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Abstract—Many authors argued that the scoring behavior of
a subject in a subjective quality evaluation experiment can be
modeled by two main characteristics, i.e., the subject’s bias and
the subject’s inconsistency. However, for simplicity’s sake, they
disregarded the fact that subjects are usually less inconsistent
when evaluating stimuli with very low or very high quality.
This work addresses this shortcoming by providing an analytical
formulation about how to link subjects’ bias and inconsistency
to the ground truth subjective quality of the stimulus under
evaluation. By integrating this formulation into a state-of-the-art
subject scoring model we obtain a more realistic model to recover
the ground truth subjective quality of each stimulus. An iterative
algorithm able to estimate the model parameters is also provided.
Computational experiments show that our proposed model yields
more realistic confidence intervals for the recovered ground
truth subjective quality values and exhibits more robustness to
synthetically added noise in several testing conditions.

Index Terms—Subjective quality, Subject’s bias, Subject’s
inconsistency, Quality recovery, SOS hypothesis
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I. INTRODUCTION

Raw ratings from subjects in a subjective quality evaluation
experiment are usually noisy [1]. This is due, for instance, to
potential distractions and/or fatigue of the subject, and also to
the complexity of the stimuli under evaluation. Approaches
to recover reliable subjective scores from raw ratings are
therefore of paramount importance.

Most of the recent approaches make assumptions on the
subject behavior in order to recover the ground truth subjective
quality from noisy ratings. An assumption adopted by several
authors [1]–[3] is that the subject’s scoring behavior can be
captured by two main characteristics, i.e., the subject’s bias
and inconsistency.

The bias is a systematic tendency to provide low (negative
bias) or high (positive bias) ratings, while the inconsistency is
a measure of the inability of a subject to provide an accurate
rating and repeat it when rating the same stimulus several
times.

In previous works [2], [3], in order to limit complexity, the
dependency of the bias and the inconsistency on the actual
quality of the stimulus under evaluation has been disregarded.
However, there are strong empirical evidences of the fact that

the manifestation of the inconsistency as well as the bias of a
subject when rating a given stimulus depends on the quality
of the stimulus itself.

For instance, at the extremes of the quality scale, i.e.,
when the quality is particularly low or high, subjects tend to
express similar ratings [4]. In such a case, the manifestation
of the peculiarities of each individual subject is therefore not
noticeable. Thus, the subject bias and inconsistency should
assume near-zero values at the extremes of the scale when
modeling the subject behavior in that range.

We propose two analytical formulations linking, respec-
tively, the bias and the inconsistency of a subject to the quality
of the evaluated stimulus. We then integrate the proposed
formulation into a state-of-the-art subject scoring model and
provide an iterative procedure to recover the ground truth
quality of each stimulus, as well as each subject’s bias and
inconsistency as defined from our new integrated subject
scoring model.

Computational experiments conducted on several datasets
show that our proposal yields more realistic confidence in-
tervals (CIs) of the recovered quality. In particular, unlike
previous approaches [3] that compute CIs with equal size
for all stimuli, our approach computes smaller CIs for very
low and very high quality stimuli, thus effectively modeling
the lower inconsistency of the subjects at the extremes of the
quality scale. Furthermore, the newly proposed model showed
higher robustness in several testing conditions to synthetically
added noise.

The paper is organized as follows. Section II briefly reviews
the related work. In Section III, we propose two formulations
linking subjects’ bias and inconsistency to the quality of the
stimulus under evaluation, and integrate them into a state-of-
the-art subject scoring model. Section IV describes the algo-
rithm we propose to estimate the parameters of the integrated
scoring model. Section V discusses computational experiments
and conclusions are drawn in Section VI.

II. RELATED WORK

The literature focusing specifically on how to recover the
subjective quality of a media from noisy raw opinion scores is
rather limited. The simplest approach, i.e. the Mean Opinion
Score (MOS), is known to be a not so suitable estimator
of the subjective quality when the gathered raw individual979-8-3503-1173-0/23/$31.00 ©2023 IEEE



ratings include outliers. Therefore, approaches to identify
outlier subjects and to exclude them from the dataset before
computing the MOS have been investigated, such as the quality
recovery algorithm proposed in the ITU-T Rec BT.500 [5] and
the ITU-T Rec P.913 [6].

Several authors, e.g., [3], [7], believe that these approaches
exclude more data than needed from the dataset, since it is
very unlikely that a subject inaccurately rated all the stimuli.
In more recent works [3], [7]–[10], the authors leveraged
advanced statistical methods to propose new approaches that
avoid subjects’ rejection. Among these approaches, an interest-
ing research direction has been to model each subject’s scoring
behavior with a bias and an inconsistency [1], [2]. The latest
advances in this research direction are summarized in [3] and
implemented in the Netflix’s Sureal software [11].

This work contributes to advance the state-of-the-art in this
research direction, i.e., the one assuming that the subject’s
behavior can be reasonably modeled by a bias and an incon-
sistency. In particular, it is the first work that considers the
fact that the manifestation of the bias and the inconsistency of
a subject depends on the quality of the stimulus the subject is
asked to rate. This consideration allows, for instance, to model
the higher consistency of subjects when rating very low or very
high quality stimuli.

III. LINKING THE SUBJECT BIAS AND INCONSISTENCY TO
THE STIMULUS QUALITY

Let us denote by I a set of subjects, J a set of stimuli, and
rij the rating of the subject i ∈ I for the stimulus j ∈ J .

The work in [3] presents the more recent advances on
approaches that recover the subjective quality from noisy
individual ratings by modeling the subjects behavior through
a bias and an inconsistency. In particular, the authors argue
that the rating rij can be modeled as it follows:

rij = qj + βi +N(0, σi) (1)

where qj is the ground truth quality of the stimulus j ∈ J , βi

is the bias of the subject i ∈ I, σi is the inconsistency of the
subject i ∈ I, and N(0, σi) is a normal random variable with
mean equal to 0 and standard deviation equal to σi.

According to the model in Eq (1), the manifestation of the
bias and the inconsistency of a subject does not depend on the
quality of the stimulus under evaluation. In fact, bi and σi do
not depend on j.

This is a shortcoming of such a model, since it is, for
instance, empirically known that subjects are less incon-
sistent when evaluating stimuli of very low or very high
quality [12]. In addition, the authors in [4] formulated the
so-called Standard deviation of the Opinion Scores (SOS)
hypothesis. According to the SOS hypothesis, at the extremes
of the quality scale the SOS tends to 0. That means that
subjects tend to express similar ratings at the extremes of the
quality scale. In other words, there is not a significant diversity
among subjects’ behaviors at the extreme of the quality scale.
Thus any feature, e.g., the bias and inconsistency, aimed at
measuring how peculiar is a specific subject with respect to

the others, must assume a value close to 0 at the extremes of
the quality scale.

Therefore, in this paper, we propose to express the mani-
festation of the bias and the inconsistency of a subject i when
rating a stimulus j as a function of the ground truth quality
qj of that stimulus as it follows:

bij = bi · 1[2,4](qj) (2)

σij = αi(−q2j + 6qj − 5) (3)

where 1[2,4](qj) is an indicator function, i.e., it is equal to 1
if the quality qj of the stimulus j belongs to [2, 4], and 0
otherwise. bi and αi are the bias and inconsistency factors of
the subject i, respectively.

The formulas in Eq (2) and Eq (3) are designed in such
a way as to cancel the bias and the inconsistency of all
subjects at the extremes of the scale, and thus to model the
subjects similarity in those areas of the scale. For the bias, the
cancellation is performed by means of the function 1[2,4](qj)
which is 0 when the quality is in the intervals [1, 2) and (4, 5]
whereas, for the inconsistency, we use the polynomial function
−q2j +6 · qj−5 that assumes its maximum value when qj = 3
and vanishes in qj = 1 and qj = 5. In this way, we model
the fact that we expect larger inconsistency at the center of
the scale, while going towards the extremes, it must decrease
progressively towards zero.

While our choice to model the link between the inconsis-
tency and the quality with a quadratic function is strongly
inspired by the SOS hypothesis in [4], the proposed link be-
tween the bias and the quality is rather simple and potentially
not the optimal one. However, in the next sections it will be
shown to be accurate enough to guarantee the effectiveness of
the proposed ground truth quality recovery algorithm.

We propose to integrate the formulas in Eq (2) and Eq (3)
into the model in Eq (1), to obtain the following model:

rij = qj + bij +N(0, σij) (4)

bij = bi · 1[2,4](qj)

σij = αi(−q2j + 6qj − 5)

that we will refer to as the integrated model in the rest of the
paper.

A. On the Limits of the Proposed Integrated Model

Before describing our approach to estimate the parameters
of the proposed integrated model, let us briefly discuss some
of its limits. In fact, we believe that, although the proposed
model in Eq (4) addresses some of the shortcomings of the
model in Eq (1), it still suffers from some limitations.

In particular, the duration of a subjective experiment might
influence the bias and inconsistency of a subject. For instance,
the subject’s fatigue in large-scale subjective experiments can
cause larger inconsistency. Our model does not consider the
variability of the bias and inconsistency as the subjective
experiment goes on.



Moreover, to be able to derive a closed-form analytical
formulation of the confidence interval for the recovered qual-
ity (see Eq (13)) a Gaussian distribution, i.e., a continuous
distribution with an unbounded support, is used to model
raw opinion scores that are, instead, very often gathered on
a discrete and bounded scale. Thus, in practice, when using
the proposed model to simulate subjects’ ratings, an approach
to truncate the simulated values is required.

Finally, we observe that, although the bias and the incon-
sistency are fundamental aspects of the scoring behavior of a
subject, they do not tell the whole story. The opinion score
of a subject for a given stimulus is influenced by many other
factors, e.g., the complexity of the stimulus, the interest that
the subject has in the content of that stimulus, etc.

IV. AN ITERATIVE ALGORITHM TO ESTIMATE THE
PARAMETERS OF THE INTEGRATED MODEL

We propose an iterative algorithm to compute the parame-
ters of the integrated model proposed in Eq (4), inspired by the
approach followed by the Sureal software that estimates the
parameters of the model in Eq (1). In particular, we will denote
by qnj , bni and αn

i respectively, the value of the parameter qj , bi
and αi at the n-th iteration of the algorithm. Also, we denote
by q0j the initial value of qj j ∈ J , and set it to be equal to
the MOS of the stimulus j. Some of the parameters repeatedly
used are summarized in Table I for the reader’s convenience.

To estimate the inconsistency factor αi for each subject i,
we observe that, according to the model in Eq (4), the overall
standard deviation of the difference between the ratings of
the subject i and the ground truth quality can be theoretically
expressed as:

si =

 1

|J |
∑
j∈J

σ2
ij

 1
2

= αi

 1

|J |
∑
j∈J

(−q2j + 6qj − 5)2

 1
2

(5)

Algorithm 1 Proposed Algorithm
Inptut: {rij}, thr, MaxIter
iter ← 0
qj ←MOSj j ∈ J
bi ← Avgj(rij − qj) i ∈ I
while target do

qprevj ← qj j ∈ J
eij ← rij − qj j ∈ J i ∈ I
si ← Stdj(eij) i ∈ I
αi ← si√

1
|J | (

∑
j(−q2j+6∗qj+5)2)

i ∈ I

wij ← e
−αi(−q2j+6∗qj+5)∑
i e

−αi(−q2
j
+6∗qj+5)

i ∈ I j ∈ J

bij ← bi · 1[2,4](qj) i ∈ I j ∈ J
qj ←

∑
i wij · (rij − bij) j ∈ J

bi ← Avgj(uij − qj)
target← (∥q−qprev∥ > thr and iter+1 ≤MaxIter)

end while
Ouptut: {qj}, {αi}, {bi}

TABLE I
MAIN PARAMETERS WITH THE RELATED DEFINITIONS

Parameter Definition
I Set of subjects
J Set of stimuli
rij Rating of the subject i for stimulus j
qj Ground truth quality of the stimulus j
bi Bias factor of the subject i
bij Bias of the subject i when rating stimulus j
αi Inconsistency factor of the subject i
σij Inconsistency of the subject i when rating stimulus j
qnj Value of qj after n iterations of Algorithm 1
bni Value of bi after n iterations of Algorithm 1
αn
i Value of αi after n iterations of Algorithm 1

On the other hand, the standard deviation si in Eq (5) can be
estimated from the ratings gathered from the subject i as it
follows:

ŝi =

(∑
j∈J ((rij − qj)− µi)

2

|J |

) 1
2

(6)

where µi =
1

|J |
∑

j∈J (rij − qj).
Equating the value of si in Eq (5) to that of ŝi in Eq (6),

the value of the inconsistency factor αi at the n-th iteration is
computed as:

αn
i =

ŝni(∑
j∈J

(
−(qnj )2 + 6 ∗ (qnj )− 5

)2) 1
2

(7)

where ŝni is the value of ŝi at the n-th iteration, i.e. when qj
is substituted by qnj in Eq (5).

The bias factor bi of each subject i at the n-th iteration is
given by:

bni =
1

|J |
∑
j∈J

(
rij − qnj

)
(8)

that is basically the average deviation of the ratings of the
subject j from the ground truth qualities.

The manifestation of the bias of the subject i when rating
the stimulus j can then be updated at the n-th iteration as it
follows:

bnij = bni · 1[2,4](q
n
j )

We now focus on the iterative step that updates the value
of qj . This iterative step in the Sureal software was defined as
follows:

qn+1
j =

∑
i∈I

(σn
i )

−2∑
i∈I(σ

n
i )

−2
(rij − bni ) (9)

Thus, the contribution, expressed by (rij − bni ), of the subject
i to the determination of the ground truth quality of the
stimulus j at the n-th iteration is weighted by:

wn
i =

(σn
i )

−2∑
i∈I(σ

n
i )

−2
. (10)

In particular, the higher the inconsistency σi of a subject j, the
lower is his/her contribution to the computation of the ground
truth quality.



Although this weighting schema implemented in Sureal has
shown effective performance in many applications, we believe
that it suffers a crucial drawback. In fact, the weights defined in
Eq (10) for each subject i do not depend on the characteristics
of the stimulus under evaluation. As a consequence, if a
subject has been particularly inconsistent when rating most
of the stimuli but managed to accurately rate a few of them,
his/her contribution to the determination of the ground truth
quality of the stimuli that have been correctly rated would
remain negligible. This is a serious issue if one considers, for
instance, that inconsistent subjects at the center of the scale can
accurately recognize and score very low or very high-quality
stimuli.

We propose in this paper a different weighting scheme. In
particular, at the n-th iteration, we weight the contribution of
the subject i to the computation of the ground truth quality qj
of the stimuli j by:

wn
ij =

e−σn
ij∑

i∈I e−σn
ij

=
e−αi(−(qnj )2+6·(qnj )−5)∑
i∈I e−αi(−(qnj )2+6·(qnj )−5)

. (11)

For a fixed value of the quality qj , it can be noticed that the
value of the weight wij decreases as αi increases. Therefore,
similar to the weights in Eq (10) used in the Sureal software,
if the subject i is particularly inconsistent, i.e., if αi assumes a
large value, his/her weights wij j ∈ J are in general smaller
than those of a less inconsistent subject.

Unlike the weights in Eq (10), the proposed ones in Eq (11)
depend on the quality of the stimulus under evaluation. This
allows us to model, for instance, the fact that all subjects
are usually accurate at the extremes of the quality scale,
and thus none of the subjects is expected to perform par-
ticularly better than the others in those areas of the scale.
In fact, when qnj → 1 or qnj → 5, the polynomial function(
−(qnj )2 + 6 · (qnj )− 5

)
→ 0. Hence, the weight wij of any

subject i for the determination of the ground truth quality
of the stimulus j converges to 1

|I| . Therefore, by using the
proposed weights, at the extreme of the quality scale, the
ratings of all subjects tend to receive the same consideration
(one over the total number of subjects) when computing the
ground truth quality.

Using the weights proposed in Eq (11), we update the
ground truth quality of each stimuli j at the iteration n+1
as it follows:

qn+1
j =

∑
i∈I

wn
ij

(
rij − bnij

)
. (12)

The Algorithm 1 summarizes the iterative steps discussed
above for the estimation of the parameter qj , bi and αi. The
algorithm takes, as input, a matrix {uij} containing the rating
of each subject i for each stimulus j. A threshold, denoted
by thr, to monitor the convergence of the algorithm, as well
as a maximum number of iterations denoted by MaxIter are
also required. The algorithm stops if: i) the convergence has
been reached, i.e., the Euclidean distance between the arrays
containing the values of the ground truth qualities estimated

in two consecutive iterations is smaller than the required
threshold; or ii) if the maximum number of iterations has been
reached.

We recommend, while using the Algorithm 1, to set thr =
10−8 as done in the Sureal software, and MaxIter = 100.
In fact, we experimentally found that the algorithm converges
in general before completing 100 iterations. In the very few
cases where more than 100 iterations were necessary, after
the iterations number 100, the Euclidean distance between the
parameters estimated in two consecutive iterations was never
larger that 10−4.

To compute the 95% CI of the estimated ground truth
quality qj of each stimulus j, we observe from Eq (4)
that the difference (rij − bij) is normally distributed with
mean qj and standard deviation σij . Hence, the estimator∑

i∈I wij (rij − bij) of qj is a linear combination of normal
random variables, thus it is normally distributed with mean qj

and standard deviation
√∑

i∈I w2
ijσ

2
ij . Therefore, the 95% CI

of qj can be expressed as:

CIqj = qj ± 1.96 ·
√∑

i∈I
w2

ijσ
2
ij (13)

where 1.96 is the 95% percentile of a normal random variable
with mean equal to 0 and standard deviation equal to 1.

V. RESULTS

The Sureal software as well as our proposed iterative algo-
rithm were run on four datasets, i.e., the VQEG-HD1, VQEG-
HD3, VQEG-HD5 [13] and the Netflix public dataset [2]. We
then compared the output of both approaches.

A. Computing more Realistic Confidence Intervals

The Sureal software,e as well as the Algorithm 1 proposed
in this paper, were used on the four aforementioned datasets
to estimate: i) the ground truth quality of each stimulus; ii) the
CI of the estimated ground truth quality; iii) the inconsistency
and the bias of each subject in these datasets.

Figure 1 shows a comparison between the recovered ground
through quality and the subjects’ characteristics as computed
by the two approaches on the Netflix Public dataset. For this
specific experiment, we discuss only the Netflix public dataset
because very similar results were obtained for the other three
datasets.

The four datasets were collected during subjective exper-
iments conducted in highly controlled environments under
conditions specified by the ITU-T Recommendations, thus
they are not particularly noisy. On this type of datasets, i.e., in
absence of a significant quantity of noisy ratings, the Sureal
software and the proposed Algorithm 1 yielded very similar
estimations of the ground truth quality (see Figure 1a). Also,
the overall bias estimated by both approaches for each subject
was quite similar (see Figure 1b). Finally, the inconsistency
estimated by the Sureal software correlated rather well to the
parameter α that captures the subject inconsistency in our
proposed integrated models (see Figure 1c).



(a) Quality (b) Bias (c) Inconsistency

Fig. 1. Comparison of the recovered quality and the Subjects’ characteristics computed by the Sureal software and the proposed integrated version.

(a) VQEGHD1 (b) VQEGHD3

(c) VQEGHD5 (d) NETFLIX PUB

Fig. 2. Confidence Interval of the recovered quality for each stimulus in each dataset. qSureal and qProposal are respectively the quality as recovered by
the original SUREAL software and the iterative algorithm proposed in this paper.

(a) VQEGHD3 (b) NETFLIX PUB

Fig. 3. Robustness of the approaches to the input data reduction. The quantity
of raw individual opinion score available to estimate the ground truth quality
is progressively reduced by removing subjects from the dataset.

Despite both approaches recovered similar ground truth
qualities for all stimuli, the corresponding CIs are different as
it can be noticed from Figure 2. In fact, the Sureal software
computes CIs that have the same size independently of the
ground truth quality of the stimulus. On the contrary, the CIs
computed by the proposed approach have smaller size at the
extreme of the quality scale as expected, since subjects are
more reliable at the extremes of the scale. It can also be
noted that our proposal yields ground quality estimations with

(a) VQEGHD3 (b) NETFLIX PUB

Fig. 4. Robustness of the approaches to synthetic noise added to the ratings of
10% of subjects in each dataset while assuming that even inconsistent subjects
can accurately score the quality at the extremes of the scale. The experiment
is repeated with 100 different seeds and the average RMSE is reported

smaller CIs on average (see the legends in Figure 2).

In conclusion, with not particularly noisy datasets, our
proposed algorithm and Sureal estimate quite similar Subjects’
characteristics and ground truth qualities. However, our ap-
proach computes CIs that are more realistic, since they model
the high consistency of subjects at the extremes of the scale.



(a) VQEGHD3 (b) NETFLIX PUB

Fig. 5. Robustness of the approaches to synthetic noise added to the ratings
of 10% of subjects in each dataset while disregarding the fact that subject
are less inconsistent at the extreme of the quality scale. The experiment is
repeated with 100 different seeds and the average RMSE is reported.

B. Comparing the Robustness of the Approaches

In this section, following the approach of [7], we consider
the MOS computed from the ratings in each of the four
considered dataset as the reference quality. We then modify
each of the four datasets by removing the rating of a few
subjects or adding some noise. Finally, we used the Sureal
software as well as Algorithm 1 on the modified datasets to
estimate the subjective quality and compare it to the reference
quality. Due to space constraints, we included the results only
for the VQEG-HD3 and the Netflix Public dataset. However,
very similar results have been obtained on the other datasets.

First, we focus on the subject removal case whose result
is reported in Figure 3. The main point of this experiment is
to determine, as in [2], which approach can better estimate
the reference quality if the subjective experiment was run
with a smaller number of subjects than those that actually
participated in the test. As it can be seen from Figure 3, the
estimated quality by the proposed algorithm showed a lower
Root Mean Square Error (RMSE) with respect to the reference
quality in all the testing conditions. This suggests that the
proposed algorithm is more robust to the reduction of available
individual ratings when estimating the ground truth quality.

We now simulate the presence of a few inconsistent subjects
during the test, making the dataset noisy. To this aim, for
10% of the subjects, a certain percentage of their ratings were
changed into a random number between 1 and 5. Such a
percentage is reported on the x-axis in Figure 4 and 5.

First, in Figure 4, we considered a sub-case in which an
inconsistent subject is perfectly able to recognize very low
and very high quality. Thus, for the 10% selected subjects,
only the scores strictly greater than 1 and strictly smaller than
5 have been changed into a random integer between 1 and
5. Under these settings the proposed algorithm shows higher
robustness to noise as it can be seen in Figure 4. In all testing
conditions, the proposed approach estimated a quality with
lower RMSE with respect to the reference one.

Figure 5 shows the result for the case in which scores are
changed regardless of their original value. In this case, the
proposed algorithm is better than the Sureal software when
the percentage of noisy ratings increases up to about 30%.
However, we believe that showing better robustness up to
30% is significant, because in practice subjects are typically

accurate at the extreme of the scale, thus conditions such as
these artificial experiments can be rarely encountered.

VI. CONCLUSION

In this paper we focused on the problem of how to ac-
curately model subjects’ behavior in subjective experiments
and recover the ground truth subjective quality from noisy
individual ratings. We assumed that the subject behavior can
be reasonably captured by two main characteristics, i.e. the
subject’s bias and inconsistency. Unlike previous works that
disregarded the fact that the manifestation of these character-
istics varies with the quality of the stimulus under evaluation,
we proposed two analytical formulations to express the link
between these subject’s characteristics and the quality, and
we integrated them into an existing subject scoring model
yielding a new, more robust, model. We also proposed an
iterative algorithm to estimate the parameters of the new
model. The proposed algorithm was compared to a state-
of-the-art approach. The results showed that the proposed
algorithm can compute more accurate confidence intervals for
the recovered ground truth quality, and it is also more robust
to synthetically added noise in several testing conditions.

REFERENCES

[1] L. Janowski and M. Pinson, “The accuracy of subjects in a quality exper-
iment: A theoretical subject model,” IEEE Transactions on Multimedia,
vol. 17, no. 12, pp. 2210–2224, 2015.

[2] Z. Li and C. G. Bampis, “Recover subjective quality scores from noisy
measurements,” in 2017 Data Compression Conference (DCC), April
2017, pp. 52–61.

[3] Z. Li, C. G. Bampis, L. Janowski, and I. Katsavounidis, “A simple model
for subject behavior in subjective experiments,” Electronic Imaging, vol.
2020, no. 11, pp. 131–1, 2020.

[4] T. Hoßfeld, R. Schatz, and S. Egger, “SOS: The MOS is not enough!”
in Proc. 3rd Intl. Workshop on Quality of Multimedia Experience
(QoMEX), 2011, pp. 131–136.

[5] ITU-T Rec. BT.500, “Methodology for the subjective assessment of the
quality of television pictures,” Jan. 2012.

[6] ITU-T Rec. P.913, “Methods for the subjective assessment of video
quality, audio quality and audiovisual quality of internet video and
distribution quality television in any environment,” Mar. 2016.

[7] J. Li, S. Ling, J. Wang, and P. Le Callet, “A probabilistic graphical model
for analyzing the subjective visual quality assessment data from crowd-
sourcing,” in Proceedings of the 28th ACM International Conference on
Multimedia, 2020, pp. 3339–3347.

[8] Q. Xu, M. Yan, C. Huang, J. Xiong, Q. Huang, and Y. Yao, “Exploring
outliers in crowdsourced ranking for QoE,” in Proc. 25th ACM Intl.
Conf. on Multimedia, 2017, pp. 1540–1548.

[9] S. Pezzulli, M. G. Martini, and N. Barman, “Estimation of quality scores
from subjective tests: beyond subjects’ MOS,” IEEE Transactions on
Multimedia, 2020.

[10] L. Fotio Tiotsop, A. Servetti, M. Barkowsky, and E. Masala, “Regu-
larized maximum likelihood estimation of the subjective quality from
noisy individual ratings,” in 14th Intl. Conf. on Quality of Multimedia
Experience (QoMEX), 2022.

[11] Netflix, “The sureal software,” https://github.com/Netflix/sureal, May
2017.

[12] L. F. Tiotsop, T. Mizdos, M. Barkowsky, P. Pocta, A. Servetti, and
E. Masala, “Mimicking individual media quality perception with neural
network based artificial observers,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 18, no. 1,
pp. 1–25, 2022.

[13] VQEG, “Report on the validation of video quality models for high
definition video content (v. 2.0),” http://bit.ly/2Z7GWDI, Jun. 2010.


