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Efficient Implementation of the Vector-Valued Kernel Ridge Regression

for the Uncertainty Quantification of the Scattering Parameters of a

2-GHz Low-Noise Amplifier
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Abstract—This paper focuses on the application of an efficient
implementation of the vector-valued kernel Ridge regression
(KRR) to the uncertainty quantification (UQ) of the scattering
parameters of a low-noise amplifier (LNA). Specifically, the
performance of the proposed technique have been investigated
for the statistical assessment of the mean value, variance
and probability density function (PDF) of the S11 and S21

parameters of a 2-GHz LNA induced by 25 stochastic input
parameters and compared with the corresponding reference
results computed via a plain Monte Carlo (MC) simulation.

Index Terms—Machine learning, kernel machine, vector-
valued KRR, stochastic analysis, amplifiers.

I. INTRODUCTION

Uncertainty quantification (UQ) represents an essential
task in the early-stage design of microwave components and
devices, since it allows to account for the impact of process
variation in modern mass-production electronics. In the above
scenario, Monte Carlo (MC) simulation can be seen as the
most straightforward way to deal with the inherently statistical
nature of the problem at hand. The MC sampling allows
analyzing the impact of random input variables on a given
set of outputs of interest by considering the results of a large
number of deterministic parametric simulations (usually in
the order of thousands), in which the value of the stochastic
parameters is drawn according to their probability density
function (PDF). Such brute force approach turns out to be
extremely robust and easy to implement within the simulation
flow used by most of the commercial circuital and full-wave
solvers, but it is also characterized by a low efficiency and
by a non-negligible computational cost [1].

In the last decades, surrogate modeling techniques have
been proposed for the UQ of the responses of electronic
devices and circuits as more efficient alternatives to direct
MC sampling [2]–[9]. A surrogate model is “a model of a
model” acting as a closed-form and fast-to-evaluate emulator
of the input-output map characterizing the true underlying
model, also known as computational model. A surrogate
model is built by solving a regression problem based on
the information provided by a small set of training samples
calculated via the computationally expensive computational
model. After the training, the surrogate model can be used
as an efficient alternative to the plain computational model
in computationally expensive task such as the UQ and opti-
mization. It is important to stress that the performance of the
resulting surrogate model, in terms of accuracy with respect of

the number of training samples, unavoidably depend on the
model structure and the regression technique used to build
it [1].

In the above framework, kernel-based machine learning re-
gressions have shown several advantages with respect to stan-
dard regression techniques relying on basis expansion (e.g.,
ordinary least-squares, ridge and LASSO regressions, poly-
nomial chaos [7]), since they allow building non-parametric
surrogate models in which the number of unknowns is in-
dependent from the number of input parameters considered
by the model [1], [5]. Moreover, they rely on a linear model
structure in which the model unknowns can be estimated from
the solution of a convex optimization problem, with several
benefits in term of training time and accuracy, when a small
set of training samples is available [3], [6]. On the other hand,
different from artificial neural network structures, state-of-
the-art kernel machine regressions are limited to scalar-output
problem, thus making their direct application to vector-valued
regression problems, usually encountered in microwave and
electronic applications, rather cumbersome [5]. A possible
way to overcome the above limitation is to combine single-
output kernel machine regressions with data compression
techniques, like the principal component analysis (PCA) [8].
The underlying idea is to apply a compression technique on
the available data in order to reduce the number of output
components to be modeled and thus the number of single-
output regression to be trained. Such approach has shown
promising results in UQ problems [8], [9].

As an alternative to the above techniques, this paper inves-
tigates the performance in the UQ scenario of a generalized
vector-valued formulation of the kernel Ridge regression
(KRR) able to directly account for the multi-output nature of
the regression problem, without requiring any data manipula-
tion or compression [4], [5], [10], [11], [12]. Specifically, this
paper deals with the development an efficient implementation
of the vector-valued KRR based on a diagonalization process
applied on its constitutive equations [11]. The effectiveness
and the performance of the proposed technique are inves-
tigated for the UQ of the scattering parameters of a low-
noise amplifier (LNA) affected by 25 stochastic parameters
and compared with the ones obtained by a MC simulation.



II. VECTOR-VALUED KERNEL RIDGE REGRESSION

Let us consider the problem of building a generic vector-
valued surrogate model f̂ff : X → Y, starting from the
information available on the training set D = {(xxxl, yyyl}Ll=1,
where xxxl ∈ X ⊆ Rp represents the generic l-th configuration
of the input parameters and yyyl ∈ Y ⊆ RD represents the cor-
responding vector-valued output. The above problem turns out
to be equivalent to learn D scalar functions f̂ (d) : X → R with
d = 1, . . . , D, such that f̂ff = [f̂ (1), . . . , f̂ (D)]T , minimizing
the following empirical risk functional:

f̂ff = argmin
f̃ff∈H

D∑
d=1

L∑
l=1

(y
(d)
l − f̃ (d)(xxxl))

2 + λ∥f̃ff∥2H (1)

where λ is the regularizer hyperparameter providing a trade-
off between the model flatness and accuracy on the training
set, whilst y

(d)
l and f̃ (d)(xxxl) represent the d-th component

of the l-th training output and the corresponding model
prediction, respectively.

According to the representer theorem for vector-valued
regression problems presented in [12], any optimal solution f̂ff
of (1) for a generic d′-th output component, takes the form:

f̂ (d′)(xxx) =

D∑
d=1

L∑
l=1

k ((xxx, d′), (xxxl, d)) cd,l, (2)

where cd,l are unknown coefficients to be estimated dur-
ing the model training and k((xxx, d′), (xxxl, d)) : Rp×p ×
R{1,...,D}×{1,...,D} → R represents a new kernel function
acting on both the input parameters xxx ∈ Rp and the output
dimensions {1, . . . , D}. The above model can be rewritten in
its matrix formulation, which writes:

f̂ff(xxx) =

L∑
l=1

K(xxx,xxxl)cccl, (3)

where K(·, ·) : Rp×p → RD×D is the multi-output kernel
matrix and cccl = [c1,l, . . . , cD,l]

T ∈ RD are column vectors
collecting the regression unknowns.

Without loss of generality, the matrix kernel function
K(xxx,xxx′) can be built as a separable kernel function defined
as the product between two scalar kernels acting either on the
input space or output dimensions, such that:

[K(xxx,xxx′)][d,d′] = k((xxx, d), (xxxl, d
′))

= kxxx(xxx,xxx
′)ko(d, d

′), (4)

where kxxx and ko are scalar kernels acting on the input space
(i.e., kxxx : X × X → R) and output dimensions (i.e., ko :
{1, . . . , D} × {1, . . . , D} → R). In our implementation, a
radial basis function (RBF) kernel is used for the scalar kernel
kxxx and ko, respectively.

By using (3) and (4), the empirical functional minimization
in (1) can be recast in terms of the following discrete-time
Sylvester equation:

KxxxCB+ λC = Y, (5)

where Kxxx is a L × L Gram matrix computed from the
input samples {xxxl}Ll=1 (i.e., [Kxxx]ij = kxxx(xxxi,xxxj)), B is a
D × D Gram matrix computed on the output dimensions
{1, . . . , D} (i.e., [B]ij = ko(di, dj)), C = [ccc1, . . . , cccL]

T ∈
RL×D is a matrix collecting the model unknowns and Y =
[yyy1, . . . , yyyL]

T is a L × D matrix associated to the training
output.

By using the properties of the Kronecker product, the
solution of the discrete-time Sylvester in (5) can be obtained
as the solution of a linear system [13]. Unfortunately, this
approach leads to a huge linear system with (LD) × (LD)
equations, whose inversion would require a computational
cost proportional to O(L3D3).

Such a prohibitive training cost can be heavily reduced by
applying a diagonalization procedure on the kernel matrices
Kxxx and B [11], i.e.,

Kxxx = UΛUT and B = TMTT , (6)

where U ∈ RL×L and T ∈ RD×D are matrices collecting the
eigenvectors of the matrices Kxxx and B, respectively, whereas
Λ ∈ RL×L and M ∈ RD×D are diagonal matrices collecting
the corresponding eigenvalues.

Substituting (6) into the original Sylvester equation in (5),
leads to the following formulation:

ΛC̃M+ λC̃ = Ỹ (7)

where C̃ = UTCT and Ỹ = UTYT are new transformed
matrices collecting a transformed version of regression un-
knowns and source terms.

Due to the diagonal structure of (7), a generic ij-entry of
the unknown matrix [C̃]ij = cij can be suitably computed
via a scalar equation using the diagonal eigenvalue matrices
Λ and M, as:

c̃ij =
ỹij

[Λ]ii[M]jj + λ
. (8)

Once all the entries of the matrix C̃ij has been computed
via (8), the original unknown matrix C is reconstructed as:

C = UC̃TT . (9)

For the case of large multi-output kernel matrices, the
above diagonalization procedure for solving the discrete-time
Sylvester equation turns out to more efficient than the equiv-
alent vectorized solution based on the Kronecker formulation
presented in [4], [5]. Indeed, since the diagonalization is
applied on the matrices Kxxx and B separately, the overall
computational cost required for the model training reduces
from O(L3D3) to O(L3+D3+L2D+LD2), with a beneficial
effect on the training time when the product L×D is large.

III. APPLICATION EXAMPLE: 2-GHZ LNA

The performance of the proposed technique has been
evaluated on the UQ of the scattering parameters of the
2-GHz LNA shown in Fig. 1 by considering 25 Gaussian
stochastic variables affecting the parasitic resistances, capac-
itances and inductances of the BJT, its forward current gain,



4.7 pF

5.6 pF

100 nF 100 Ω

BFG425W

15 kΩ

5.6 pF 1 nF

22 Ω 82 Ω

2.7 pF

RF in
50Ω

+4.5 V

RF out
50Ω

TL1

TL2

TL3

TL4 TL4

Fig. 1. 2-GHz BJT LNA.

TABLE I
TRAINING TIME AND RELATIVE L2-ERROR COMPUTED FROM THE

FREQUENCY-DOMAIN SAMPLES OF THE PREDICTIONS OF THE
SURROGATE MODELS TRAINED WITH AN INCREASING NUMBER OF
TRAINING SAMPLES VIA THE PROPOSED IMPLEMENTATION OF THE

VECTOR-VALUED KRR FOR THE S11 AND S21 PARAMETERS BY
CONSIDERING 1000 TEST SAMPLES.

Parameter
L = 30 L = 50 L = 100

ttrain L2-error ttrain L2-error ttrain L2-error
S11 74s 6.15% 115s 3.58% 205s 2.70%

S21 78s 1.96% 118s 1.54% 216s 1.16%

all the lumped components in the amplifier schematic, and
the widths of the microstrip lines, each with a 10% relative
standard deviation [7], [9]. The considered test case has
been implemented as a parametric small-signal ac analysis
in HSPICE. Such implementation allows computing the two-
port scattering parameters S11 and S21 of the LNA at 201
frequency points for any configuration of the 25 random pa-
rameters. The HSPICE simulations have been used to generate
three training sets with an increasing number of samples (i.e.,
L = 30, 50, and 100) based on a latin hypercube sampling
scheme and to run a 1000-sample MC simulation that is used
hereafter as a reference for the proposed statistical analysis.
Two independent surrogate models, one for S11 and one for
S21, have been trained via the proposed implementation of
the vector-valued KRR presented in Section II.

Table I reports the performance of the obtained surrogate
models in terms of training time and relative L2-norm error
computed on a test set collecting the results of a 1000-sample
MC simulation for the parameters S11 and S21 by considering
an increasing number of the training samples (i.e., L = 30,
50, and 100). The results show a constant reduction of the
model error (i.e., the relative L2-error) with respect to the
number of training samples (i.e., L), thus highlighting the
capability of the proposed vector-valued KRR of learning the
actual information provided by the training set. Concerning
the computational cost, the training time required to build
the proposed vector-valued surrogate models is less than
7 min for all the considered modeling scenarios. After the

Fig. 2. S11 parameter of the LNA in Fig. 1. Top panel: the gray lines show
the magnitude of the S11 computed from a 1000-sample MC simulation.
The blue solid and the red dashed lines are the magnitude of the average
S11 obtained from the MC samples and the proposed model, respectively.
Bottom panel: the blue solid and the red dashed lines are the magnitude of
the S11 variance obtained from the MC samples and the proposed models,
respectively.

Fig. 3. S21 parameter of the LNA in Fig. 1. Top panel: the gray lines show
the magnitude of the S21 computed from a 1000-sample MC simulation.
The blue solid and the red dashed lines are the magnitude of the average
S21 obtained from the MC samples and the proposed models, respectively.
Bottom panel: the blue solid and the red dashed lines are the magnitude of
the S21 variance obtained from the MC samples and the proposed models,
respectively.

training, the evaluation of the obtained model on the 1000
test samples required less than 20 s, while the corresponding
MC simulation requires 1131 s.

Figures 2 and 3 compare the mean (top panels) and the
variance (bottom panels) of the absolute value of the S11 and
S21 parameters predicted by the proposed surrogate models
trained with L = 50 training samples against the corre-
sponding results computed via the MC samples. The results



Fig. 4. Comparison of among the PDFs of the S11 and S21 parameters at
the frequency f0 = 2GHz computed from the predictions of the surrogate
models built via the proposed vector-valued KRR evaluated on 1000 test
samples and the corresponding ones computed from a 1000-sample MC
simulation.

show an excellent agreement between the mean value and the
variance predicted by the proposed surrogate model and the
ones computed from the MC samples, being the two sets of
curves almost perfectly overlapped. Furthermore, Fig. 4 shows
the probability density function (PDF) of the S11 and S21

parameters computed at f0 = 2GHz. Also in this case, the
histograms predicted by the proposed models are in perfect
agreement with the corresponding ones calculated from the
MC simulation, thus confirming the excellent performance of
the proposed approach in the UQ scenario.

IV. CONCLUSIONS

This paper investigated the effectiveness and the accuracy
of a surrogate model built via an efficient implementation
of the vector-valued KRR for the UQ of the scattering
parameter of a LNA. Specifically, the performance of the
proposed technique have been investigated for the statistical
assessment of the mean value, variance, and PDF of the S11

and S21 parameters of a 2-GHz LNA induced by 25 stochastic
parameters and compared with the corresponding reference
results computed via a MC simulation.
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