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Abstract: Human factors play a relevant role in the dynamic work environments of the 
manufacturing sector in terms of production efficiency, safety, and sustainable performance. This is 
particularly relevant in assembly lines where humans are widely employed alongside automated 
and robotic agents. In this situation, operators’ ability to adapt to different levels of task complexity 
and variability in each workstation has a strong impact on the safety, reliability, and efficiency of 
the overall production process. This paper presents an application of a theoretical and empirical 
method used to assess the matching of different workers to various workstations based on a 
quantified comparison between the workload associated with the tasks and the human capability 
of the workers that can rotate among them. The approach allowed for the development of an 
algorithm designed to operationalise indicators for workload and task complexity requirements, 
considering the skills and capabilities of individual operators. This led to the creation of human 
performance (HP) indices. The HP indices were utilized to ensure a good match between 
requirements and capabilities, aiming to minimise the probability of human error and injuries. The 
developed and customised model demonstrated encouraging results in the specific case studies 
where it was applied but also offers a generalizable approach that can extend to other contexts and 
situations where job rotations can benefit from effectively matching operators to suitable task 
requirements. 

Keywords: safety; human factor; workload; human performance 
 

1. Introduction 
Emerging technologies in the manufacturing domain, such as robotics, the Internet 

of things (IoT), and big data, are already reshaping workloads, workstations, and work 
organisations.  

One of the most expected effects of this revolution is represented by a dramatic 
change in the labour market. Several authors have foreseen a strong reduction in the 
number of workers employed in traditional jobs with low skill requirements [1]. This loss 
is partially balanced by increasing requests for new skillsets and professions related to the 
design, implementation, and maintenance of these new tools [2]. This revolution is 
evolving at varying speeds across different sectors, and there are also notable examples 
of new applications in nonmanufacturing and unconventional areas, such as advanced 
surgery [3]. On the other hand, the application of industrial robots in manufacturing has 
become well established [4]. The automotive industry, for example, is a sector where 
robotics has been utilized since the 1980s and coexists with assembly lines that still require 
various degrees of manual tasks performed by workers [5]. The interaction between 
workers and semiautomated workstations therefore has a relevant influence on 
production efficiency, error rates, and safety performance. Human and organizational 
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factors are crucial elements for ensuring reliability and safety in applications areas where 
humans and automation work in close collaboration. It is therefore necessary to monitor 
and assess this interaction to avoid and mitigate any possible unwanted events [6]. Quality 
experts often need to consider human factors (HFs) in connection with the key causes of 
deviations from procedures where errors have been detected [7], and HF methods can be 
deployed in workflow analyses, the design of a safe system of work [8] to reduce 
occupational health and safety issues, and for productivity improvements [9]. The 
assembly lines used in automotive manufacturing are often organised as a series of 
workstations, in which a shell is moved from one station to the next in an automated way 
according to a throughput rate that is called “takt time”. In all workstations a task is 
performed on the shell according to a detailed process devised to optimize time and costs 
[10]. An operator would need to allocate varying amounts of mental and physical 
resources to tasks such as analysing information, recalling items from memory, making 
decisions, and executing manual tasks on the shell, depending on the specific task. 

In this configuration, the matching of workers, considering their individual skills and 
resources, to specific workspaces, characterized by different levels of complexity and 
variability, can lead to significant variance in terms of production effectiveness and safety 
performance [11]. 

In fact, when a worker and task are poorly matched, it means that an operator may 
lack the necessary skillsets or sufficient mental and physical resources to perform well 
according to the requirements of the task. This can result in an increased likelihood of 
human errors and higher levels of fatigue experienced by a worker, which in turn can also 
potentially manifest itself in unsafe actions [12], injuries, and/or work-related illness. 

Generally, assembly line work is often perceived as requiring relatively low skill 
profiles, and the workers are often allocated to different workstations based on shift 
demands and the personal judgment of an assembly line supervisor [13]; however, the 
paradigmatic changes in manufacturing may change this situation as well. In this sense 
there is an emerging need to provide transparent and clear guidance or an approach for a 
good match between operators and workstations. The present study decided to adapt a 
recently developed human performance model (HPm), called the TERM (task execution 
reliability model) [14]. TERM is a framework that has been adopted to assess human error 
in assembly tasks, utilizing an adapted version of the Rasch model, which is widely used 
for human performance and human factor assessment in many areas [15]. In a 2013 study, 
Osman et al. [16] used a Rasch model to characterize students’ ability during industrial 
training to provide an assessment of their performance. A Rasch model allows researchers 
to convert categorical scale results from observations into a logit scale, thereby obtaining 
an assessment of ability for each attribute on a linear interval scale. In 2019, Jacob et al. 
[17] used a Rasch model to classify the difficulty of each test and the corresponding level 
performance of nursing trainees. Thus, a Rasch model provides a reliable and repeatable 
measurement instrument for competency assessment implementation in training areas 
[15]. In this work, the model was adapted to assess and compare, along a linear interval 
scale, the skills and/or mental/physical difficulties posed by the task of an assembly line 
and the skills and capacities demonstrated by each operator assigned to it. This process 
was applied to explore the possible combinations of workers and workstations, providing 
a more objective approach to support human resource allocation [18]. The focus of this 
paper is to provide a detailed description of how the TERM was applied in a case study 
conducted at a medium-vehicle-size assembly plant. The idea was prompted by the fact 
that the plant reported issues in relation to their safety performance despite the adoption 
of a safety management system [19] and the promotion of a corporate safety target. The 
rate of injuries, medical treatment, and absenteeism related to the working activity became 
a serious problem that had a substantial impact in terms of efficiency and cost. A 
collaborative project with plant managers, shift supervisors, and the operators was then 
initiated with the aim of improving safety performance through the optimization of HR 
with the support of the TERM. 
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The results have been used by plant managers to rearrange the distribution of 
workers. A positive impact on safety performance has been obtained. The following 
sections of the paper will discuss how the TERM was adapted to the case study, what 
interim results were attained, what the limits are of the approach, and the opportunities 
for future development. 

2. Materials and Methods 
The TERM was based on the fundamental hypothesis that the result of the contest 

between a specific task and skills can be included in the concept of human performance 
(HP), which is directly dependent on two macrofactors [20]: workload (WL), which is the 
macrofactor summarising all of the variables contributing to the physical and mental 
demands required to perform a given task (it should also consider aspects related to work 
environments, such as temperature, noise, lighting conditions, etc.), and human capability 
(HC), which is a factor that summarises the cognitive and physical skills a worker needs 
in order to perform his/her task [21]. 

The TERM can be broken down into the five following steps. Figure 1 summarises 
the steps of the developed research framework: 
1. Conceptual model design; 
2. Operational model design; 
3. Data field collection; 
4. HP assessment; 
5. Application. 

 
Figure 1. Overview of the main steps followed in the overall approach. 

Figure 1 reports the main steps of the underpinning conceptual model that were 
followed in this study. 

The first step, the “Conceptual Model” design, aimed to identify the factors that 
influence human capabilities and workload. To identify the relevant variables to be 
included in the model, the authors conducted a literature review, which was supported 
by an evaluation of the working conditions at the various workstations. Additionally, a 
task analysis [18] of the operational activities in each of the assembly lines of the studied 
workstations was performed.  

With reference to the conceptual model in Figure 2, the element called human 
capability represents the resources a worker can offer to complete a task under a set of 
environmental conditions. Based on the projectʹs objectives and the operational 
requirements of the case study, the literature indicates that a wide range of human skills 
are linked to the performance of manual tasks; however, for the purpose of summarizing 
the workload (WL) requirements associated with each specific task, three primary areas 
have been identified. 
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First and foremost, manual skills, such as precision, manual handling, and 
coordination, are consistently required in assembly tasks. Secondly, memory plays a 
crucial role, encompassing the ability to accurately recall and execute sequential steps, as 
well as identify various parts of different assembly tasks. Lastly, physical skills are of the 
utmost importance, involving the ability to sustain consistent performance throughout a 
shift and effectively cope with the pace of operations. 

 
Figure 2. Human performance (HP) assessment conceptual model general scheme [22]. 

In the conceptual model for Human Performance assessment the concept of 
Workload (WL) consists of two main contributors: “Mental Workload” (MW) and 
“Physical Workload” (PW). PW can be related to the physical efforts required to perform 
a task. Workstations with weak ergonomic features, demanding uncomfortable postures, 
or heavy loads have been found to decrease performance over time [23]. Static activities 
and repetitive actions have been identified as precursors to lower performance and 
potential occupational accidents [24,25]. While MW is associated with the cognitive efforts 
required by the task due to its complexity or any intellectual or memory demand. The 
following variables have been identified as characterising WL: 
• Task complexity: Assessed as a proxy of the number of steps and sequences involved 

in a task and the related difficulty for an operator to remember how to perform them;  
• Task variability: Assessed as the need to identify and estimate the operational 

differences in each workstation, this variable reflects the impacts of parts and product 
variability; 

• Requirements for selection: This reflects the decision-making phase in choosing 
specific parts or how to perform an activity when the steps of the procedures are not 
highly repetitive, which affects the mental workload; 

• Physical effort: Reflects the physical and postural exertion required to perform 
relevant tasks; 

• Coping with pace: Tasks may also differ in the percentage of saturation of “takt-
time”, which is the time allocated to perform a task and is assessed as the time 
required at a minimum to perform said task divided by the time allocated for it. The 
higher the saturation recorded in a task, the less time available to complete it; 
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• Dexterity: Describes the manual precision required by task characteristics. 
Figure 3 summarizes all the variables selected to model WL. 

 
Figure 3. WL conceptual model scheme. 

The conceptual model represented in Figures 2 and 3 has already been tested and 
applied in the automotive domain [22], but it is also a general model that could be adapted 
to different applications [14,26]. The underpinning requirements are to characterise the 
variables in a way that can be operationalized for a given environment, as explained in 
the next paragraph. 

2.1. The Operational Model 
The operational model is derived from the earlier conceptual model. It focuses on 

measuring and evaluating the compatibility between operators and tasks. To accomplish 
this, we must consider the following: all variables from the conceptual model should be 
assessed using observable and measurable quantities or proxies, and the comparison 
between operator skills and task requirements may involve quantities of different types. 
Therefore, it is advisable to use a unified categorical scale for all quantities and establish 
a set of rules for the evaluation process. 

The operational model has two macroareas: one aims at assessing human capability 
(HC) and one aims at assessing the required workload (WL). 

The conceptual model defining HC was based on three variables: manual skills, 
memory retention capacity, and physical skill. These variables have been related to the 
results of 4 empirical test performed by the operators. 

Tests have been designed to simulate frequents operations close to the ones 
performed in the assembly line but also suitable to cover human skill tests that operators 
can perform during the working day. This was possible thanks to the direct involvement 
of the plant work analyst and the line supervisor in this action research initiative [27]. The 
four tests are defined as follows: 
1. A so-called “Precision test”, which consists of moving an iron stick along a not-linear 

contour without touching the borders. This test is related to the manual precision 
required in many tasks where workers have to assemble components, avoiding 
impact. During this test, the time to complete the path and the number of errors 
committed were recorded. 

2. A test aimed at evaluating manual skills called the “Both Hands” test. This test 
measures the ability of a worker to perform simple actions when explicitly asked to 
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use both hands. The time and precision of coordinate movements in completing the 
task were recorded. 

3. A “Methodology test”. During this test a worker must decide how to and complete a 
set of simple assembly steps with small parts when provided with some instructions. 
The performance criteria recorded for this test are the time used to complete the task 
and the errors committed. 

4. A “Memory test”: sequences of geometric schemes are shown to a worker for a few 
seconds. The worker is then asked to replicate them on a desktop. During this test, 
the time to complete the task and the accuracy are recorded. 
The results obtained from the tests were combined and used to build a set of 3 

indicators to quantitatively describe the specific human capability features assessed for 
each worker. Figure 3 reports the connection between the conceptual model variables and 
the operational model quantities, leading into the 3 indicators derived. 

The indicators identified in the HC operational model (Figure 4) are as follows: 
• Physical index (PI): Expressed in a range from 1 to 10, represents consistency in good 

work performance (1 is the lowest, 10 the maximum consistency). It was calculated 
considering the variance in performance on the 3 manual tests. The more consistent 
the performance was the better the indicator value associated with an operator. This 
index was considered as representative of physical skill.  

• Memory index (MI): Expressed with a 1–10 Likert scale and directly associated with 
a linearization of the results for the memory test. The memory index was considered 
as representative of memory skills. 

• Dexterity index (DI): Associated with the combination of results of the “Precision” 
and “Methodology” tests combined with the test called “Both Hands”. They 
collectively characterise a measure of dexterity. Therefore, a linearized average of 
these results was used as a dexterity index. 

 
Figure 4. HC genesis process. 

Each worker in the assembly line considered for this study has been characterized in 
terms of HC features, using a set of 3 indicators (PI, MI, and DI) all reported with a 1–10 
scale. 

For the workload (WL) conceptual model, we needed to characterise six variables 
related to mental workload and physical load.  

The WL operational model was defined through a task analysis [14] performed on 
each workstation in the assembly line supported by an observation protocol. A 
participatory approach [27] involved both academic and industry professionals operating 
in various management areas: safety, work analysis, quality, and work organization. 
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This process allowed the identification of a set of observable quantities able to 
describe the WL related to each working station. 

Each quantity had a different unit of measurement and therefore, to adopt a common 
scale, the indicators were translated according to calibrated Likert scales from 1 to 10. The 
set of quantities defined to assess the conceptual variables included 4 aspects, and can be 
described as follows. 

The index of variability (IV): Represents the amount of WL related to the variability 
in a task. This changes depending on the task and depends on two factors: the number of 
possible variations in the kind of product being assembled (NV) and the percentage of 
variations observed in each workstation (TS), which represents the task stability. The 
bigger the number of possible shell types with changes in tasks, the bigger the memory 
required to remember each possible task variation. Therefore, we decided to 
mathematically define the index of variability (IV) as expressed by the following equation: 

IV = NV + TS  (1)

where NV is the number of task variation associated with different shell types in each 
workstation (e.g., NV can assume values between 1 and 6, 1 is when the task associated 
with a shell type does not vary and 6 is when there are more than 10 possible task 
differences following shell type variations). The other factor is MV (task stability). MV can 
vary between 0 and 4. It is 0 when there are no variations and 4 when the most frequent 
task for shell type in that workstation provides only about 50% of the total amount of tasks 
performed there during an average shift.  

The index of complexity (IC): Measures the complexity of a task due to the number 
of substeps necessary to perform it. The larger the number of substeps required, the bigger 
the memory demand on the operator that must perform them. The “IC” has a range of 
variation from 1 (when the basic substeps are less than 10) to 10 (when the basic substeps 
are more than 50). 

The index of manual ability (IM): Measures the manual ability required to perform 
the task. This index is composed of 3 subindices: 
 PN (part number) is an indicator associated with the quantity of small parts managed 

during the task. PN can vary between 1 and 6. It is 1 when the small parts are less 
than 5, and 6 when the parts managed during a task can be more than 50.  

 The SI (similarity index) measures the WL due to the requirement of distinguishing 
the right part among similar components required for assembly on different types of 
models (as an example, 2 kinds of screws may differ by 0.5 mm in length). The SI was 
set between values of 0 (there are no parts similar to each other) and 2 (the percentage 
of similar parts is more than 20% of the total parts managed during the task). 

 HSI (high-skilled index): Considers the presence in a task of any suboperation that 
requires a specific ability not measurable with the PN and SI. This was assessed based 
on a judgment expressed by the assembly line supervisor and internal work analyst 
specialist. The value of this index ranges from 0 to 2.  

The formula defined among those indices is expressed by the following equation: 

IM = PN + SI + HSI  (2)

The index of physical stress (IPS): Measures the total physical workload of a task 
combining two conceptual variables: coping with pace and physical effort. An index of 
saturation (IS) was introduced to consider the coping with pace variable and an ergonomic 
index (IE) was used to measure the physical effort due to the postural and ergonomic 
characteristics of the task. Both range between 1 and 5 depending on the ergonomic 
assessment of the workstations though the OCRA methodology [28] 

Because of this, the IPS was defined as expressed by Equation (3): 

IPS = IS + IE  (3)
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In summary, Figure 5 shows the whole process that started from the conceptual 
model variables, developed into the operational model quantities, and ended with the 4 
indicators. 

 
Figure 5. WL genesis process. 

Because of the operational model developed, the workload (WL) of each working 
station of an assembly line can be characterized using a set of 4 indicators (IV, IC, IM, and 
IPS). The indicators can assume integer values in a scale ranging from 1 to 10, 
summarising the key WL features considered [29]. 

2.2. Data Field Collection 
The features of the operational model defined in the previous section guided the field 

data collection campaign.  
The HC data collection campaign directly involved the operators of the line. To 

minimize the disturbance to plant activity, a training area was set nearby the assembly 
line. Four test cubicles were set up in the training area. The test campaign was introduced 
with a single training session during which an operator could freely try the four tests. 
Operators were invited during their shift to perform the four tests twice. While they were 
busy performing the tests, they were temporary replaced by a substitute on the line. 

The results obtained have been used to calculate, for each operator, the 3 HC 
indicators shown in Figure 3.  

For the workload part of the model, the data have been collected with two systems: 
a systematic examination of the work analysis report that precisely describes any task 
composing the assembly line, and a visual observation of the task with the support of an 
internal work analyst specialist. The data collected allowed the assessment of the four 
indicators summarised in Figure 4. All results collected have been reported in the Results 
section. 

2.3. Human Performance Assessment 
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HP assessment is the core of the methodological framework. Figure 6 illustrates the 
matching algorithm between workplace workload requirements and human capability 
indicators acquired for each worker. 

 
Figure 6. HP rules of calculation. 

As proposed in Figure 6, the memory index (MI) was compared with two indices of 
WL related to requirements for memory capacity (IC and IV). The physical index (PI) of 
the workers was compared with the corresponding Index of Physical Stress (IPS) 
associated to the workstation. Lastly the dexterity index (DI) of each operator was 
compared with the index of manual skills (IM) requirements associated to the working 
place. 

The comparison of the HC index with those of WL is simply a verification of the 
difference between the index required by the workstation and the value of the associated 
index in relation to the corresponding human capability (HC) indices for each operator. 
In summary, it leads to 4 values. 

For example, with reference to what was represented in Figure 6, the comparison 
between a generic worker, named AB, and working station 3 generates two negative 
values due to the difference between MI-IC and PI-IPS. These represent a negative 
worker–workstation match. The complexity (IC) and manual index (IM) required by the 
task are, in fact, are not well balanced with the memory and dexterity indices associated 
with the specific worker. 

The other two values are positive, and they represent a favourable match between 
the operator and the working station. 

These matching values can be summarized using two assessment indices: 
• HPminus: Given by the sum of all negatives matching indices. 
• HPplus: Obtained by summing all positive values of matching indices. 

2.4. Application 
The HP assessed in the abovementioned example should be repeated for any possible 

operator–working place match. 
The assessment of HPminus and HPplus, considering all possible combinations of 

workers and workstations, can be collated in a matching matrix (MM).  
An MM is collated and reports for each workstation the score of all the workers 

assigned to it, considering HPminus (if present) or HPplus (if there were not negative 
matching indices). 

Figure 6 reports a sample of this matrix for the combinations obtained for 3 
workstations and 15 workers. The scores of the workers are reported in a decreasing order; 
therefore, a grey scale can be set: black/dark grey colours are associated with matches that 
are not recommended (HP assessment indices < −4), lighter shades of grey are used for 
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acceptable matches (HP assessment indices from −4 to −1), and white is for suitable 
matches. 

Figure 7 reports (highlighted) the status of the operator labelled “AM”. 

 
Figure 7. Sample of matching matrix (the tableʹs background colour becomes darker as the score 
becomes more negative, indicating nonsuitable matching between operators and workstations). 

The HC indices of the operator “AM”, calculated with the operational model after 
the tests are performed, present a strongly favourable match for workstation 1, an 
acceptable match for workstation 2, and a bad match for workstation 3. This being the 
case, job rotation is recommended within workstation 1 and 2 and not with workstation 
3. This is just an example that can be replicated for all operators and all workstations to 
obtain a recommendation for any possible matching based on HP indices. This evaluation 
could be repeated periodically to provide the basis of a solvable optimization problem 
where, through the optimization of HP indices, it would be possible to ensure the good 
matching of requirements and capabilities, while at the same time minimizing the 
probability of human error and injuries [29]. 

3. Results 
A data field collection campaign was performed based on the operational model and 

the variable identified. Two assembly lines of a medium-vehicle-size plant were selected 
as a case study. These lines were composed of 61 different WLs, calculated according to 
the indicators described in Figure 4, and 140 HCs were assessed according to indicators 
reported in Figure 3. 

3.1. HC Assessment 
The HC assessment, performed using the four empirical tests previously described, 

was judged to be quite representative of the types of tasks performed during the working 
activity. 

The “Precision”, “Both Hands”, and “Methodology” test results are determined 
based on two quantities: the number of errors and the amount of time recorded while an 
operator performed a given task. 

Time and errors observed in the tests were linearly combined in an index called 
“Modified Time” (MT) according to the following equation: 

MT = Time [s] + Errors × X [s] (4)

where the following was the case: 
“Time” was the time recorded to complete the test. 
“Errors” was the number of errors observed. 
“X” represented a numerical factor with the following values: 3 for the Precision test, 5 for 
the “Both Hands” test, and 10 for the Methodology test. 

The memory test measured two quantities: a numerical score directly proportional 
to the accuracy achieved by the operator and the time used to complete the task. The 
results of the memory test were provided as a score divided by time. 

Operators AM AJ AH AL AN AV AK AS AY AG AD AP AQ AT AC AX
HP Assessment 

result 22 21 19 19 15 15 12 12 12 11 -1 -1 -1 -1 -2 -8
Operators AJ AH AM AO AF AK AE AB AS AP AT AA AQ AU AC AY

HP Assessment 
result 5 -1 -1 -1 -3 -4 -4 -4 -5 -5 -8 -8 -9 -9 -13 -26

Workers AJ AH AO AV AP AF AG AL AN AY AB AQ AU AM AD AX
HP Assessment 

result 14 13 12 8 -2 -2 -2 -2 -2 -2 -4 -4 -4 -5 -5 -14

Working 
place 1

Working 
place 2

Working 
place 3
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The following four figures show the results recorded for all of the tests performed. 
The data collected for each worker have been anonymized by using a code formed by a 
letter (A for assembly line 1 and B for assembly line 2) and a progressive number. 

Figure 8 highlights the capacity of the Precision test to discriminate between different 
skill levels among workers. In fact, the Modified Time (MT) index shows a wide range of 
performance variation, from a minimum of 22 s (worker “A22”) to a maximum of 82 s 
(worker “A21”). 

 
Figure 8. Precision test results. 

The average value was 44 s, and this, compared to the difference between the best 
and the worst result, shows how relevant the difference could be in terms of performance 
from operator to operator. 

During the Methodology test, workers were asked to assemble a set of small 
components (screws, nuts, and washers) into several configurations following written 
instructions. 

Workers were free to adopt their own methods to assemble all parts in six different 
configurations. 

Errors were represented by configurations that did not correspond to those described 
in the instructions. 

The results are reported in Figure 9. 
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Figure 9. Methodology test results. 

Figure 9 highlights a wide range of performance, from a minimum of 49 s marked by 
worker “B17” to a maximum of more than 233 s of worker “B3”. The average value was 
98 s, and this, combined with the range of results reported, highlighted the fact that the 
Methodology test can discriminate between different skill levels among the participants.  

The “Both Hands” test consisted of a sequence of basic operations to be performed 
using both hands at the same time. Figure 10 reports the results of the “Both Hands” test. 

 
Figure 10. Both Hands test results. 

Figure 10 illustrates that the “Both Hands” test can also discriminate well between 
different skill levels among workers. In fact, the Modified Time (MT) parameter exposed 
a wide range of performance variation, from a minimum of 72 s, marked by worker “B22”, 
to a maximum of 345 s, marked by worker “B53”. The average value was 135 s, and this 
highlights, in comparison to the minimum and maximum values, how relevant the 
difference in terms of performance from operator to operator could be. 

The memory test was designed to assess the memory capacity required during 
working activity, such as the capacity to recall a sequence of steps and parts to be 
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assembled that can differ considerably for different shell types and associated tasks. 
Figure 11 summarises the test results. 

 
Figure 11. Memory test results. 

In this case, the values recorded were the time and score that were proportional to 
the percentage of the configurations correctly recalled, and consequently the best result 
was the one with the highest value of score/time because it represented a larger number 
of frames correctly recalled per second. 

As reported in Figure 11, the best result was achieved by worker “A11”, who scored 
more than 200, and the worst performance was associated with operator “A51”, around 
70 points per second. The tests also displayed that different operators may score 
differently according to the skills being tested. 

The transition from the test results to the HC indices is reported in Table 1. In Table 
1, for each test the range of correspondence between the results and numerical scales is 
provided. 

Table 1. Table of transition from test results to HC indices. 

Precision Test Method Test Both Hands Test Memory Test 
Result Likert Value Result Likert Value Result Likert Value Result Likert Value 

<24 10 <67 10 <85 10 <79 1 
25–29 9 68–76 9 86–95 9 80–89 2 
30–34 8 77–86 8 96–105 8 90–99 3 
35–39 7 87–96 7 106–115 7 100–109 4 
40–44 6 97–106 6 116–125 6 110–119 5 
45–49 5 107–116 5 126–140 5 120–129 6 
50–54 4 117–126 4 141–155 4 130–139 7 
55–59 3 127–136 3 156–170 3 140–149 8 
60–64 2 137–146 2 171–199 2 150–159 9 

>65 1 >147 1 >200 1 >160 10 

Based on Table 1, all of the test results have been translated into a 1–10 Likert scale, 
and this allowed the calculation of the HC indices. As a result of this step, all workers have 
been ranked by the 3 indices (DI, MI, and PI) as defined in the HC operational model. 

Figures 12 and 13 summarized the HC distribution for the two groups of workers 
assessed. 
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Figure 12. HC distribution for workers of Line 1. 

 
Figure 13. HC distribution for workers of Line 2. 

As is shown in Figures 12 and 13, the HC indices present strong variation from 
worker to worker. 

It is possible to consider the overall HC score for each worker or the score of each test 
associated with a specific skill set. For example, worker B10 reported the lowest global 
score of HC with a value of 8, and worker B24 reported an overall score of 27. This range 
included the performance of all other workers of the line. Not only does the overall score 
changes from worker to worker, but even its composition presented a relevant degree of 
variation. 

Let us consider, for example, the comparison between workers A8 and A46 (Figure 
11). Both reported a similar overall score, with a value of 12 for A8 and 13 for A46. 

Even if the overall score was similar, its composition was deeply different: A8 
achieved 3 for the DI, 7 for the MI, and 1 for the PI, while A46 achieved 3 for the DI, 1 for 
the MI, and 6 for the PI. This information can suggest that worker A8 may be better 
allocated to a workstation that entails more memory skills than those of dexterity, while 
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worker A46, because of the HC indices, could be a good match for a workstation that 
requires physical skills but presents lower levels of complexity and variability in the steps. 
The set of three HC indicators allowed the quantified profiling of workers based on their 
individual characteristics. 

3.2. WL Assessment 
The operational model for the WL assessment, as was described in Section 2.2. and 

summarized by Figure 5, was based on the combination of three activities: a task analysis, 
a visual inspection of workstations, and on the work analysis reports. All quantitative data 
were collected by these activities, and based on them the four WL indicators (IC, IV, IM, 
and IPS) were assessed for each workstation. The quantitative data collected (saturation, 
number of suboperations composing the task, number of small parts, etc.) were 
considered sensitive by the company and they will not be shown in this paper.  

The following Figures summarize the WL distributions on the two assembly lines, 
calculated according to the indicators reported in Figure 5. 

As reported in Figure 14, the global value of WL ranges from a minimum value of 9 
for workstation “WL1–4” to a maximum value of 24 for the workstations “WL16”, 
“WL2”,”WL25”, and “WL-28”. 

Figure 15 reports for Line 2 a minimum value of 10, marked by “WL2–30”, and a 
maximum value of 28 for “WL2–28”. 

 
Figure 14. WL assessment of Line 1. 
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Figure 15. WL assessment of Line 2. 

HC global provides an indication of the total amount of requirements that any 
workstation poses for workers.  

The high degree of variation observed, in both lines, highlights the importance of 
considering it in the matching of operator–workstation, because an operator with lower 
skills compared to the WL required would be more exposed to injuries, errors, and long-
term fatigue effects. 

Even the WL composition presented a strong degree of diversification across 
workstations. As an example, let us consider the comparison between “WL2–10” and 
“WL2–21”: both have a very similar WL global value, but their WL compositions differ 
strongly. In fact, “WL2–10” reported a small value for IM and a large value for IPS, while 
“WL2–21” reported a higher value for IM and a smaller value for IPS. The analysis of WL 
composition suggests that WL2–10 require the highest value of physical indices and a 
lower value of IM, while workstations WL2–21 require operators with a high value of 
memory skills and low value of the physical index. 

3.3. HP Assessment and Results Application 
The final step of the TERM, as applied to this use case, was the definition of two 

matching matrices, one for each line, with structure and content defined as in the example 
of Figure 6. 

In relation to the specific dataset collected for the case study, the two resulting 
matrices will have 30 rows and 67 columns for Line 1 and 31 rows and 70 columns for Line 
2, with the number of rows corresponding to the number of working stations and the 
number of columns corresponding to the number of operators. 

As an example, Figure 16 reports a sample of a matching matrix defined for a smaller 
case of 21 working stations and 25 workers. 
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Figure 16. Matching matrix. 

Based on the matching matrix, it is possible to define a whole set of recommended 
matches for operators and workstations, minimizing the negative human performance 
index (HPminus) and consequently achieving a better distribution of workers to 
workstations based on the spectrum of human capability indices and workload indices, 
alongside the need to ensure a certain flexibility for job rotation. 

In this case study, the matching matrices were used to identify the best human 
resource allocations for the two production lines considered. This operation implied a 
replacement of 68% of operators compared to the ordinary distribution defined by the line 
supervisor. According to the plant managers, a period of 7 months was chosen to monitor 
the results of the new configuration, where the first moth was free of monitoring to 
minimise hawthorn effects and let workers familiarise themselves with the new tasks. 
Following this period, monitoring was carried out with four observable indicators, three 
for safety performance [30] and one for quality performance: 
• SMT (soft medical treatment), which represented the number of soft medical 

treatments required by workers during working activity for light injuries (small cuts, 
falls, etc.) This absence is temporary, and the workers came back to working activity 
during the day. 

• HMT (heavy medical treatment), which represented the number of absences from 
work due to an accident that occurred during working activity. In this category are 
included all occupational accidents. 

• AB (absenteeism), which represented the number of absences due to any illness 
relatable to working activity. This parameter was intended to measure the fatigue 
effects on workers with reference to MSD (muscle–skeleton disease). 

• The QI (quality index) was used to measure the percentage of product with no defects 
produced at the end of each line. This index was measured in a quality gate according 
to an internal procedure. 
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The comparison of safety indicators and quality data before and after the 
reconfiguration would be used to monitor the effectiveness of the methodology in terms 
of capability to improve workplace performance. 

Managers reported positive results after two months, with a reduction of 13% in 
terms of the SMT indicator and 7% for the QI.  

HMT and AB data have been collected, but they represented a long-term 
measurement effect. With regard to the HMT index, occupational accidents are rare events 
in this company compared to the daily frequency of soft medical treatments. Therefore, 
the monitoring of this parameter required a longer time of observation. Absenteeism is 
related to disease correlated with the accumulative effects of activity carried out by a 
worker performing his own task. Consequently, a change in task, passing from a bad to a 
good match, requires a long term (6–12 months) to show the expected benefits on the 
health of the worker involved. 

4. Possibility to Adopt a Weighted Algorithm 
The authors considered adopting an HP index using a weighted algorithm in the 

future that promotes a more detailed analysis of the importance of each single skill set 
requirement for each workstation, making the model more accurate. The weighted 
method identifies which skills of operators (memory, dexterity, etc.) are more challenging 
and/or in less demand in each workstation.  

Below is a formal description of the method [31]: 𝑖 is the number of operators (𝑖 = 1 … 𝐼). 𝑗 is the number of workstations (𝑗 = 1 … 𝐽). 𝑙 is the index of the human capability assessment: 

(𝑙 = 1 … 𝐿) ൞ MIMIDIPEIൢ 

All indices of the human capability assessment of each operator are described 
together in a logical set, 𝐿 = (𝑀𝐼, 𝑀𝐼, 𝐷𝐼, 𝑃𝐸𝐼). 𝑙ᇱ is the index of the task complexity assessment: 

(𝑙ᇱ = 1 … Lᇱ) ൞ VICIDRIPWൢ 

All indices of the task complexity assessment of each workstation are described 
together in a logical set, 𝐿ᇱ = (𝑉𝐼, 𝐶𝐼, 𝐷𝑅𝐼, 𝑃𝑊). 𝐶௜௟ = qualification of operator 𝑖 in index 𝑙: 𝐶௜௟ ∈ [1,10] ⊂ L 𝑆௝௟ᇲ = qualification in index 𝑙ᇱ to perform a job in a workstation, 𝑗: 𝑆௝௟ᇲ ∈ [1,10] ⊂ Lᇱ 𝑊௝௟ᇲ = weighting of index 𝑙ᇱ in a workstation, 𝑗: 𝑊௝௟ᇲ = 𝑆௝௟ᇲ𝑆‾௝  ∀𝑙ᇱ ∈ Lᇱ∀𝑗 ∈ 𝐽 

where: 𝑆‾௝ = ∑  ௟ᇲ∈௅ᇲ  𝑆௝௟ᇲLᇱ  ∀𝑗 ∈ 𝐽 

is the average of the task complexity index for each workstation. 
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The HP calculation is carried out for all of the possible worker–task matches, and the 
results of this have been organized into a matrix index reporting the HP value for each 
worker/task combination: 𝐻𝑃௜௝ = ෍  ௟∈௅,௟ᇲ∈௅ᇲ ൫𝐶௜௟𝑊௝௟ᇲ − 𝑆௝௟ᇲ൯ ∀𝑖 ∈ 𝐼∀𝑗 ∈ 𝐽 

and substituting the weighting: 𝐻𝑃௜௝ = ෍  ௟∈௅,௟ᇲ∈௅ᇲ 𝑆௝௟ᇲ ቆ𝐶௜௟𝑆‾௝ − 1ቇ  ∀𝑖 ∈ 𝐼∀𝑗 ∈ 𝐽 

An example of HP indices for one operator and three workstations using the 
weighted model and the previous one is reported in Table 2.  

In the example, the individual operator’s human capability indices considered were 
MI = 10, DI = 6, and PEI = 4. 

Table 2. Table of HP indices with and without the weighted method. 

Workstation TC HPm Weighted HPm 𝐂𝐈 𝐕𝐈 𝐃𝐑𝐈 𝐏𝐖 
1 6 4 6 4 10 10.4 
2 8 8 2 2 10 16 
3 3 1 7 9 10 3.6 

The operator has an indicator of MI = 10; this variable suggests that the operator is 
better allocated to a workstation where memory is a crucial requirement. With the 
previous model, the HP values were the same in the three workstations; however, when 
the weighted model was recalculated, the results changed and highlighted a difference 
between the allocation to the three workstations. The best allocation is in workstation 2, 
with a high complexity index (CI) and variability index (VI), therefore requiring larger 
demands on memory capabilities. 

5. Conclusions, Limitations and Future Challenges 
The TERM, as applied in this use case, was based on the hypothesis that there is a 

correlation between safety performance, human error frequency, and the characteristic of 
the operator–task performed match. The results imply that optimizing worker–task 
matching would have positive effects in terms of human error reduction and safety 
performance improvement. The testing performed on a case study composed of 137 
operators and 2 assembly lines of 61 workstations provided the following insights. 

The test performed to assess human capability (HC) highlighted a large range of 
variability in the results, confirming its effectiveness in discriminating between different 
level of individual personal skills. 

The HC value and composition significantly change from worker to worker; some 
operators reported good performance in some tests and bad performance in others. As an 
example, a couple of workers had very good results in the memory test and middling 
results in the Precision and “Both Hands” tests. This means that tests are independent 
from each other; they measure different skills, and they did not provide redundant 
information on HC. In relation to the assessment of workload (WL) requirements, the 
observed WL, resulting in indices and their variability, both as global values and or as 
compositions, highlighted the following points. 

WL composition had a strong degree of variation across workstations; in fact, all four 
indices (IM, IC, IV, and IPS) were varying along the assembly lines, even if all workstations 
were characterized by the same tack-time.  
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Workstations in the same assembly line can require different type of skills and 
capabilities for their tasks to be performed correctly; even when they present the same 
overall workload indices, the scores among the various indices used to characterise them 
were often significantly different from each other.  

The combination of WL and HC according to the HP rules reported in Figure 5 
allowed the definition of a matching process to assign operators to workstations where 
they can perform better. Based on the project results, a reconfiguration of the operators’ 
distribution was carried out. This step involved 68% of the worker population for the two 
lines. A set of four indicators was proposed to monitor, in the medium and long terms, 
the reconfiguration impact on safety and productivity.  

Preliminary results reported positive impacts in terms of a minor frequency of soft 
medical treatments required by workers during the working day. 

More information on the TERM results will be collected going forward.  
The application of the TERM for this case study was based on the identification of a 

set of operational variables able to characterise workload (WL) and human capability (HC) 
[16]. The model may be developed further considering other variables, such as “situational 
awareness” [32,33], which could be introduced into the HC part of the model to assess 
human performance for tasks that are more cognitive-demanding, but also social and 
interactional aspects, when relevant.  

Furthermore, as has been previously presented, it is possible to adopt a weighted 
algorithm that promotes a more detailed analysis of the importance of each single skill set 
requirement for each workstation, making the model more accurate. The framework was 
adapted in an operational model able to provide test results applicable to local conditions, 
but the approach is transferrable when considering data in other manufacturing contexts, 
as demonstrated in another study [14]. The underpinning theoretical assumption is still 
based on the idea of obtaining comparable assessments for workload/task complexity and 
corresponding human capabilities as the main predictors of human performance and 
moving towards a more robust data-driven method for managing human-reliability-
related issues [34]. 

Future applications will need to operationalise variables that can potentially 
characterise more advanced automated contexts, such as ones related to human–robotic 
collaborative environments [35–37]. Furthermore, transferability studies on other 
industrial domains were already explored in an electronic device production plant; 
however, due to the data available with which to characterise the task and its features, a 
different set of results was effectively obtained, as reported in another paper [14]. 

It is important to note that the model does not intend to provide any basis for possible 
operators’ stigmatization but rather to offer a more transparent framework for task 
allocation and capability assessment, alongside a thorough examination of workload 
demands associated with each workstation. Furthermore, our applied research experience 
suggests that the best way to approach issues related to human performance improvement 
and the enhancement of safety indicators in the workplace is by adopting a participatory 
approach [38,39] able to consider the points of view of the different stakeholders and have 
them involved in the journey from the very beginning. 
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