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A Compressed Multivariate Macromodeling
Framework for Fast Transient Verification of

System-Level Power Delivery Networks
Antonio Carlucci , Graduate Student Member, IEEE, Tommaso Bradde , Member, IEEE,

Stefano Grivet-Talocia , Fellow, IEEE, Scott Mongrain, Sid Kulasekaran,
and Kaladhar Radhakrishnan , Senior Member, IEEE

Abstract— This article discusses a reduced-order modeling
and simulation approach for fast transient power integrity
verification at full system level. The reference structure is a
complete power distribution network (PDN) from platform volt-
age regulator module (VRM) to multiple cores, including board,
package, decoupling capacitors, and per-core fully integrated
voltage regulators (FIVRs). All blocks are characterized and
known through high-fidelity models derived from first-principle
solvers (full-wave electromagnetic and circuit-level extractions).
The complexity of such detailed characterization grows very
large and becomes intractable, especially for power integrity
verification of massive multicore platforms subjected to real
workload scenarios. We approach this problem by exploiting a
multistage macromodeling and compression process, leading to
a compact representation of the system dynamics in terms of
a linearized state-space structure with multiple feedback loops
from the FIVR controllers. The PDN macromodel is obtained
through a data-driven approach starting from reference small-
signal frequency responses, obtaining a sparse and structured
representation specifically designed to match the behavior of the
reference system. The resulting compact model is then solved in
time-domain very efficiently. Results on Mobile and enterprise
Server benchmarks demonstrate a speedup in runtime up to 50×

with respect to HSPICE, with negligible loss of accuracy.

Index Terms— Fully-integrated voltage regulator (FIVR),
macromodeling, multi-core architecture, power distribution
network (PDN), power integrity, singular value decomposition,
transient analysis, vector fitting.

I. INTRODUCTION

AS microprocessors power levels continue to rise, power
delivery architects are increasingly relying on integrated
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voltage regulators (IVRs) to provide fine grain regulation at
the chip level without increasing the complexity of the power
delivery solution on the platform [1]. It is not uncommon
for datacenter microprocessors to have over a hundred cores
each with a dedicated IVR programed to deliver the minimum
required voltage to support the frequency of operation for the
core. One consequence of such a power delivery architecture is
the coupling in power delivery noise from one core to another
due to the shared input network. This in turn drives the need
to develop a simulation framework that can run large-scale
transient simulations for a number of different workloads to
ensure the integrity of the power supply seen by the transistors.
Early simulation techniques for analyzing power delivery noise
have either ignored the coupling from one core to another or
used a brute-force SPICE-based approach which is feasible
only for small-scale low-core count microprocessors. This
approach does not have the potential to scale to more complex
systems with a large core count, as demanded by the state-of-
the-art datacenter CPUs.

This article addresses system level power integrity ver-
ification for multicore microprocessors with Fully IVRs
(FIVRs) [2] providing per-core voltage domain granularity.
The input power supply to the FIVRs is generated from a
single voltage regulator on the motherboard. Our objective is
to simulate an entire power delivery network structured as
a cascade of multiple stages between the main supply and
the compute domains inside the microprocessor. In particular,
we address the transient solution of the complete power deliv-
ery, including voltage regulation effects provided by FIVR as
well as the coupling from one core to another. The large-scale
nature of this simulation problem, both in terms of expected
dynamic order and number of ports/signals to be evaluated,
combined with the nonlinear FIVR circuitry and the associated
feedback regulation loops, make this problem particularly
challenging. A novel reduced order modeling approach is used
to achieve significant speed up over the SPICE-based approach
with minimal impact to the accuracy of the results.

II. NOTATION AND PROBLEM STATEMENT

We consider the general system topology depicted in Fig. 1.
At the motherboard level, the on-board voltage regulator
module (VRM) is connected to the printed circuit board
(PCB) power planes providing power up to the power pins
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Fig. 1. Schematic of the multicore power distribution system under
investigation.

Fig. 2. Structure of the power distribution system for each of the Nc cores
whose voltage is regulated by Np-phase FIVRs.

of the microprocessor package. Both package and board are
known through a high-accuracy electromagnetic characteri-
zation, in terms of multiport sampled scattering responses.
We also assume that a full set of decoupling capacitors has
already been optimized at an earlier stage, in order to meet
the required target impedance specifications [3], [4]. Adopting
a conventional RLC model (possibly through multiple par-
allel RLC branches) for each capacitor, we embed all such
models by terminating the corresponding ports, obtaining a
port-reduced subsystem that is interfaced on one end with
the system VRM and on the other hand with the FIVR
switches that provide the interface with the individual cores.
This subsystem can be collectively represented by a large-
scale distributed linear and time-invariant (LTI) multiport
described by a transfer matrix Hb(s) and denoted as input
network. As depicted in Fig. 1, this subsystem provides a
global coupling path between all cores. In fact, one of the
objectives of this investigation is to assess the contribu-
tion of such couplings in a real workload scenario where
individual cores are excited by specific transient loading
conditions.

Fig. 3. Detailed view of a buck FIVR implementation: inductors are placed
in the package, while switching circuitry with MIM capacitors are integrated
ON-chip.

TABLE I
NUMBER OF CORES (Nc ), FIVR PHASES (Np ), OUTPUTS PER

CORE (No), AND TOTAL OUTPUTS P = Nc No FOR
MOBILE AND SERVER EXAMPLES

Fig. 2 provides a more detailed view of the power dis-
tribution network (PDN) for the kth core. Inside the chip,
a second voltage regulation stage is implemented through
FIVRs, consisting of multiphase switching power supplies
(e.g., buck converters). Voltage regulation is achieved by
sensing the output voltage, comparing its instantaneous value
to a reference voltage Vref, and feeding the corresponding error
signal through a dedicated per-core controller or compensator
Kk . The output of this controller is a duty-cycle signal dk

which drives the FIVR switching banks. Fig. 3 provides
additional details of the FIVR structure as implemented on
hardware. All the switching circuitry including power tran-
sistors, switching control circuits, and the output decoupling
for these FIVRs are fabricated on-die, whereas the inductors
are placed in the package. The FIVR output is a filtered and
regulated voltage that is distributed through the die power rails
to reach logic devices in their respective power domains. The
blocks denoted as output network in Fig. 2 represent the PDN
of each core through a circuit model, including integrated
MIM capacitors which provide the output decoupling, plus
a detailed electromagnetic model of the integrated inductors
that complete the topology of the FIVRs. Also this output
network can be represented as an LTI system with a transfer
matrix Hc(s).

The interface signals between all blocks are defined by:

1) Nc: number of (identical) cores;
2) Np: number of phases of each FIVR; and
3) No: number of output ports (per core).

These parameters are listed in Table I for the two benchmark
examples that we will investigate in this work namely a
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Fig. 4. Picture of a representative Intel Core microprocessor.

Fig. 5. Picture of a representative Intel Xeon microprocessor.

mobile system equipped with an Intel1 Core2 microprocessor
(Fig. 4), and an enterprise server based on an Intel Xeon1

microprocessor (Fig. 5), which we consider in three different
configurations with Nc = 8, 12, and 16 cores. Therefore,
the input network Hb(s) has Nc Np + 1 ports, each core k
is represented by a transfer function Hc,k(s) with Np ports
interfaced to the switches and No output ports where the
transient voltage is to be computed, so that the overall output
network Hc(s) has a total of Nc(Np + No) ports. The time-
varying duty cycles of all cores are collected in the vector
d(t) ∈ [0, 1]

Nc . The main objective of this work is to compute
efficiently the transient voltages vo

k,n(t) at all n = 1, . . . , No

ports of each core k = 1, . . . , Nc, excited by predefined current
load signals io

k,n(t) acting concurrently.

A. Preprocessing

The initial phase in our problem setup involves a prelim-
inary macromodeling step applied to both input and output
networks, based on the available electromagnetic solver data.
After port termination with decoupling capacitor models, the
resulting frequency responses are processed by a rational
macromodeling engine based on vector fitting (VF) with
passivity enforcement [5], [6], so that both Hb(s) and Hc,k(s)
are available as a set of linear state-space equations and the

1Registered trademark.
2Trademarked.

Fig. 6. Illustration of the open-loop PDN structure after removing the
controller feedback loop of each FIVR.

associated synthesized SPICE realizations. Such macromodels
enable a direct (reference) SPICE simulation of the com-
plete system, once complemented with circuit models of the
switches and the compensators. This will provide the solution
that we will use as reference, both in terms of accuracy and
runtime. Starting from this representation of the input and
output networks as a set of linear state-space equations or,
equivalently, their synthesized circuit realizations, frequency-
domain samples of any network function associated with the
full PDN system (e.g., the input impedance at the PDN load
ports) can be obtained by means of AC analyses performed in
a commercial circuit solver (SPICE) or by direct computation
in MATLAB. In the following, these responses will be referred
to as reference data.

III. OUTLOOK

The proposed approach is based on a reduced-order repre-
sentation of the open-loop dynamics of the PDN. If we remove
the per-core feedback loops with the corresponding controllers,
we obtain the structure depicted in Fig. 6, where the complete
set of output networks of all FIVR switches and all cores are
collected in the two macro-blocks S and Hc(s), respectively.
The global structure enclosed in the dashed block represents a
large-scale nonlinear time-varying dynamical system, where
the large scale nature is induced by the large number of
ports/signals and by the broad frequency bands over which
both input and output network models are needed, and the
nonlinear time-varying nature is induced only by the FIVR
switches S. The inputs to this structure are the (constant) VRM
voltage source, all Nc No load currents on the core side, and
all Nc duty-cycle signals.

One of the key aspects of proposed formulation is the
adopted representation for the switches, here represented
through averaged models. For each core k and phase j , the
corresponding set of FIVR switches is represented by an ideal
transformer with turn ratio 1:dk(t), where dk(t) is the duty-
cycle signal resulting from the compensator Kk of core k.
This assumption has its own limitations but is known to
be accurate when the buck converters operate in continuous
conduction mode (CCM). Even with this simplifying assump-
tion, the global open-loop system still remains nonlinear (the
transformers couple input-output voltages and currents through
a multiplication by dk). In real operation, each dk = dk(t)
provides a time-varying nonlinearity. For this reason, first-
principle circuit simulation (e.g., via HSPICE) is particularly
time-consuming.
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A general form of the open-loop PDN equations, e.g.,
as obtained by a standard modified nodal analysis (MNA),
can be stated as

ẋ = F(x, io, d, VVRM)

vo
= G(x, io, d, VVRM) (1)

where x collects all required state variables. We propose an
approximate and simplified representation of the dynamics as

ẋ = Ax + B1(d)io
+ B2(io)d (2)

with the contribution of different inputs separated and
expressed in a linearized form, where:

1) the open-loop poles (eigenvalues of A) are assumed
constant and independent on d;

2) the matrix B1 mapping the core current inputs is (non-
linearly) parameterized by the duty-cycle signals d; we
will see that this parameterization is essential for a
correct representation of the voltage regulation dynamics
induced by the feedback operation at runtime;

3) the matrix B2 is parameterized by the loading currents
io; we will, however, see that this dependence is very
weak and can be ignored, so that B2 can be assumed as
constant; and

4) the input VVRM is embedded as a fixed value in the other
matrix coefficients, since constant.

The above structure is in fact the result of several investiga-
tions and tests that were performed on the full system for both
benchmark examples considered in this work. Part of these
tests will be documented in Sections IV–VII in support of the
derivations.

1) In Section IV, we consider all duty-cycle signals as
“frozen,” and we construct a reduced-order macromodel
of the PDN as observed from the output ports. This will
lead to a representation of the output impedance matrix
Z(s; d) as a rational function including an explicit
dependence on the operating point induced by the duty-
cycle configuration. We will see that a common pole
(non-parameterized) set to represent Z(s; d) is adequate,
supporting a constant state matrix A in (2). Conversely,
residue matrices need to be parameterized by d, leading
to the input map B1(d) in (2) through a simple realiza-
tion process.

2) In Section V, we consider the dynamics induced by
the time-varying duty-cycle signals. Such dynamics
will be characterized through a small-signal (linearized)
approach, obtaining the second input contribution
B2 in (2).

3) In Section VI, we will reintroduce the feedback loops
for each core. The internal stability of the parameter-
ized macromodel under closed-loop operation will be
analyzed based on the assumed model topology. Finally,
time discretization will be introduced to enable transient
analysis.

4) Section VII will present numerical results, validations,
and will discuss efficiency, speedup, and scalability.

IV. OPEN-LOOP DYNAMICS WITH LOCKED
VOLTAGE REGULATION

In this section, we focus our attention on the dependence
of the output voltages on the core loading currents

1) after disconnecting the controllers and opening the feed-
back loops;

2) by “freezing” the duty-cycle signals d(t) = d, which are
thus considered as a set of fixed (constant) parameters.

The entire PDN structure as depicted in Fig. 6 becomes
a large-scale LTI system, which can be fully characterized
by the output impedance matrix Z(s, d) relating the output
voltages to the core excitation currents through V o(s) =

Z(s, d)Io(s). This impedance depends on the particular con-
figuration of the duty-cycle parameters d, which are indeed
intended to modulate the core voltages. Samples of this
parameterized transfer function can be obtained, as anticipated
in Section II-A, through AC analyses in a commercial circuit
solver where the whole system is described using SPICE
circuit realizations resulting from the preprocessing phase and
duty-cycle parameters are fixed.

Given the above structure, we apply a second layer of model
order reduction through a second rational fitting stage, with
the objective of further reducing overall model complexity by
exploiting the interactions between input and output networks.
In particular, it is expected that the resistive/capacitive and
lowpass behavior of the output network models provides a
filtering and smoothing effect, thus enabling a compact low-
order representation of the output impedance as observed from
the output ports. Therefore, we consider a general model
structure

Z(s, d) =

ν̄∑
ν=1

Rν(d)

s − pν

(3)

where common poles pν are used to represent all impedance
entries, and where the associate residues Rν are parameterized
through low-order polynomials. Justification for this structure
and detailed considerations on the evaluation of poles and
parameterized residues follow.

A. Macromodel Structure

Let us denote with P = Nc No the total number of output
ports, so that the output impedance matrix Z ∈ CP×P . As typ-
ical in rational macromodeling, a set of frequency response
samples are computed through small-signal AC sweeps as

Z̆ i j ( jωℓ; dµ), i j = 1, . . . , P, ℓ = 1, . . . , L , µ = 1, . . . , M

(4)

where L is the total number of frequency samples, and each
response is characterized by a given configuration of duty-
cycle parameters dµ = (d(µ)

1 , . . . , d(µ)

Nc
)T. Fig. 7 depicts a rep-

resentative set of responses for the Mobile example, computed
for a full (Nc = 4)-dimensional sweep over the duty-cycle
parameter space. The responses can be grouped in two main
classes, namely intra-core responses (largest magnitude, fur-
ther split in Fig. 7 into diagonal ‘A’ and non-diagonal ‘B’) and
inter-core couplings (smaller magnitude, ‘C’). Within each
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Fig. 7. Top panel shows a representative set of output impedance responses
for the Mobile example, evaluated for different combinations of the duty-cycle
parameters dk (solid blue lines). Corresponding responses of a common-pole
macromodel (3) are depicted with red dashed lines. Responses are classified in
three categories: A (diagonal) refers to driving-point (self) impedances within
each core; B (same block, out-of-diagonal) refers to impedance matrix entries
representing cross-coupling between different load ports within the same core;
C (out-of-diagonal) refers to coupling between load ports of different cores.
The bottom panel shows the absolute error for selected representative transfer
matrix entries for each category and for several combinations of the duty-cycle
parameters dk .

class, all responses look “very similar” and are characterized
by resonant/antiresonant peaks that are located at the same
frequencies.

Although the generation of (parameterized) rational macro-
models can be considered as a fundamentally solved problem
under a theoretical standpoint [7], [8], including stability and
passivity enforcement [9], [10], [11], [12], [13], [14], the
practical application to the problem under investigation poses
some critical challenges, mainly due to the possibly large
number of cores Nc. An effective algorithm must be scalable to
at least one hundred cores, with larger figures expected for next
generation microprocessors. The total number of output ports
P can easily reach several thousands or tens of thousands.
In turn, the number of responses P2 is expected to reach
millions or more, and each of these responses potentially
depends on the duty-cycle dk of each kth core. Even storage of
the entire dataset that is usually required to fit a parameterized
macromodel becomes unfeasible, in addition to the overhead
required to evaluate the response data to be fit and the
runtime to perform the rational fit. Fortunately, the specific
features of the PDN under investigation allow several drastic
simplifications, discussed below.

1) Common Poles: The first important assumption is on the
suitability of a common-pole rational approximation (3) of all
impedance responses, for all possible duty-cycle combinations.
This hypothesis has been verified by constructing such a
common-pole model of a large set of representative output
impedance responses (for various duty-cycle combinations dµ)
and checking that the accuracy is satisfactory. A comparison
between model and data for the Mobile example is provided in
Fig. 7, where no visual difference can be appreciated between
model and data at this scale. Similar results apply for the
Server example in the various tested configurations (more
details will be provided in Section VII). These results support
and confirm the suitability of a common-pole structure.

2) Block-Structured Residue Parameterization: The sec-
ond key ingredient enabling the proposed approach is the
suitability of a block-structured and sparse dependence of
the impedance matrix on the duty-cycle parameters. Let us
partition the P × P impedance matrix into blocks as

Z(s, d) =


Z1,1(s, d) Z1,2(s, d) · · · Z1,Nc(s, d)

Z2,1(s, d) Z2,2(s, d) · · · Z2,Nc(s, d)
...

...
. . .

...

ZNc,1(s, d) Z3,1(s, d) · · · ZNc,Nc(s, d)


where the individual blocks Zk,k ′(s, d) ∈ CNo×No . After an
extensive verification campaign on both Mobile and Server
benchmarks, it was concluded that the dependence of block
(k, k ′) on duty-cycle signals {dq , q ̸= k, k ′

} is negligible.
Therefore, all matrix elements of each block (k, k ′) can be
parameterized only by two independent duty-cycle compo-
nents dk and dk ′ . Moreover, elements of diagonal blocks (k, k)

can be expressed as univariate functions of the corresponding
dk only.

This structure is readily understood looking at Fig. 1.
The diagonal blocks (k, k) provide the voltages of one core
resulting from loading the same core k. Such voltages depend
predominantly on the FIVR that drives the same core k. All
other FIVRs not directly connected to this core are expected by
design to have a minimal influence. The off-diagonal blocks
(k, k ′) provide instead the cross-coupling effect that current
switching on one core k ′ induces on an different core k. It is
therefore expected that

1) the FIVR connected to the switching core k ′ adapts its
duty cycle, thus offering a different loading condition on
the input network. The cross-coupling through the input
network becomes visible also to core k;

2) the FIVR connected to the “victim” core k captures and
regulates the induced voltage fluctuations on code k,
which are then visible at all output ports.

In summary, although the complete output impedance matrix
Z(s, d) depends on all Nc independent parameters, each indi-
vidual block depends at most on two parameters.

As a verification of this fact, a numerical experiment has
been carried out in which two models for the same Mobile
example are compared. In the first model, no assumption
was made on the parametric dependence and all entries are
assumed to depend on all duty-cycle parameters. In the second,
the matrix entries depend on at most two parameters according
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TABLE II
VALIDATION ERRORS FOR DIFFERENT PARAMETERIZED

MODELS OF THE MOBILE EXAMPLE

to the block structure of Z(s, d) as discussed above. Columns
Full and Sparse in Table II report the worst case root-mean
square (RMS) errors among all responses of these two models
with respect to the corresponding frequency data, computed
over a validation set of duty-cycle combinations dµ (i.e.,
not used for training the models). The accuracy of these
two models is practically identical, thereby supporting and
validating the proposed sparse parameterization scheme.

3) Exploiting Redundancy: The third enabling factor for
proposed data-driven algorithm is the extreme redundancy of
the full set of impedance responses (4). Looking at Fig. 7,
we notice that all responses belong to one of very few cate-
gories (diagonal, off-diagonal in the same block, off-diagonal
blocks). Within each category, all responses are practically
identical except for minimal variations. This is exactly the
situation in which the complete set of responses can be
represented by a reduced set of “basis” functions. This fact
is common to all those situations in which a very large set of
ports is spread throughout a system sharing the same set of
resonances. Each port excites and collects the superposition
of the same modes. Therefore, all responses are characterized
by the same resonances (hence a further justification of the
common-pole approximation), and responses associated with
ports that are geometrically/electrically close look very similar.

We exploit this redundancy by applying the compressed
macromodeling framework originally presented in [15] and
further elaborated/extended in [16]. In the present setting,
this framework becomes a procedure by which we can rep-
resent the impedance matrix samples of a large dataset in a
compressed form by identifying a low-dimensional subspace
that is sufficient to describe the frequency dependence of all
transfer matrix entries in (3) for virtually any value of d in
the parametric domain.

For a precise statement of this procedure, consider the
parametric dataset of output impedance matrices evaluated at
a finite set of frequencies and parameter values (4) as arranged
in a four-way tensor Z̆ , defined as Z̆ i, j,ℓ,µ = Z̆ i, j ( jωℓ, dµ).
Consider its mode-3 matricization Z̆ (ℓ) (i.e., matricization with
respect to the frequency index ℓ), which gives a matrix whose
columns contain all frequency samples {Z̆ i, j ( jωℓ, dµ), ℓ =

1, . . . , L} corresponding to any fixed value of i, j and µ

available in the dataset. The matrix Z̆ (ℓ) ∈ CL×(P2 M) has L
rows and P2 M columns. Although the number of columns is
very large, the properties of this dataset ensure that there is
a low-dimensional subspace spanned by a set of basis vectors
that can be linearly combined to approximate all columns of
Z̆ (ℓ) up to an arbitrary and tuneable precision. We further
split real and imaginary parts of this matrix and define the

real-valued data matrix

Z̄ =

(
Re

{
Z̆ (ℓ)

}
Im

{
Z̆ (ℓ)

}).

We now look for an orthonormal basis of ρ vectors
{w̆r ∈ R2L , r = 1, . . . , ρ} to approximate the column space of
Z̄ with minimal error. The optimal choice for {w̆r } consists in
the first ρ principal components of Z̄ as given by its singular-
value decomposition. Let us define the matrices

W̆ =
(
w̆1 · · · w̆ρ

)
, W̆ =

(
IL jIL

)
W̄ (5)

so that the projection of the data matrix on the low-
dimensional subspace W = span{w1, . . . ,wρ} is given by
W̄T Z̄ . The reconstructed matrix is W̄W̄T Z̄ ≈ Z̄ and

Z̆ (ℓ) ≈ W̆W̄T Z̄ = W̆V̆ (6)

where we set W̄T Z̄ ≜ V̆.
In a practical implementation, the matrix Z̄ might be

too large for a direct singular value decomposition (SVD).
Nonetheless, it is still possible to randomly select a subset of
its columns that is sufficiently larger than the target rank ρ

and compute the principal components of this submatrix. This
process is a simplified form of the so-called randomized SVD
methods [17], which are proven to be adequate to derive an
appropriate low-dimensional subspace W for which (6) holds
with sufficient accuracy.

As proven in [15], the approximation error due to the
low-rank approximation (6) is related to the first neglected
singular value. Therefore, an accuracy-complexity tradeoff
can be exploited by selecting a target accuracy for singular-
value truncation and automatically deriving the required
number of principal components ρ. For the Mobile example,
only ρ = 20 components are required to reproduce the
complete impedance responses with an approximation error
ε = 8.7 × 10−5, corresponding to a reduction factor as much
as ρ/P2

≈ 0.1%.

B. Macromodeling Principal Component Vectors

In (6), we can view the columns of W̆ as being the
frequency-domain samples of some unknown transfer func-
tions (principal components or basis vectors), and V̆ as
the (real-valued) coefficients by which they are combined
to recover the transfer function samples arranged along the
columns of Z̆ (ℓ). Hence, we can immediately model the
frequency dependence of the entire impedance data (4) by
building a model

W(s) =
(
w1(s) · · · wρ(s)

)
of the basis functions only. This can be obtained by rational
fitting where the following condition is enforced:

wr ( jωℓ) ≈ W̆ℓ,r r = 1, . . . , ρ, ℓ = 1, . . . , L . (7)

In particular, in this work, we resort to VF to obtain a stable
pole-residue model of order ν̄ for W(s)

W(s) =

ν̄∑
ν=1

8ν

s − pν

(8)
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Fig. 8. Common-pole macromodel responses (red dashed lines) compared
to the first ten principal component (basis functions) data (solid blue lines)
for the Mobile example.

where pν and 8ν are the νth pole and residue, respectively.
Since the basis function data inherit the frequency-dependence
of the underlying large-scale impedance response data, also for
the model W(s) a common-pole structure is appropriate. Fig. 8
compares the basis function model to the corresponding data
for the Mobile example. Since these basis functions can differ
significantly in magnitude, using relative error (inverse mag-
nitude) weighting for rational fitting is recommended [5]. This
is the adopted weighting scheme in all numerical examples.

C. Compressed Parameterization

Through the procedure derived above, we are able to turn the
impedance response samples (4) computed for any particular
and fixed duty-cycle configuration dµ into a compressed
representation. This is done by first assembling the tensor
Z̆(dµ) with [Z̆(dµ)]i, j,ℓ = Z̆ i, j ( jωℓ, dµ). Splitting then the
real and imaginary parts of its mode-3 matricization gives
the data matrix Z̄(dµ). The coefficients of its compressed
representation are obtained by projection

V̆µ = W̄T Z̄(dµ) (9)

where the projection matrix W̄T is fixed and known and where
V̆µ ∈ Rρ×P2

. The data reconstruction thus reads

Z̆(dµ)(ℓ) ≈ W̆V̆µ. (10)

In the above derivations, we have explicitly introduced the
argument (dµ) in all matrices that depend on this parameter.
We now exploit this dependence to construct a continuously
parameterized model for any arbitrary value of d.

Let us compute (9) and (10) for a set of duty-cycle combi-
nations {dµ, µ = 1, . . . , M}. This data is used to train (fit) a
multivariate polynomial model

V(d) =

∑
α∈A

Vαdα1
1 , . . . , dαNc

Nc
(11)

where α = (α1, . . . , αNc) is an Nc-tuple of integers and A
is the set A = {(α1, . . . , αNc), 0 ≤ αi ≤ θ}, where θ

is the polynomial order on each individual parameter. The
coefficients Vα of this approximation are computed in the
least-squares sense

V(dµ) ≈ V̆µ, µ = 1, . . . , M. (12)

In order to ensure a sufficiently overdetermined least squares
problem for numerical robustness, we ensure that M is larger
(e.g., ten times) than the total number of polynomial coef-
ficients for each matrix entry (see below). The choice of
multivariate polynomials is motivated by several previous
works on parameterized macromodeling, where it has been
extensively shown that polynomials are suitable for parame-
terization of the transfer function numerator and denominator
coefficients, see [14]. In the present case, the parameter
dependence of V(d) in (11) is equivalent to parameterization
of the transfer function residues, as shown explicitly in the
following derivations.

The multivariate polynomial (11) provides a parameteriza-
tion of the duty-cycle dependence of the impedance responses
in tensorized form

Z̆(d)(ℓ) ≈ W̆V(d) ∀d ∈ [0, 1]
Nc . (13)

Replacing now principal component data W̆ with the corre-
sponding rational approximation (8) leads to a parameterized
macromodel of the output impedance

Z(s, d) = mat{W(s)V(d)} =

ν̄∑
ν=1

mat{8νV(d)}

s − pν

(14)

where the mat{·} operator reshapes the argument into a P × P
matrix. Note that this expression is compatible with (3), where
the residue parameterization is induced in compressed form
through Rν(d) = 8νV(d).

The polynomial interpolation as presented in (11) is general
but would not be scalable to large Nc due to the huge num-
ber of monomial terms involved in the expansion. However,
we have already observed and confirmed through validation
that each block (k, k ′) of Z(s, d) depends only on the two
duty-cycle components dk , dk ′ . With the adopted notation, any
given column m of the polynomial coefficient matrices Vα

corresponds with a single impedance matrix element (i, j)
through

i = 1 + mod(m − 1, P), j = ⌈m/P⌉

where mod is the reminder of integer division and ⌈·⌉ rounds
its argument to the nearest larger integer. In turn, element (i, j)
maps to matrix block (k, k ′) via

k = 1 + ⌊(i − 1)/No⌋, k ′
= 1 + ⌊( j − 1)/No⌋

where ⌊·⌋ rounds its argument to the nearest smaller integer.
Collectively, these expressions can be summarized by a map
{k, k ′

} = F(m) that identifies the two parameters dk , dk ′

on which each column m depends on. The latter column
m can be assumed to be vanishing for all α except for
those where αi = 0 ∀i /∈ {k, k ′

} = F(m). In particular,
Vα = 0 if α contains three or more non-zero elements.
Hence, the special pattern of parametric dependence translates
into the sparsity of the coefficients Vα which makes this
parameterization feasible even with large Nc. In this work,
we adopt polynomials of maximum degree θ = 2, which
implies that each matrix element is associated with at most
(1+θ)2

= 32
= 9 nonvanishing coefficients (instead of the 3Nc

coefficients of a non-sparse polynomial). Therefore, the total
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number of parameter samples used in the least squares fit (12)
is M ∼ 90, which is moderate even in the high-dimensional
case.

D. Complete Modeling Flow

Now that all basic ingredients supporting the proposed com-
pressed, sparse and parameterized output impedance model
representation are available, we summarize all required mod-
eling steps, together with practical considerations for handling
complexity and ensuring scalability.

1) Data Collection: The first step is to collect frequency
responses (4) finalized to building a common-pole
macromodel. Few responses are required thanks to their
redundancy, therefore we perform a random selection
of impedance matrix elements (i, j), whose frequency
samples are computed for a set of duty-cycle combina-
tions {dµ, µ = 1, . . . , M}. In order to ensure scalability
to high core counts Nc, we adopt a Sobol sequence [18]
in the unit hypercube [0, 1]

Nc , with M elements.
2) Construct Basis Functions: The above data are used

to construct the data matrix W̌ collecting the SVD-
generated principal components, see (5).

3) Rational Fit: A common-pole model W(s) of the basis
functions is constructed using a standard VF process,
leading to (8).

4) Full Data Collection: For each µ = 1, . . . , M evaluate
the complete set of impedance responses Z̆ i, j ( jωℓ; dµ)

for i, j = 1, . . . , P . Given the expected very large
dataset, the projection (9) of each computed impedance
matrix onto the reduced basis vectors is performed
on the fly, and only the associated coefficients V̆µ

are stored. This stage of data compression is essential
to ensure scalability of proposed approach to systems
with large port counts. We also collect the impedance
response data for an additional batch of parameter
samples dµ with µ = M + 1, . . . , M , to be used for
self-validation of the macromodel parameterization.

5) Parameterization: The sparse parameterized macro-
model in compressed form (14) is finally computed by
solving the polynomial approximation (12). This step is
not memory-intensive since each block can be processed
independently.

The above flow applied to the Mobile example leads to the
results depicted in Fig. 9, which compares the compressed and
sparse parameterized model responses to the corresponding
responses over the validation set (not used for training).
No visual difference is appreciated from this plot. A detail on
the approximation errors is provided in Fig. 10, which reports
the maximum RMS error for each output impedance matrix
entry over the validation set. The errors of all matrix elements
are well below the reasonable engineering accuracy required
for the present application.

E. Time-Domain Representation and Validation

As a final step, the sparse compressed parameterized
macromodel (14) is realized in state-space form to enable

Fig. 9. Data-model comparison for the Mobile example. The model con-
struction exploits the structural assumption that each output impedance matrix
entry [Zk,k′ ]i, j depends only on the two duty-cycle parameters associated with
the cores k, k′. Furthermore, impedance matrix entries are in a compressed
representation (14).

Fig. 10. Maximum RMS error for each transfer matrix entry of a model of
the Mobile example employing compression and sparse duty-cycle parame-
terization. For each parameter value in a validation set, the RMS error has
been computed for all entries in the Z matrix and the largest error is reported
in this figure.

transient analysis. The following structure is obtained:{
ẋo = Aoxo + Bo(d)io

vo
= Coxo

(15)

where the dynamic matrix Ao is block-diagonal with repeated
poles pν , matrix Co maps states to output voltages through
stacked identity matrices, and where matrix Bo(d) realizes
the sparsely parameterized residues Rν(d) = 8νV(d). This
realization is standard, the reader is referred to [5] for details.
Note that the realization process involves no approximation
so that, for any combination of constant duty-cycle values
d ∈ [0, 1]

Nc , the transfer function associated with (15) matches
exactly the rational output impedance form (14). Provided the
standard stability enforcement techniques are used during the
VF modeling stage, the poles pν have strictly negative real
part and system (15) is asymptotically stable irrespective of
the value of d.

In order to further validate this state-space model, we report
in Fig. 11 the transient results obtained by running the
Mobile state-space model with a fixed configuration of duty-
cycle parameters while switching output currents. The results
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Fig. 11. Four transient simulations of the Mobile parameterized state-space
macromodel (15). In each simulation, all cores are driven with the same
duty-cycle value, set to 0.3, 0.41, 0.5, and 0.7, respectively. Output currents
switch from 0 to 10 A per core, synchronously within each core and
uniformly distributed over its ports. Different cores are excited sequentially
at t = 1, 2, 3, 4 µs. Reference HSPICE results (solid blue lines) and
corresponding macromodel responses (red dashed lines).

from the parameterized state-space model are compared to
a reference HSPICE simulation. As expected, we observe in
time-domain the same level of accuracy that was attained in
the frequency domain.

V. MODELING DUTY-CYCLE INDUCED DYNAMICS

Although the macromodeling flow described in Section IV
provides the output impedance for any value of the parameter
d in its domain, this model is still unsuitable when d is
a time-varying signal. In fact, reconnecting the feedback
loops as in Fig. 2 makes d = d(t) a time-varying signal
resulting from the voltage regulation induced by each core
controller. In turn, this signal triggers some dynamics through
its (nonlinear) interaction with the voltage and current signals
from the FIVR switches. A missing or improper representation
of such dynamics leads inevitably to wrong results. This is
confirmed by Fig. 12, which compares the result of the state-
space macromodel (15) after closing the controller feedback to
the corresponding HSPICE reference. The macromodel results
are not correct due to an incomplete model. It was already
anticipated in (2) that a basic linearization of the nonlinear and
time-varying dynamics induced by the FIVR switches would
require an extra term in a state-space representation, which
considers d as an input and not as a parameter. This term is
introduced next.

In order to obtain an adequate model, we now regard d as
an input and we study its effect on the output voltage. The
simplest representation is through linearized (small-signal)
dynamics, therefore we assume the following decomposition:

d(t) = d̃(t) + d̄ (16)

where d̄ is a constant “bias” (reference) level and d̃(t) is
a small-signal component. Dynamics induced by duty-cycle
variations are considered through a small-signal model whose
inputs are d̃ and the corresponding outputs are ṽo

ss. The bias
value of the load voltage corresponding to d̄ is denoted as
v̄o

ss. The small-signal model linking the small signal d̃(t)
to the corresponding output voltage deviation ṽo

ss admits the

Fig. 12. Transient simulation of the Mobile parameterized state-space
macromodel (15) after closing voltage regulation feedback loops. Output
voltage of one port of core 1 resulting from 10 A total current switching
in 5 ns on the same core. Reference HSPICE results (solid blue lines) and
corresponding macromodel responses (red dashed lines). This results confirms
that (15) is still not adequate to model closed-loop dynamics.

following representation:{
ẋss = Assxss + Bss d̃
ṽo

ss = Cssxss
(17)

and the corresponding large-signal load voltage vo
ss(t) is the

superposition of the bias and the small-signal components

vo
ss(t) = v̄o

ss + ṽo
ss(t). (18)

A. Small-Signal Model Identification

The model in (17) represents the small-signal response of
the load voltage to a small-signal excitation on the duty-cycle
input d̃(t). The transfer function describing this effect has Nc

inputs and P outputs and can be obtained in practice through
an AC analysis, e.g., using a commercial circuit solver such
as SPICE, as outlined below. In the following, the linearized
model (17) is centered at the operating point corresponding
to V̄ VRM = 1.8 V, īo

= 0 A and d̄k = 0.41 ∀k. Thus,
the simulation includes a 1.8 V DC voltage source VVRM
connected as in Fig. 1 and Nc DC voltage sources setting
the bias value of the nodes dk . As for the small signal, Nc AC
excitation sources are series connected to the d̄k bias sources
and activated one at the time while running Nc independent
small-signal AC sweeps. The kth run gives the frequency-
domain samples vo

ss

∣∣
dk

( jωℓ), i.e., the small-signal effect of the
individual dk on vo

ss. Collecting these in a matrix gives

H̆( jωℓ) =

(
vo

ss

∣∣
d1

( jωℓ) · · · vo
ss

∣∣
dNc

( jωℓ)
)
.

The model in (17) is easily obtained by rational fitting
H̆( jωℓ). The standard VF algorithm provides a stable model
H(s) of any desired order to match the small-signal data.
Finally, a state-space realization of H(s) gives the matrices
Ass, Bss, and Css in (17).

It is important to remark that, although in principle a small-
signal model is valid only in a small neighborhood of the
selected operating point, the actual extent of this neighborhood
may be quite large when dealing with systems that are only
slightly nonlinear. This is the case of the regulated PDNs here
analyzed, for which the voltage response to the duty-cycle
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variations is reproduced with acceptable accuracy even for
large deviations from the linearization point. This statement is
supported by experimental evidence, see the time-domain sim-
ulations of Section VII. Furthermore, we tested and validated
this assumption by checking that choosing different operating
points to define the small-signal operation had practically no
influence on the results.

B. Complete State-Space Macromodel

The combination of (17) and (15) gives the final model
representation in state-space form{

ẋ = Ax + B1(d)io
+ B2 d̃

vo
= Cx + v̄o

ss
, x =

(
xo

xss

)
(19)

with

A = blkdiag(Ao, Ass), B1(d) =

(
Bo(d)

0

)
,

B2(d) =

(
0

Bss

)
, C =

(
Co Css

)
. (20)

This first equation in (19) combines state equations in (15)
and (17) respectively, whereas the output equation gives the
load voltage vo as the superposition of the effects induced
by load currents (15) and duty-cycle inputs (17) and (18).
The complete model (19) is compatible with the expected
structure based on a linearization assumption (2), with the only
difference being a constant B2 since based on the linearization
at single operating point īo. Our numerical experiments on
the investigated benchmarks led to the conclusion that an
additional parameterization of this term with the load current
is indeed not necessary, since a sufficient accuracy is attained
with this simpler model representation.

VI. CLOSED-LOOP PDN MACROMODEL

Under standard operating conditions, the time-domain pro-
file of the duty-cycle d(t) is determined by the compensator
blocks, according to the nonlinear state-space

ẇ(t) = AKw(t) + BK e(t)
y(t) = CKw(t) + DK e(t)
d(t) = g( y(t))

(21)

where the matrices AK, BK, CK, DK represent the dynamics
of all compensators and the elements of e(t) = Nvo(t) −

V ref ∈ RNc are their input error signals. These errors are
computed by comparing the reference voltages V ref with a
subset of the output voltages, obtained by multiplying vo(t),
with a suitable selector matrix N. Each entry of the duty-
cycle vector, dk(t), is determined based on the value of the
corresponding element of y(t), according to the saturation
relation

dk(t) = g(yk(t)) =


1, for yk ≥ 1
yk, for 0 ≤ yk ≤ 1
0, for yk ≤ 0.

(22)

To predict the behavior of the closed-loop PDN, the above
equations are to be coupled with those of the parameterized

macromodel. To do so, we induce the time dependency on the
parameterized matrices in (19), by updating in real time their
value according to the output of (21). The overall evolution
of the closed-loop PDN environment is then explained by the
following system:

ẋ(t) = Ax + B1(d)io
+ B2 d̃

vo(t) = Cx + v̄o
ss

ẇ(t) = AKw(t) + BK e(t)
y(t) = CKw(t) + DK e(t)
d(t) = g( y(t)).

(23)

The above system of equations can be simulated in the
time domain by means of the discretization strategy explained
in [19], based on a first-order implicit Euler approximation.

Fig. 13(b) and (c) compares the results of the proposed
macromodel (23) with closed feedback loops to the reference
HSPICE simulation, for a configuration of the excitation (load)
currents on the four cores depicted in Fig. 13(a). In particular,
Fig. 13(b) reports the output voltage on the first port of first
core, demonstrating both the proposed macromodel accuracy
as well as the effectiveness of the voltage regulation through
FIVRs. Fig. 13(c) reports a closeup on core cross-coupling by
showing the voltage fluctuation induced on the last port of the
last core by current switching on the other three cores. The
transient error is well under control, as depicted in Fig. 13(d),
where the difference between proposed method and HSPICE
results for all P = 144 voltage signals is reported. The
attained accuracy level is adequate for the application at hand.
Should a more aggressive accuracy be required, a higher-
degree parameterization of the sparse macromodel residue or a
parameterization of the B2 matrix in (23) with the load currents
may be considered.

A. Boundedness and Stability

Some remarks about the stability of (23) are in order. When
matrices A0, Ass, are Hurwitz, the condition 0 ≤ d(t) ≤ 1
implies that the state vectors x0, xss remain bounded under
any operating condition. Consequently, the output voltages
vo(t) are also bounded, and so are the errors e(t). Since it
is also assumed that AK is Hurwitz, we conclude that all the
system quantities remain bounded irrespective of the particular
excitation i0.

VII. NUMERICAL RESULTS

The effectiveness of the proposed approach was tested
through extensive numerical experiments. This section sum-
marizes the results in terms of accuracy and runtime. We recall
that the two test examples used in this article include a 4-core
mobile platform and an enterprise server microprocessor in
three different configurations with 8, 12, and 16 cores, see
Table I for details. Detailed results on the Mobile example
were already documented in Sections IV–VI, so this section
will mostly concentrate on the server testcase.

Application of the proposed macromodeling framework
to construct the reduced-order state-space models of the
server PDN was carried out using the parameters reported
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Fig. 13. Transient simulation of the Mobile parameterized state-space
macromodel (23) in closed-loop configuration. The load currents exciting
each core are shown in (a): the pulse amplitude is 10/36 A and the same
waveform is replicated for all 36 ports of each core. The rise and fall times
are 5 ns. Output voltages are depicted in (b) and (c), the latter providing a
closeup on core cross-coupling (voltage on core 4 due to switching on the
other cores). The error between the proposed macromodel simulation and the
HSPICE reference is plotted in (d) for all output voltages for all cores (total
144 superimposed error curves).

in Table III, chosen so as to achieve a predefined accuracy
around 10−4 � on the parameterized Z transfer function. The
table reports the number of macromodel poles ν̄, the number

TABLE III
VALIDATION ERRORS AND SETTINGS FOR DIFFERENT PARAMETERIZED

MODELS OF THE SERVER EXAMPLE

Fig. 14. Representative subset of all parametric model responses of the
Server example with 16 cores evaluated on a test set of d points from a
Sobol sequence.

Fig. 15. Normalized singular values of the data matrix Z̄ used to find the
basis functions in the Server example. A small number ρ of basis vectors is
enough to represent the other entries with a small error (10−5).

of reduced basis functions ρ used in the compression process,
and the polynomial degree θ used for duty-cycle parameter-
ization. Note that for the 16-core case two different settings
were used to demonstrate that accuracy can be improved by
considering higher-order models based on a larger number of
basis functions and possibly with higher polynomial degree
approximations. The RMS errors reported in the last column
of Table III are defined with respect to reference frequency
responses obtained by HSPICE.

Fig. 14 shows the parametric model responses (Nc = 16,

ν̄ = 18, ρ = 15, θ = 2) compared to HSPICE for a test
set of parameter values from a Sobol sequence that are not
included in the training set. The good accuracy suggests that
multivariate polynomials of low degree are indeed appropri-
ate to reproduce the dependence of the model residues on
d because of the good model-data match on the test set.
Regarding compression, we find that the Server benchmark
confirms the results obtained in the Mobile benchmark because
few basis vectors (ρ = 15) are sufficient to represent the
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TABLE IV
RUNTIME (SECONDS) OF THE MAIN MODELING STEPS

TABLE V
TIME-DOMAIN ACCURACY AND RUNTIME FOR

DIFFERENT PARAMETERIZED MODELS

Fig. 16. Transient simulation of the 8-core Server example. (a) Step response
at a selected port of the first core. (b) Voltage error on all ports of all cores
(total 8 × 57 = 456 error curves).

entire dataset. The singular values of the data matrix before
compression are reported in Fig. 15, showing that ρ = 15 vec-
tors are enough for a relative accuracy of about 10−5. In this
case, the compression ratio is even better and is equal to
ρ/P2

≈ 0.03%.
Table IV reports the runtime required for the various steps

in proposed macromodeling flow, for all testcases. The table
confirms that the most time-consuming operation is the col-
lection of the reference responses to be used for training the
model. The actual cost of all macromodeling steps is quite
moderate and definitely affordable for present application.

Fig. 17. As in Fig. 16, but for the 12-core Server example. (a) Step response.
(b) Voltage errors (all ports, all cores).

Table V reports a summary on time-domain accuracy and
runtime in transient closed-loop simulations based on the
proposed macromodel-based solver, compared to HSPICE as
a reference. Results for both Mobile and Server examples
in its three configurations are reported. We remark that the
HSPICE runtime is reported excluding the initial operating
point analysis, whereas results from proposed solver were
obtained using a prototypal implementation in MATLAB,
without any parallelization. A detailed analysis of the transient
simulation settings and results for the Server example follows.

We use the Server example to investigate the scalability
of the proposed approach by repeating all numerical tests
with Nc = 8, 12, and 16 core configurations. In all cases,
we consider a current pulse excitation amplitude 20/57 A on
each individual port, so that the total current swing per core
equals 20 A with a 3-ns rise time. In this case, we excite all
cores simultaneously with two 0.2-µs-long sequential current
pulses with rising edges at t = 0.05 and 0.5 µs. The
resulting load voltages predicted by our model compared with
HSPICE are reported in the top panels (a) of Figs. 16–18. The
corresponding errors are depicted in the bottom panels (b) and
summarized in Table V.
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Fig. 18. As in Fig. 16, but for the 16-core Server example. (a) Step response.
(b) Voltage errors (all ports, all cores).

These three examples show that the proposed approach,
thanks to the combination of compression and rational fitting,
gives macromodels of sufficient frequency-domain accuracy
using very few poles (ν̄ = 12) independently of Nc, as evi-
denced in Table III. Similarly, the transient errors have similar
peak values for all three server configurations (Table V) and
their time-domain evolution shows that the maximum error
occurs on the rising and falling edges of the load current
pulses. This maximum error is practically invariant on the
number of cores that are modeled concurrently.

Regarding efficiency, although benchmarks with larger Nc

are more computationally intensive and require longer runtime,
there is still a significant improvement over HSPICE. For all
investigated examples, the proposed (non-optimized) solver
leads to a significant speedup, which ranges from 8× to over
50× depending on the testcase.

VIII. CONCLUSION

This article presented a macromodel-based transient solver
for full-system power integrity verification. The system rep-
resentation includes: an input coupling network representing
an electromagnetic model of the PDN of board and package,
including optimized decoupling capacitors; a battery of per-
core FIVRs, whose switching circuitry is represented through
averaged models; an output network with per-core models
of FIVR inductors and MIM capacitance, together with a
behavioral chip load models.

The proposed approach is based on a hierarchical sparse
model order reduction process applied to the output impedance
dynamics as seen from the load currents, which is dynamically

parameterized by the duty-cycle signals provided by voltage
sensing and control circuitry. The resulting model is cast into
a state-space model with feedback-induced time-varying linear
parameter varying structure, whose simulation in time-domain
is straightforward.

Our prototypal implementation was applied to two Intel-
based systems, namely a 4-core mobile platform and an
8–16 core enterprise server model. In both cases, the results
demonstrated excellent accuracy with respect to reference
HSPICE simulations, with a speedup in runtime ranging from
8× to about 50×. We conclude that the proposed approach has
good potential, following a code optimization/parallelization
and deployment process, to reach dramatic speedup factors in
full-system power integrity verification under real workloads,
even for massive multicore platforms for high-performance
computing (HPC) and artificial intelligence (AI).
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