to the interface. We can write the following equation for each real PD node q that lies on the section of a fictitious
FE node:

uPD(xq, yq, zq) =
∑

i

∑

𝜏

Ni(yq)F𝜏(xq, zq)uf -FE
𝜏i , (31)

where uf -FE
𝜏i contains the generalized degrees of freedom associated to the fictitious FE node. Equation (31) can be written

in a matrix form as:

UPD = Ifs-PDUfs-FE
, (32)

where UPD is the peridynamic displacement vector, Ifs-PD is the interpolation matrix and Ufs-FE is the vector of the degrees
of freedom of the section associated to a fictitious FE node.
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10 SCABBIA and ENEA

F I G U R E 6 Coupling of FEs (blue region) with 3D peridynamic nodes (red squares): the fictitious FEs are added so that the sections of
the fictitious FE nodes (empty circles) lie over the plane of the real PD nodes closest to the interfaces (yellow surfaces).

However, we would like to express the latter degrees of freedom (Ufs-FE) as functions of the displacements of the
real PD nodes (UPD) by inverting the matrix Ifs-PD. Note that, in general, Ifs-PD is not a square matrix and, hence, is not
invertible. Therefore, we exploit the relation of each degree of freedom of the fictitious FE node with the shape function
Ni and expansion function F𝜏 . These functions can be used as weights to compute, for each FE degree of freedom, the
weighted average of the displacements of all the real PD nodes lying on the section of the fictitious FE node:

uAV
𝜏i =

∑
q |Ni(yq)F𝜏(xq, zq)|uPD(xq, yq, zq)

∑
q |Ni(yq)F𝜏(xq, zq)|

, (33)

or

UAV = A UPD
, (34)

where uAV
𝜏i is the generic averaged displacement of the fictitious section and UAV is the vector containing them. Note that

UAV has the same dimension of Ufs-FE, so that
[
A Ifs-PD] is a square matrix. This allow us to express the degrees of freedom

of the fictitious FE node as functions of the displacements of the real PD nodes:

Ufs-FE =
[
A Ifs-PD]−1UAV

=
[
A Ifs-PD]−1A UPD

.

(35)

If this procedure is repeated for all the fictitious FE nodes, then the following matrix can be assembled:

Uf -FE = If -FEUPD
, (36)

where Uf -FE is the vector of the degrees of freedom of the fictitious FE nodes and If -FE is the fictitious FE interpolation
matrix. Note that the dimensions of If -FE are 3Nf -FE × 3NPD, where 3Nf -FE is the number of the FE nodal unknowns and
NPD is the number of real PD nodes.

Remark 1. There might be the case in which a fictitious CUF node is associated to more-than-one section, as
for instance shown in Figure 7. Let us call n the number of sections to which the CUF node belongs. In this
case, the procedure explained above should be repeated n times, and the row of If -FE should be divided by n.
In this way, the interpolation of the FE node is the average of the contributions of the n sections.
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SCABBIA and ENEA 11

F I G U R E 7 Example of a FE node with multiple FE sections in which some fictitious FE nodes belong to more-than-one section and
some real PD nodes lie on more-than-one section.

F I G U R E 8 Coupling of high-order 1D FEs (blue region) with 3D peridynamic nodes (red squares) when one of the interfaces (yellow
surfaces) is parallel to the axis of the bar.

Remark 2. There might be the case in which some real PD nodes lie in more-than-one fictitious FE section,
as for instance shown in Figure 7. In this case, the PD nodes are involved in the interpolation of each CUF
section they lie on.

4.4 Interfaces parallel to FEs

Let us consider another example in which there is an interface that is parallel to y axis, that is, the axis of the bar, as in
Figure 8. It is straightforward to generalize this example to more complex cases in which there are interfaces perpendicular
to both x and z axes. Similarly to what exposed in Section 4.2, the fictitious PD nodes are introduced within the FEs in
such a way to surround the interfaces with a PD layer with thickness 2𝛿, as shown in Figure 9. Equation (29) is still valid
and can be used to assemble the fictitious PD interpolation matrix If -PD.

On the other hand, the fictitious FE sections are added in the PD region so that they lie on the closest plane of real
PD nodes, as shown in Figure 10. Note that a new kind of fictitious FEs is generated by this geometry: close to the edge
between the interfaces there are some fictitious FEs with just one edge lying on a row of real PD nodes. The other edges
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12 SCABBIA and ENEA

F I G U R E 9 Coupling of FEs (blue region) with 3D peridynamic nodes (red solid squares): the fictitious PD nodes (red empty squares)
are added within the FEs up to a distance of 2𝛿 from all the interfaces (yellow surfaces), even the interfaces parallel to the axis of the bar.

of that kind of elements lie on the external surface of real FEs. This means that, for these new elements, there are no
sections as the ones used in Section 4.3 to interpolate the displacements of the fictitious FE nodes.

In this case, the displacements of the fictitious FE nodes lying on the row of PD nodes are interpolated thanks to the
two fictitious FE sections as explained in Section 4.3. Note that the row of PD nodes is involved in both the interpolations
of the two fictitious FE sections (see Remark 2). Analogously, since the fictitious FE nodes lying on that edge are "shared"
between the two fictitious FE sections, the displacements of these nodes are the averages of the interpolations of the two
sections (see Remark 1). The fictitious FE nodes of the remaining edges, lying on the external surfaces of real FEs, are
simply interpolated via the FE shape functions Ni and the expansion functions F𝜏 of those elements:

ufe-FE(xp, yp, zp) =
∑

i

∑

𝜏

Ni(yp)F𝜏(xp, zp)uFE
𝜏i , (37)

where ufe-FE is the vector of the degrees of freedom of the fictitious FE nodes on one of these edges. Equation (37) is
employed during the assembling of the fictitious FE interpolation matrix If -FE.

4.5 3D coupling of FEs and PD nodes

In this section, we aim at assembling the stiffness matrix of the complete system of (both FE and PD) equations. We
assemble the global FE stiffness matrix Kgl−FE as explained in Section 3 by considering both real and fictitious elements.
The real FE stiffness matrix KFE is retrieved by eliminating all the rows and columns of Kgl−FE corresponding to fic-
titious FE degrees of freedom. On the other hand, the fictitious FE stiffness matrix Kf−FE is obtained by eliminating
the rows corresponding to fictitious FE degrees of freedom and the columns corresponding to real FE degrees of free-
dom. Note that the rows of the fictitious degrees of freedom are not utilized because they correspond to the fictitious
FE forces. The fictitious FE nodes indeed lie in the peridynamic region and do not “feel” any FE force, as explained
in Section 4.1.

Similarly, as explained in Section 2, we assemble the global PD stiffness matrix Kgl−PD by considering both real and
fictitious PD nodes. Since the fictitious PD nodes lie within FEs, there are no fictitious PD forces applied to those nodes.
Therefore, the rows of Kgl−PD are eliminated. We obtain the real PD stiffness matrix KPD and the fictitious PD stiffness
matrix Kf−PD by eliminating the columns corresponding to the fictitious and real degrees of freedom, respectively.
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SCABBIA and ENEA 13

F I G U R E 10 Coupling of FEs (blue region) with 3D peridynamic nodes (red squares): the fictitious FEs are added so that the fictitious
sections lie over the plane of the real PD nodes closest to the interfaces (yellow surfaces). Note that a new type of elements appears near the
edges between the interfaces.

Thus, the system of equations can be written in the following matrix form:

[
KFE Kf−FE If−FE

Kf−PD If−PD KPD

][
UFE

UPD

]

=

[
FFE

FPD

]

, (38)

or

KU = F, (39)

where K is the stiffness matrix of the entire system, U is the displacement vector and F is the force vector.

5 NUMERICAL EXAMPLES

In the following Section, we will analyze various numerical examples to verify the accuracy of the proposed coupling
method. We will compare these results with full FEM solutions, even if the different formulations of peridynamics and
classical continuum mechanics lead to a discrepancy in the results between the two theories.26 Moreover, no corrections
to the surface effect has been applied for the external surfaces of the PD regions (the surfaces that do not correspond to
interfaces with FEM regions).5-8 As one will see hereinafter, these sources of error affect only slightly the accuracy of the
numerical results.

5.1 Isotropic bar

The first case study is a 3D isotropic bar subjected to uniaxial traction. Geometry, boundary conditions, and mesh
information are highlighted in Figure 11. The bar has a squared cross-section, and each side is 10 mm long, whereas the
longitudinal length of the beam is equal to 100 mm. The material is isotropic and homogeneous, with an elastic mod-
ulus E = 10 GPa and Poisson’s ratio 𝜈 = 0.2. The central portion of the isotropic bar is modeled with a 3D peridynamics
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14 SCABBIA and ENEA

F I G U R E 11 Geometrical and modeling features of the investigated beam.

F I G U R E 12 Deformed configuration under uniaxial traction. In this numerical case, the 1D finite elements adopt a quadratic (L9)
kinematics.

grid. A grid spacing of Δx = 1 mm and an m-ratio equal to 3 is adopted, resulting in a horizon radius 𝛿 = 3 mm. The
remaining portions of the bar are described by linear two-nodes finite elements (B2), one for each region. Hence, by
using CUF, the kinematics associated with the finite elements goes from classical beam models to high-order LE. More
specifically, Taylor expansion of different orders N (TEN) are adopted. Thus, for instance, the notation TE1 refers to the
use of first-order polynomials as expansion function. Nine-node quadratic Lagrange elements (LE9) are also used in
the present case. Three-dimensional peridynamics has already been coupled with CUF before.22 The same bar has been
here investigated. However, a bond-based formulation has been adopted in that case, leading to a constrained value of
Poisson ratio 𝜈 = 0.25. The extension to a state-based formulation eliminates this constraint. Moreover, in Reference 22
the coupling method is based on the application of Lagrange multipliers at the FEM-PD interface. The results from this
coupling approach showed to be in good accordance with the full FEM solution. Nevertheless, some discrepancies at
the interface have been detected. The present work’s objective is to reduce these numerical errors at FEM-PD domain
interfaces.

A first result is shown in Figure 12. The deformed shape of the bar under uniaxial displacement is repre-
sented. In this particular case, a single LE9 element has been adopted for the cross-section discretization. Figure 13
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SCABBIA and ENEA 15

F I G U R E 13 Effect of different 1D-CUF models for FEM regions on the axial displacement of the beam.

shows the consistency of the solutions when 3D PD is coupled with different FE models. Indeed, the longitudinal
displacement evaluated in the central point of the section along the bar length is not affected by the cross-section dis-
cretization. A comparison between the aforementioned method and the present one is displayed in Figure 14. This
figure shows the presence of some distortions for displacements at interface regions when the Lagrange multipliers
method is adopted (see Figure 14B). Figure 14C shows that these discrepancies are nearly eliminated when the pro-
posed model is adopted, especially at the interfaces. In fact, a relative error with respect to the full FEM solution
greater than 5% is computed at the FEM-PD interfaces, when the Lagrange multipliers method is adopted. On the
other hand, the error is significantly reduced with the present coupling technique, leading to a maximum relative
error of 0.69%.

5.2 C-shaped section beam under bending and torsion

The second analysis case is a C-section beam subjected to bending and torsion. The information about dimensions, bound-
ary conditions, and modeling features are detailed in Figure 15. The entire beam is made of the same isotropic material,
with elastic modulus E = 200 GPa and Poisson ratio 𝜈 = 0.2. The main objective of this case study is to highlight the 3D
nature of the proposed coupling model. In fact, high-order LE elements are required to accurately describe the beam
behavior under both bending and torsion. It has been widely demonstrated that classical low-order beam theories have
significant difficulties in reproducing these 3D phenomena.

In this case study, the axial FEM discretization consists of 10 four-node cubic elements (B4). The 3D PD region is not
adopted for modeling the whole cross-section, as in the previous case. Instead, the PD region is here embedded into the
finite element domain itself. This solution is obtained by varying the cross-section of the 1D FEs along the axial direction;
it is represented by a disconnected region wherever PD is employed, that is, 490 ≤ y ≤ 510 mm (see Figure 15). A grid
spacing of Δx = 1 mm and horizon radius 𝛿 = 3 mm is chosen. In Figure 16, the deformed shape of the C-section beam
for both full FEM (Figure 16A) and coupled PD-FEM model (Figure 16B) are shown. Furthermore, a close detail of the
deformed state is displayed in Figure 17. One can notice that the three-dimensional PD domain is perfectly consistent
with the FEM regions.

These considerations support the choice of using high-order Lagrange elements capable of reproducing 3D-like phe-
nomena. Table 1 compares the vertical displacements at points A and B (see Figure 15) from the improved coupled FE-PD
model with those from reference solutions, obtained by using CUF-based TE and LE refined models. Displacements in
two different points are evaluated in order to highlight further the capability of the refined CUF models to capture both
bending and torsional behavior of the investigated beam. A first remark can be identified in the difficulty of low-order
theories in computing the correct displacements in both investigated points. The model adopting LE9 elements for
cross-section discretization reaches an optimal solution, as shown in recent works (i.e., Reference 24). Moreover, the
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16 SCABBIA and ENEA

(A) (B)

(C)

F I G U R E 14 Axial displacement of the bar subjected to traction along (A) the entire length and (B) the perydinamic region. FE-PD
interfaces are subjected to distortions when the Lagrange multipliers coupling approach is adopted. These distortions are eliminated when
the improved coupling method is applied. A comparison of the errors retrieved with both methods with respect to the full FEM solution is
presented in (C).

present improved coupling model leads to transverse displacements comparable to those obtained with fully refined
models, with an error of 1 % and 2 % detected in points A and B, respectively.

Finally, the vertical displacement along the beam span is given in Figure 18. The green line in Figure 15 indicates
the followed path. Results from the present coupling model are compared with a full FEM solution. The displacement
evolution along the beam span is correctly reproduced by the FEM-PD model. Furthermore, it should be underlined the
capability of the improving coupling solution in avoiding any distortions at domain interfaces. In fact, a smooth transition
between FEM (red dots) and PD (green dots) displacements is retrieved. The residual errors that are still noticeable in
Figure 18 are due to the different (local and nonlocal) solutions of peridynamics and CUF when the displacement field
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SCABBIA and ENEA 17

F I G U R E 15 Geometrical and modeling features of C-shaped section beam subjected to bending and torsion.

(A) (B)

F I G U R E 16 Deformed configuration of the C-section beam for (A) full FEM and (B) FE-PD coupled model.

is a superlinear function.26 Moreover, the lack of corrections for the peridynamic surface effect may further increase the
differences between the results obtained with the full FEM approach and the CUF-PD coupling. The simplest way to
reduce these residual errors is decreasing the horizon size.

5.3 Stiffened panel

A stiffened panel is investigated as final example to underline the ability of the proposed method to introduce PD domains
in complex structures. Figure 19 summarizes geometric and modeling features. The material properties are the same
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18 SCABBIA and ENEA

F I G U R E 17 Close view of the deformed PD zone for the investigated beam. A clear consistency between the two formulation is shown.

T A B L E 1 Transverse displacements in middle point of the free-end section (Point A) and at the loading point (Point B).

Model FE dof’s PD dof’s −uz [mm] Point A −uz [mm] Point B

TE1 333 - 0.1713 0.1732

TE4 1665 - 0.1959 0.2658

TE8 4995 - 0.2646 0.5252

L9 9657 - 0.2403 0.5436

L9-PD 9432 20,040 0.2344 0.5337

adopted in the first numerical case. The structure is composed of two stringers and one panel, which are independently
modeled with high-order four-node beam elements in a component-wise manner.38

The main novelty introduced with this numerical case is the possibility of investigating a structure with two dis-
tinct peridynamics domains. In fact, two different square regions, one for each stringer, are modeled through 3D
peridynamics. The PD domain is discretized in a meshless manner with a grid spacing of Δx = 1 mm and horizon
radius 𝛿 = 3 mm.

Table 2 displays the vertical displacement and the value of longitudinal stress 𝜎yy in some characteristic points
(see Figure 19) for the present coupled model and for reference solutions obtained through full FEM analysis. These
results underline once again the capability of the proposed coupling model in accurately reproducing three-dimensional
phenomena.

Furthermore, the accurate prediction of the axial stress in point C of the structure should be highlighted. Figure 20 also
shows the complete axial stress state in the structure for a FEM solution (Figure 20A) and the coupled model (Figure 20B).
It is important to remark here that the PD domain embedded into the structure does not affect the stress state, opening
the possibility of using FEM-PD coupled models for fracture mechanics problems (see Reference 36).

Vertical displacement along the green line in Figure 19 is displayed in Figure 21. The solution from a full FEM analysis
is depicted with a solid blue line, while red and green dots represent displacements in FEM and PD domains, respectively.
The coupled model completely matches the FEM solution along the beam span and across the perydinamic region without
any sign of distortion in both FE-PD interfaces. Similarly to the previous case presented in Section 5.2, the residual errors
are due to the different formulations of peridynamics and CUF theories.
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SCABBIA and ENEA 19

F I G U R E 18 Vertical displacement of the C-section beam along the beam span (green line in Figure 15). A full FEM solution (solid
blue line) is used as reference, while red and green dots represent the displacement in FEM and PD domains, respectively.

F I G U R E 19 Geometrical and modeling features of the investigated reinforced panel. Two distinct peridynamic regions are introduced,
one for each stringer.

T A B L E 2 Vertical displacements and axial stress 𝜎yy are evaluated in some characteristic points of the structure for reference solutions
and present FE-PD coupled model.

Model FE dof’s PD dof’s −uz [mm] @Point A −uz [mm] @Point B 𝝈yy [MPa] @ Point C

TE1 225 - 29.532 29.368 71.274

TE4 1125 - 31.471 27.513 89.505

TE8 3378 - 40.765 18.396 114.42

L9 10659 - 44.942 14.153 126.916

L9-PD 10641 15,480 45.346 14.719 126.847
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20 SCABBIA and ENEA

(A) (B)

F I G U R E 20 Distribution of longitudinal stress 𝜎yy in the reinforced panel for a full FEM analysis (A) and for a coupled FE-PD model (B).

F I G U R E 21 Vertical displacements along the structure span, following the green line in Figure 19.A full FEM solution (solid blue line)
is used as reference, while red and green dots represent the displacement in FEM and PD domains, respectively.

6 CONCLUSIONS

In this research, a method for the coupling of three-dimensional (3D) peridynamics grids and one-dimensional (1D)
refined finite elements (FEs) based on Carrera Unified Formulation (CUF) is proposed. The advantages of CUF are
exploited to obtain 3D solutions with a significant reduction in computational demand. In fact, CUF allows coupling 3D
peridynamics domains with 1D finite elements of any order. By adopting high-order 1D models, full 3D solutions are
retrieved, even when peridynamics is introduced in multiple regions of the investigated structure. The proposed tech-
nique has proven to be general and capable of greatly reducing any numerical inaccuracies at the interfaces between the
two domains. Furthermore, the use of the state-based peridynamics (instead of the bond-based peridynamics) allows to
remove the limitation of modeling only materials with a Poisson’s ratio equal to 0.25. The present coupling method is
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based on the continuity of the displacement field in a nonlocal region near the interfaces. The employed coupled mod-
els show a very low computational cost when compared with full 3D approaches while maintaining a great degree of
accuracy. The effectiveness and efficiency of the present coupling strategy are proven on classical beams and thin-walled
structures of aerospace interest.
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