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Variable-angle-tow (VAT) composite laminates can eventually improve themechanical performance of lightweight

structures by taking advantage of a larger design space compared to straight-fiber counterparts. Here, we provide a

scalable low- to high-fidelity methodology to retrieve the tow angles that maximize the buckling load and the

fundamental frequency of VAT plates. A genetic algorithm is used to solve the optimization problem in which the

objective function is mimicked using a surrogate model. Both unconstrained and manufactured-constrained

problems are solved. The surrogates are built with outcomes from numerical models generated by means of the

Carrera unified formulation, which enables to obtain straightforwardly different degrees of accuracy by selecting the

order of the structural theory employed. The results show both the validity and flexibility of the proposed design

approach. It is shown that, although the optimal design fiber angle orientations are consistently similar, discrepancies

in the prediction of the buckling load or fundamental frequency can be foundbetweenhigh-fidelity layerwise and low-

to-refined equivalent-single-layer models, of which classical laminated plate or first-shear deformation theories are

degenerate examples.

Nomenclature

~C = material stiffness matrix, Pa
D = differential operator
Fcr = buckling load, N
Fτ, Fs = through-the-thickness expansion functions
f1 = fundamental frequency, Hz
Kcr = buckling load factor
KT = tangent stiffness matrix
Kσ = geometric stiffness matrix
K0 = stiffness matrix
M = mass matrix
Ni, Nj = finite element shape functions
q = unknown nodal vector
T0, T1 = fiber path angle parameters, °
u = displacement vector
x = design variables vector
β = polynomial coefficient vector
δ = virtual variation
ε = strain tensor
θ = fiber angle orientation, °
κ = curvature, m−1

ρ = density, kg∕m3

σ = stress tensor
ϕ = fiber path rotation angle, °
ω = natural frequency, rad∕s

Subscripts

ext = external
ine = inertia
int = internal
L = lower bound
max = maximum
U = upper bound

I. Introduction

T HE irruption of novel manufacturing techniques, such as auto-
mated fiber placement (AFP) and automated type laying (ATL),

brought the emergence of new families of laminated structures,
namely, variable-angle-tow (VAT) composites or variable-stiffness
composites (VSC), in which fiber tows are steered conforming curvi-
linear paths [1]. Although VAT composites have been recently intro-
duced, the concept has existed for over three decades. Leissa and
Martin [2] studied the free vibration and buckling of straight-fiber
composites having nonuniformly spaced fibers and found that these
two characteristics can be improved by as much as 21 and 38%,
respectively. Gürdal and Olmedo [3] proposed the VSC concept and
studied its in-plane responsemodifying the parameters that define the
varying fiber path. These analyses were conducted by means of
closed-form and numerical solutions based on the classical laminated
plate theory (CLPT). Similarly, Gürdal et al. [4] investigated the
buckling of VAT plates for different boundary conditions and rota-
tions of the fiber path, resulting in a parametric analysis of the
influence of the fiber path parameters on the nondimensional buck-
ling load factor. Improvements up to 19 and 80%, with regard to
classic laminates, were found for the different fiber path rotation
angles considered. Gürdal et al. [4] solved numerically the set of
partial differential equations that govern the buckling problem and
that rely on the CLPT. Raju et al. [5] also utilized the CLPT for
modeling VAT structures and solved the resulting differential equa-
tions bymeans of the differential quadrature method (DQM) to study
the prebuckling and buckling of VSC structures with general boun-
dary conditions.
Apart from CLPT, shear deformation theories based on those by

Reissner [6] and Mindlin [7] have been used to study the mechanical
performance of VAT plates. Akhavan andRibeiro [8] investigated the
fundamental frequency by using the third-order shear deformation
theory by Reddy [9]. Venkatachari et al. [10] analyzed VSC plates
and shells considering different fiber orientations and shell shapes
using the first-order shear deformation theory (FSDT). Hao et al. [11]
employed FSDT to model VAT shells and coupled it with isogeo-
metric analysis to calculate the buckling load of the analyzed struc-
tures. CLPTandFSDTare examples of equivalent-single-layer (ESL)
models in which the properties are homogenized through the thick-
ness. On the contrary, layerwise (LW) models consider each layer
independently, and displacement continuity has to be imposed at the
layer interface.
The optimization of composite structures has been of interest to

tailor the mechanical performance of the final product, and several
strategies have been proposed throughout the years. Seminal work
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by Haftka and Walsh [12] introduced integer programming for the
stacking sequence optimization for buckling of straight-fiber lam-
inates. Later, Le Riche and Haftka [13] proposed an integer-valued
genetic algorithm (GA) to maximize the buckling performance.
Therein 0, �45, and 90° plies were encoded in order to perform
the genetic operators. Le Riche and Haftka [14] then proposed an
improved version of GA for the minimum thickness design of
composite laminates. The usage of GA eases the coding of manu-
facturing constraints gathered by Irisarri et al. [15]. However, this
integer-valued GA leads to a nonconvex problem, which is cum-
bersome to face in structural optimization. To circumvent this issue,
a strategy based on lamination parameters was derived by Fukunaga
and Sekine [16]. The expressions of the lamination parameters
impose constraints on the design space of the lamination parameters
to determine the feasible convex region where laminate configura-
tions exist. These expressions rely on the usage of CLPTand FSDT
models. GA and lamination parameters were combined in the slice
and swap method proposed by Silva et al. [17] for wing optimiza-
tion. This strategy consists of two steps:
i) First, a continuous optimization provides a distribution of thick-

ness and directional stiffness that satisfy the safetymargins in a series
of multidisciplinary criteria. In this step, the design variables are the
shell thickness, the stringer dimensions, and the stacking sequences
in terms of lamination parameters.
ii) A discrete optimization process is triggered in order to trans-

form the previous stiffness distribution to one that satisfies all the
design and manufacturing rules. For a more detailed description of
the slice and swap method, the reader is referred to Ref. [17].
So far, the optimization strategies of straight-fiber laminates have

been discussed. Nevertheless, these can also be applied to retrieve the
optimal stacking sequence of VAT composites. Serhat and Basdogan
[18] proposed a CLPT lamination parameter scheme in which the
radius of curvature is calculated, ensuring the manufacturability of
the plate. Because AFP machines are not restricted to generating a
fixed number of fiber orientations, as in the straight-fiber case, the
design variables that define the fiber paths are continuous. Thus, no
encoding is needed if using GA. The optimization of VSC plates
manufactured by keeping a constant curvature of the AFP machine
armwas studied by Nik et al. [19]. They utilized a surrogate model to
mimic the in-plane stiffness and buckling load of the VAT plates and
used it as the objective function of the optimization problem, which
was solved by GA. Later, Nik et al. [20] proceeded accordingly to
their previous work embedding the defects that arise during the AFP
process, namely, gaps and overlaps. In both studies [19,20], closed-
form solutions were employed to characterize the laminate structure.
Optimization of in-plane stiffness, buckling load, and mass multi-
objective was investigated by Vijayachandran et al. [21]. The fiber
paths were generated employing Bézier curves. In this work, the
design variables were the coordinates of the Bézier curves’ control
points, which served as input for an artificial neural network (ANN)
that mimicked the aforementioned magnitudes. Shell-like S4R Aba-
qus finite elements (FEs) were used to model the VAT components.
Singh and Kapania [22] conducted a buckling optimization of cur-
vilinearly stiffened VAT plates, in which the design variables were
the fiber path orientation parameters of the plate and the parameters
used to define the shape of the stiffeners. Particle swarm optimization
(PSO) was used to find the optimal design variables. Nastran shell
elements were employed to model the laminate, whereas Nastran
beam elements were utilized for the curved stiffeners. Zhao and
Kapania [23] performed a buckling optimization of stiffened VSC
laminates with a cutout imposing maximum curvature and parallel
fiber path constraints. PSO was employed to solve the optimization
problem, in which the fiber orientation parameters and the position of
the straight stiffeners were the design variables. FSDT and Timo-
shenko beam theory were used for the plate and stiffeners, respec-
tively. Carvalho et al. [24] maximized the fundamental frequency of
VAT laminates taking into account gaps arising from manufacturing
and maximum curvature constraints. Gaps were included by using a
modified rule of mixtures accounting for the gap area fraction within
the FE area. GAwas used to solve the optimization problem, and S4R
Abaqus elements modeled the plate.

As the reader can appreciate, ESL models based on classical
theories have been generally used to optimize the buckling load
and the fundamental frequency of VAT plates. To the authors’
knowledge, very little or no research has been devoted to the
optimization of VAT structures modeled by an LW approach. For
doing so, this paper uses the Carrera unified formulation (CUF)
[25]. CUF has already been used to generate both ESL, and LW
models for VAT laminates, among other applications such as peri-
dynamics [26] and civil engineering [27]. For instance, Demasi
et al. [28] used 2D ESL, Zig-Zag, and LWCUFmodels for the stress
analysis of thick VSC laminates. Viglietti et al. [29] studied the free
vibration of VAT structures using variable kinematic models. Sán-
chez-Majano et al. [30] investigated the stress distribution of VAT
shells using both ESL and LW approaches. As expected, LW out-
performed ESL when predicting transverse stresses. Moreover,
geometrically nonlinear analyses of VAT plates have been per-
formed by Pagani et al. [31] to study the vibration around nonlinear
equilibrium states. Last, LW stochastic analysis concerning the
failure onset and the buckling of VAT laminates has been performed
in [32,33]. In the former, in-plane waviness was accounted for,
whereas in the latter both in-plane waviness and fiber volume
fractionvariability were considered. These uncertainty defects were
modeled by means of stochastic fields.
This work proposes the optimization of VAT plates modeled with

CUF-based LWmodels. Surrogate models based on polynomials are
utilized to mimic the optimization’s objective function, namely,
buckling load factor and fundamental frequency. The optimization
problem is solved by GA. Additionally, the AFP machine turning
radius is considered a manufacturing constraint. The paper is organ-
ized as follows: Section II provides the main features of VAT plates
and the equations to calculate the curvature of the fiber path. Sec-
tion III depicts the unified FEs used tomodel the laminated structures.
The GA characteristics and how the surrogate model is generated are
available in Sec. IV. Then, model verification and optimization
results are available in Sec. V. Finally, conclusions are drawn
in Sec. VI.

II. Variable-Stiffness Plates and Manufacturing
Constraints

In VAT composites, a band of fibers, referred to as a course, is laid
over a surface following a reference path. Different paths have been
analyzed throughout the years; the most common ones are thosewith
constant curvature and linear variation. In this work, the latter are the
ones to be considered. The linear variation states that the fiber angle
orientation θ varies along the x 0 direction and reads as

θ�x 0� � ϕ� T0 �
T1 − T0

d
jx 0j (1)

where T0 is the fiber angle at x 0 � 0, and T1 corresponds to the fiber
orientation at x 0 � d, where d is the length along which the fiber
angle orientation varies and typically equals the semilength or
semiwidth of the VAT plate. Note that x 0 can be expressed in terms
of the global reference system as x 0 � x cosϕ� y sinϕ. Last, ϕ is
the fiber path rotation angle that defines along which axis, i.e., x
axis, y axis, or a combination of both, the fiber orientation varies.
These parameters can be appreciated in Fig. 1. In this paper, ϕ is set
equal to zero. Therefore, the x 0 direction coincides with the x axis
and d � a∕2.
The AFP machine turning radius has a limitation on the curvature

of the laid fiber path. Otherwise, an upfolded tow or a wrinkle will
generate in the placed tape. Therefore, the turning radius of the AFP
head limits the fiber angle distribution of each lamina and determines
whether a laminate can be manufactured or not. In this regard, it is
used as an optimization constraint when aiming to optimize a certain
characteristic of aVAT laminate. Themost commonly extended value
of the AFP turning radius is rmin � 0.635 m. Hence, the curvature is
constrained as
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−
1

rmin

≤ κ ≤
1

rmin

(2)

The curvature at a specific position (x, y) can be calculated as in the
work by Brooks andMartins [34], by defining the unit tangent vector
t (see Fig. 2) of the fiber path as

t�θ� � cos�θ�î� sin�θ�ĵ (3)

Then, performing the curl operator over vector field t and keeping the
only nonzero vector component yields

κ�x; y� � �∇ × t�θ�� ⋅ k̂ � ∂θ
∂x

cos�θ� � ∂θ
∂y

sin�θ� (4)

which can be evaluated to assess whether a design is feasible from the
manufacturing point of view or not. The symbols î, ĵ, and k̂ denote
the unitary vectors of a Cartesian reference frame. Note that for the
case in which the fiber path varies along the x direction, i.e., ϕ � 0°,
Eq. (4) reads as

κ�x� � sgn�x� T1 − T0

d
cos

�
T0 �

T1 − T0

d
jxj

�
(5)

where sgn�⋅� indicates the sign function.

III. Unified Finite Elements

Two-dimensional FEs are implemented by using the CUF formal-
ism.According to [25], the 3D field of displacement can be expressed
in terms of arbitrary through-the-thickness expansion functions
Fτ�z� of the 2D generalized unknowns laying over the x-y plane; i.e.,

u�x; y; z� � Fτ�z�uτ�x; y� τ � 1; : : : ;M (6)

whereM is the number of expansion terms and uτ�x; y� is the vector
containing the generalized displacements. Note that τ denotes sum-
mation. Common approaches for the analysis of multilayered struc-
tures are the ESL and LWapproaches. In this paper, ESL models are

obtained using Taylor polynomials as Fτ along the thickness direc-
tion. On the other hand, LWmakes use of Lagrange polynomials over
the single layers and then imposes the displacement continuity at the
interfaces; see [35,36]. In this regard, TEn indicates a TEofnth order,
while LEn represents the usage of an LEwith nth-order polynomials.
Moreover, X LEn denotes the usage of X Lagrange polynomials of
nth order to describe each layer of the laminate.
Utilizing the FE and shape functions Ni�x; y�, the displacement

field becomes

uτ�x; y� � Ni�x; y�Fτ�z�qτi i � 1; : : : ; Nn (7)

where qτi denotes the unknown nodal variables, andNn indicates the
number of nodes per element. Two-dimensional nine-node quadratic,
Q9, elements are employed as Ni for the x-y plane discretization.
The principle of virtual displacements (PVDs) is used to derive the

governing equations of the FEmodel. The PVD states that the virtual
variation of the internal strain energy δLint has to be equal to the
virtual work of the external forces δLext minus the virtual work of the
inertia forces δLine; i.e.,

δLint � δLext − δLine (8)

which in the case of free vibration analysis becomes

δLint � δLine � 0 (9)

The virtual variation of the strain energy can be calculated as

δLint �
Z
V
δεTσ dV (10)

while the virtual work of the inertia forces is computed as

δLine �
Z
V
ρδuT �u dV (11)

where ρ represents themass density of thematerial. Equation (10) can
be rewritten using Eq. (7), the constitutive law σ � Cε, and the
geometrical relations between strains and displacements, thus yield-
ing

δLint � δqTsj

�Z
V
DT�NjFs� �CD�NiFτ� dV

�
qτi � δqTsjk

ijτs
0 qτi

(12)

where kijτs0 is the 3 × 3 fundamental nucleus (FN) of the stiffness
matrix, which is invariant to the order of the 2D shape functions and
the through-the-thickness expansion, as shown in [25]. D�⋅� is the
differential operator matrix containing the geometrical relations, and
�C is the material stiffness matrix expressed in the global reference
frame, i.e., �C � T�x; y�CTT�x; y�. Note the dependency of the rota-
tion matrix T on the in-plane coordinates due to the VAT fiber paths;
see [32].
The virtual work of the inertia forces can be expressed as

δLine � δqTsj

�Z
V
ρIFτFsNiNj dV

�
�qτi � δqTsjm

ijτs �qτi (13)

in which I is the 3 × 3 identity matrix andmijτs is the 3 × 3 FN of the
mass matrix. Note thatmijτs is a diagonal matrix.
The undamped free vibration problem can be written as follows:

M �q� K0q � 0 (14)

Equation (14) is obtained by looping over the FN’s through the
indices i, j, τ, and s to obtain the mass and stiffness matrices for
the single element. Then, proceeding accordingly for the rest of FE,
one can assemble the overall matrix and stiffness matricesM andK0,

Fig. 1 Graphical representation of the parameters involved in a linearly
varying fiber path for ϕ ≠ 0° (left) and ϕ � 0° (right).

Fig. 2 Graphical representation of the tangent vector to the reference
fiber path and the curvature κ at a certain (x, y) in-plane position.
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respectively. If one imposes harmonic solutions q � ~qeiωt, then
Eq. (14) turns into the following eigenvalue problem:

�
K0 − ω2

iM
�
~qi � 0 (15)

where ωi and ~qi are the ith natural frequency and eigenvector,
respectively.
The buckling analysis consists in solving the equation

jKT j � 0 (16)

whereKT is the tangent stiffness matrix of the structure. The formula
for this matrix is derived by means of linearizing the virtual variation
of the internal strain energy:

δ2�Lint� �
Z
V
δ�δεTσ� dV �

Z
V

h
δ
�
δεT

�
σ � δεTδσ

i
dV (17)

After introducing Eq. (7), the constitutive law, and the geometrical
relations between strains and displacements, the previous equation
adopts the following form:

δ2�Lint� � δqTsjk
ijτs
T δqτi (18)

This equation can be written in the case of linearized buckling
problem as

δ2
�
Lint

�
≈ δqTsj

�
kijτs0 � kijτsσ

�
qτi (19)

where kijτsT ≈ kijτs0 � kijτsσ . Therein, kijτsσ corresponds to the 3 × 3 FN
of the geometric stiffnessmatrix, which strictly depends on the internal
stress state of the structure. Note that the stress state will be dependent
on the accuracy of the model. The equations that allow the calculation
of the tangent stiffness matrix are not reported in the paper for the sake
of brevity but can be found in [37]. Last, since the linear hypothesis
holds, kijτsσ is supposed to be proportional to λcr, which is the solution
to a linear eigenvalue problem and is proportional to the applied load in
the case of linearized buckling. Therefore, after the FN’s are expanded
and the elemental stiffness matrices assembled over the entire struc-
tural domain, Eq. (16) can be rewritten as follows:

jK0 � λcrKσj � 0 (20)

to calculate λcr. Note thatKσ denotes the assembled geometric stiffness
matrix of the structure.
The assembly of K0, M, and Kσ differs whether an ESL or LW

approach is chosen. In ESL, the homogenization of the properties of
each layer is carried out and summed altogether when computing the
stiffness matrix. As addressed by Carrera [38], ESLs do not fulfill the
C0
z requirements. Conversely, LW considers each layer independ-

ently and expands the displacement field within each lamina. Con-
sequently, the continuity of displacements has to be imposed at the
interface (see [35,36]), thus guaranteeing the completion of the C0

z

requirements. These two assembly approaches are displayed in Fig. 3

for the case of a plate concerning two layers. Last, an additional
feature of the proposed VAT modeling is that the fiber angle orienta-
tion is calculated at each integration point of the numerical model.
This permits a more accurate description of the fiber variability and
allows reducing the number of FE if compared to commercial soft-
ware, as already addressed by the authors in [30].

IV. Optimization Problem

TheVAT literature has demonstrated that this kind of laminates can
tailor the in-plane stress resultants [22], fundamental frequencies
[24], vertical deflections [39], and thermal buckling [40], among
other mechanical characteristics. Based on these studies, it is obser-
ved that multiple local peaks of the mentioned characteristics exist
in terms of the fiber path angles. In this context, an optimization
algorithm that allows to explore the whole design space is needed.
However, to perform a thorough exploration of the design space, a
vast number of function evaluations are required. This need, coupled
with the complexity of the VAT models, makes the optimization of
these structures a computationally intensive problem. Thus, a strat-
egy that permits exploring the design space as well as a quick
evaluation of the objective, or constraint, functions is of utmost
importance. The first is obtained with the usage of GA, while the
latter is solved by creating response surfaces that mimic the men-
tioned objective or constraint functions. These two methods are
explained next.

A. Genetic Algorithm

GAs are a group of evolutionary algorithms used to solve optimi-
zation problems. They are based on Darwin’s Theory of Evolution
[41]. Genetic operators such as crossover, elitism, and mutation are
used to generate better-performing offspring, in terms of the objective
function, than their parents. AGA can be used to provide the solution
to both unconstrained and constrained problems, like the one in the
following equation:

min
x
F�x� s:t:

8>>><
>>>:

gi�x� ≤ 0 i � 1; : : : ; r

hj�x� � 0 j � 1; : : : ; k

xL ≤ x ≤ xU

(21)

whereF�x� is the objective function, i.e., the function that one aims to
minimize, while gi�x� and hj�x� are the inequality and equality
constraints, respectively; xL and xU are the lower and upper bounds
of the vector containing the design variables, x, respectively. In this
paper, an in-house developed GA based on that presented by Mon-
temurro et al. [42] has been used. This GA allows the user to conceive
individuals with a fixed or varying number of design variables
and/or layers. For conducting the optimization of laminates in which
the number of layers may vary, referred to as multispecies, addi-
tional genetic operators, such as specie crossover and layer addition/
deletion, have to be incorporated. Despite these additional features, in
this paper the number of design variables and layers of the laminates
considered is kept constant throughout the optimization process. For
further information about the aforementioned features, the reader is
referred to [42].
Since the objective functions considered in this paper are expen-

sive simulations, the computational cost becomes a major challenge.
Therefore, the authors resort to a surrogate model that approximates
the computationally expensive simulations through a multidimen-
sional parametric surface [43].

B. Response Surface Modeling

Surrogate models can be used to accelerate the retrieval of an
optimum solution. There exists a plethora of surrogate models that
can be used, ranging from polynomial expressions up to ANNs [21]
or passing by polynomial chaos expansion [44], radial basis functions
[45], or kriging processes [46]. Because of the limited number of
design variables involved in this document, a polynomial surrogate is

Fig. 3 Assembly procedures for ESL and LW models, and graphical
representation of the displacement variable through the thickness of the
plate. Straight lines represent the boundaries of the four-node FE.
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considered to mimic the magnitudes that aim to be optimized. For
instance, a second-order polynomial can be expressed as

f�x� � β0 �
Xn
i�1

βixi �
Xn
i�1

Xn
j�i�1

βijxixj �
Xn
i�1

βiix
2
i (22)

where β0, βi, and βij are the polynomial coefficients; xi are the
independent variables; and n is the number of independent variables.
To fit the surrogate model to the data set, the least-squares method is
used to calculate the polynomial coefficients. If, for instance, a total
ofNs samples are employed to construct the surrogatemodel and two
designvariables, n � 2, are considered, the regression problem reads
as

f � Ψβ (23)

in which f is anNs × 1 column vector containing the data samples of
the function that one aims to mimic, β contains the coefficients of the
polynomial, and Ψ is a matrix with the Ns values of the design
variables, i.e.,

Ψ �

2
6666664

1 x11 x12 x11x12 x211 x212

1 x21 x22 x21x22 x221 x222

..

. ..
. ..

. ..
. ..

. ..
.

1 xNs1
xNs2

xNs1
xNs2

x2Ns1
x2Ns2

3
7777775

(24)

which, in general, is not a square matrix [47]. Hence, the coefficient
vector can be calculated as

β � �ΨTΨ�−1ΨTf (25)

To improve the accuracy of the surrogate model, Eq. (25) is solved
several times, and the coefficients are averaged. As an example, let us
consider a third-order polynomial comprising two independent var-
iables. This polynomial contains 10 terms combining those two
variables. Therefore, aminimumof 10 samples (Ns � 10) are needed
to construct the polynomial. One can generate a larger database and
randomly pick the 10 samples needed to calculate β. If this process is
repeated several times, an average of β can be obtained, leading to a
better fit of the numerical model.

V. Results

A. Buckling Verification

The presented modeling approach is verified with a reference
solution provided by Gürdal et al. [4]. It consists of a 12-layered
VAT plate with stacking sequence �0 � h0; 50i�3s. The width a and
length b of the plate are a � b � 0.254 m, whereas the thickness of
the individual ply is t � 0.127 mm. Thematerial properties are listed
in Table 1, and the boundary conditions are depicted in Fig. 4. The
transverse displacements are restrained at y �� b∕2, while a uni-
form shortening ux � u0 is exerted along x �� a∕2.
The first step toward the verification is conducting a convergence

analysis for the in-plane 2D mesh. The chosen elements consist of

biquadratic Lagrange polynomials, referred to as Q9 elements here-
inafter, since they comprise nine nodes per element. Concerning the
through-the-thickness direction, a quadratic element LE2 is utilized
per each layer, providing an LW model. Convergence results are
available in Table 2. These outcomes are expressed in terms of the
normalized buckling load, which is computed as

Kcr �
Fcra

2

E1h
3b

(26)

where h is the total thickness of the plate. It is observed that the 10 ×
10 Q9 mesh provides a converged value of Kcr. The difference
between the reference value [4] and the one calculated with the
present methodology stems from the models employed. Gürdal et al.
[4] used the CLPT and the Rayleigh–Ritz method to calculate the
buckling load, whereas the proposed model utilizes an LW descrip-
tion of the laminated VAT plate. Clearly, CLPT offers a stiffer and
more conservative solution in this case. In addition, Fig. 5 provides
the convergence of the first five buckling load factors and their
respective modes. It is observed that the first four modes converged
within 1% for the 10 × 10Q9mesh,while the fifth one shows roughly
a 3% discrepancy.
The next step involves using different expansion functions in the

through-the-thickness direction. A comparison between Taylor and
Lagrange expansions is shown in Table 3. These models employ the

Table 1 Material properties of
the VAT plate considered for the
linear buckling analysis, from [4]

Parameter Value

E1, GPa 181.00
E2 � E3, GPa 10.27
G12, GPa 7.17
G23, GPa 4.00
ν12 � ν23 0.28

The value of G23 was taken from [23].

Fig. 4 Boundary conditions of the 12-layered �0 � h0;50i�3s plate.

Table 2 Convergence analysis
in terms of Kcr for the �0 � h0;50i�3s

plate from [4]

Model DOF Kcr

Ref. [4] —— 1.44
4 × 4 Q9 6,075 1.42
6 × 6 Q9 12,675 1.41
8 × 8 Q9 21,675 1.40
10 × 10 Q9 33,075 1.39
12 × 12 Q9 46,875 1.39
14 × 14 Q9 63,075 1.39

Each discretization employs 1 LE2 element
per layer.

Fig. 5 Convergence of Kcr in terms of DOF. The first five buckling
modes are illustrated.

Article in Advance / RACIONERO SÁNCHEZ-MAJANO AND PAGANI 5

D
ow

nl
oa

de
d 

by
 1

30
.1

92
.2

5.
50

 o
n 

Ju
ly

 1
4,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
29

76
 



10 × 10 Q9 mesh demonstrated to provide a converged solution for
Kcr. Note that, in the current procedure, ESL models are obtained
with TE polynomials. TE 1, which is similar to FSDT, provides the
closest solution to the reference CLPT. Then, as the order of TE
increases, lower values of Kcr are predicted. Indeed, the TE 3 model
can obtain the same value provided by the LE2 model with an 84%
reduction in terms of degrees of freedom (DOF).

B. Free Vibration Verification

The free vibration problem is verified against the results available
in Akhavan and Ribeiro [8]. The study case concerns a three-layered
squared plate with stacking sequence �h0; 45i; h−45;−60i; h0; 45i�.
The width and length of the plate are a � b � 1 m, and a width-to-
thickness ratio a∕h � 10, having each ply the same thickness. The
material elastic properties are reported in Table 4. The structure is
fully clamped.
As performed in the previous section, a convergence of the FEmesh

is done first, employingQ9 FE and LE2 in the thickness direction. The
results are listed in Table 5 and illustrated in Fig. 6 along with the first
five free vibration modes. A good agreement between Ref. [8] and the
present results is observed. All the first five modes but the fourth one
converge within 1% using the 10 × 10 Q9 grid. This mesh provides a
higher value than the 16 × 16 Q9 one. However, the relative error
between both solutions is 0.19%, presenting the 10 × 10 a twofold
reduction in terms of computation time. Therefore, the 10 × 10 Q9
mesh will be used for the subsequent analyses.
The usage of different expansion functions in the thickness

direction is now addressed. The comparison between the various

TE and LE expansions is shown in Table 6. All the tested numerical
models employ a 10 × 10 Q9 mesh. It is observed that first- and
second-order TEs provide higher natural frequencies values than
the reference solution. Third- and fourth-order TEs provide closer
values to the reference but are still slightly higher than the LW
models. Fifth- and sixth-order TEs can calculate the same solution
as the 1 LE2 model employed for the FE convergence analysis.
Note that TE 4 and TE 6 compute higher fifth frequencies than their
TE counterparts. Last, the three different LWmodels, i.e., LE 1, LE
2, and LE 3, present some discrepancies among them. LE 1 pro-
vides results between TE 2 and LE 2, while LE 3 computes lower
frequencies than LE 2 with an increase in both DOF and computa-
tional time. Thus, the chosen numerical model is the one compris-
ing a 10 × 10 Q9 FE mesh and 1 LE 2 description through the
thickness.
To show that the present methodology can handle different

boundary conditions while keeping the FE mesh and the diverse
structural theories that have been accounted for, simply supported
boundary conditions are considered now for the �h0; 45i; h−45;
−60i; h0; 45i� plate. For the sake of brevity, the convergence study
is not reported. The effect of structural theory is listed in Table 7. It
is observed that ESLTE 1 and TE 2 overestimate the fundamental
frequencies compared to Ref. [8]. If higher ESL theories are
employed (see ESL-TE 3 and beyond), their prediction is in good
agreement with the reference, which, indeed, uses a third-order
model. However, if an LW approach is used, a more flexible
structure is obtained, and thus a lower fundamental frequency is
retrieved.

C. Buckling Optimization

Referring to the problem in Sec. V.A, the buckling optimization
can be stated as

min
x

− Fcr�x� (27)

in which x � fT0; T1g are the design variables corresponding to a
laminate stacking sequence θ � �0 � hT0; T1i�3s, and Fcr denotes
the critical buckling load. The lower and upper bounds are xL �
−90° and xU � 90°, respectively, as in [23,24]. To solve the opti-
mization problem, the response surface method explained in
Sec. IV.B is used to mimic the distribution of Fcr as a function of
the variable orientation parameters T0 and T1. Therefore, Fcr is
approximated by ~Fcr, i.e., Fcr ≈ ~Fcr, in Eq. (27). Note that ~Fcr

represents the response surface model of Fcr. Fifteen samples were
generated by means of Latin hypercube sampling (LHS) [48] to
construct the surrogate model for the LW-LE2 and ESL TE1 and
TE3 structural models and width-to-thickness a∕h ratios. Figure 7
shows the constructed response surface and the sample data for the
LW-LE2 and ESL-TE3 thin plate models, as well as their contour
plot. Two local maxima are appreciated, from whom one is the

Table 3 Convergence analysis
of Kcr for the �0 � h0;50i�3s

plate from [4]

Model DOF Kcr

Ref. [4] — — 1.44
TE 1 2,646 1.42
TE 2 3,969 1.40
TE 3 5,292 1.39
TE 4 6,615 1.39
1 LE1 17,199 1.42
1 LE2 33,075 1.39

Each model employs a 10 × 10 Q9 mesh.

Table 4 Material properties
of the VAT plate considered for

the free vibration analysis, from [8]

Parameter Value

E1, GPa 173.00
E2 � E3, GPa 7.20
G12, GPa 3.76
G23, GPa 3.76
ν12 � ν23 0.29

ρ, kg∕m3 1540.00

Table 5 Convergence analysis of the first five natural frequencies
for the �h0;45i;h−45; − 60i;h0;45i� plate from [8]

Model DOF f1, Hz f2, Hz f3, Hz f4, Hz f5, Hz

Ref. [8] —— 613.79 909.04 1,231.65 1,337.69 1,484.53
6 × 6 Q9 3,549 614.82 916.05 1,230.29 1,361.72 1,492.04
8 × 8 Q9 6,069 611.26 907.03 1,219.97 1,337.03 1,475.20
10 × 10 Q9 9,261 609.91 903.93 1,216.18 1,328.88 1,469.58
12 × 12 Q9 13,125 609.28 902.56 1,214.47 1,325.46 1,467.15
16 × 16 Q9 22,869 608.74 901.46 1,213.07 1,322.85 1,465.21

Each discretization employs 1 LE2 element per layer.

Fig. 6 Convergence of the first five fundamental frequencies in terms of
DOF. The first five free vibration modes are illustrated.
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global maximum. As one can appreciate, both response surfaces
from Figs. 7a and 7c, and contour plots in 7b and 7d, are practically
identical, and just slight differences in the surrogate model’s coef-
ficients are observed.
The optimization solution is obtained by employing the GA

depicted in Sec. IV.A. The GA population comprises a total of 40
individuals, i.e., 20 per design variable. The crossover probability is
set to 80%, whereas the mutation probability is equal to 5%. The
solutions found for each modeling approach and a∕h ratio are
gathered in Table 8. It is appreciated that, for the thin plate case,
the LWand ESL theories provide practically the same optimal value
of hT0; T1i, with only the difference in T0 for the ESL-TE 3 model in
which T0 � −11.77° instead of T0 � −17°. These results are in
agreement with the ones presented by Gürdal et al. [4], where it
was found that the maximum buckling load was achieved when
hT0; T1i � h0; 50i°. The difference between the present solution
and the one in [4] resides in the range of the design variables. In this
paper, the range considered is T0, T1 ∈ �−90; 90�°, while in [4] it was
T0, T1 ∈ �0; 90�°. When thick plates are considered, LW and ESL
models provide similar solutions as appreciated in Table 8. Small
differences are observed in the value of T0. As expected, ESL
provides higher values of the buckling load since they lead to stiffer
models. As mentioned before, the reason why slightly different
solutions are obtained resides in the surrogate model’s coefficients.
However, these are affected by the sample data used to construct the
response surface, i.e., Fcr. Likewise, the eigenvalues to the buckling
problem, and therefore Fcr, depend on the linear and geometric
stiffness matrices, whose components vary according to the chosen
structuralmodel. In particular, the geometric stiffnessmatrix involves
the stress state of the structure, which, again, varies whether an LWor
an ESL is employed to model the structure as shown in Fig. 8.
Therein, it is observed that for thick plates there is a vast difference
when computing the in-plane normal stress σxx with LW-LE2 and

ESL-TE3 models (see Fig. 8a), whereas both theories of structures
lead to practically the same distribution. Note that in reality the plate
would not be able to withstand such high stress state levels without
incurring into geometrical nonlinearities or failure. Those huge mag-
nitudes stem from the fact that linear analyses have been performed.
Concerning the transverse normal stress σzz displayed in Fig. 8b, the
ESL-TE3 theory cannot reach the LW-LE2 maximum value for the
thick plate. In the case of thin laminates, the transverse magnitudes
are negligible if compared to thicker plates and an accurate evaluation
of them would require the use of the mixed interpolation of tensorial
components (MITC) approach [49] to circumvent the shear-locking
phenomenon.
As Olmedo and Gürdal demonstrated in their seminal work

[50], fiber steering leads to an increase in the buckling load com-
pared to classical straight-fiber configurations. However, some of
the designs presented in Table 8 are not feasible to manufacture
due to limitations on the turning radius of the AFP machines.
Therefore, a constrained optimization problem shall be faced. In
this regard, the constrained buckling load optimization problem is
written as

min
x

− Fcr�x� s:t: − 1∕rmin ≤ κ�x� ≤ 1∕rmin (28)

where κ�x� is calculated using Eq. (5). The number of design
variables and their upper and lower bounds are kept from the
unconstrained buckling optimization problem. Again, the opti-
mization problem is solved by employing the response surfaces
built from the different CUF theories of structures. The optimal
design variables along with the predicted ~Fcr, the actual Fcr, the
relative error between them, and the maximum value of the
curvature κmax are listed in Table 9 for the considered width-to-
thickness ratios. As occurred for the unconstrained buckling
optimization problem, LW and ESL theories provide design

Table 6 Convergence analysis of the first five natural frequencies
for the fully clamped �h0;45i;h−45; − 60i;h0;45i� plate from [8]

Model DOF f1, Hz f2, Hz f3, Hz f4, Hz f5, Hz

Ref. [8] —— 613.79 909.04 1,231.65 1,337.69 1,484.53
TE 1 2,646 638.874.09% 955.515.11% 1; 278.433.80% 1; 419.716.13% 1; 553.574.65%

TE 2 3,969 634.393.36% 943.643.81% 1; 273.883.43% 1; 399.974.66% 1; 542.343.89%

TE 3 5,292 611.17−0.43% 908.11−0.10% 1; 218.00−1.11% 1; 338.390.05% 1; 473.10−0.70%

TE 4 6,615 611.04−0.45% 907.83−0.13% 1; 217.56−1.14% 1; 337.690% 1; 789.1420.52%

TE 5 7,938 609.49−0.70% 903.63−0.60% 1; 214.24−1.41% 1; 328.60−0.68% 1; 467.81−1.13%

TE 6 9,261 609.49−0.70% 903.63−0.60% 1; 214.24−1.41% 1; 328.59−0.68% 1; 774.4619.53%

1 LE1 5,292 621.641.28% 917.660.95% 1; 244.851.07% 1; 347.150.71% 1; 499.661.02%

1 LE2 9,261 609.91−0.63% 903.93−0.56% 1; 216.18−1.26% 1; 328.88−0.66% 1; 469.58−1.01%

1 LE3 13,230 608.60−0.85% 900.62−0.93% 1; 213.16−1.50% 1; 322.06−1.17% 1; 464.94−1.32%

Each model employs a 10 × 10 Q9 mesh. The relative difference between each model and the reference is reported in the superscript.

Table 7 Convergence analysis of the first five natural frequencies
for the simply supported �h0;45i;h−45; − 60i;h0;45i� plate from [8]

Model DOF f1, Hz f2, Hz f3, Hz f4, Hz f5, Hz

Ref. [8] — — 467.31 746.54 1,114.80 1,166.28 1,349.00
TE 1 2,646 483.273.41% 782.964.88% 1; 167.424.72% 1; 237.376.10% 1; 355.620.49%

TE 2 3,969 479.512.61% 771.633.36% 1; 162.714.30% 1; 215.464.22% 1; 333.97−1.1%

TE 3 5,292 466.85−0.10% 746.810.04% 1; 114.73−0.01% 1; 168.350.26% 1; 348.81−0.01%

TE 4 6,615 466.81−0.11% 746.700.02% 1; 114.51−0.03% 1; 169.010.23% 1; 320.75−2.09%

TE 5 7,938 465.36−0.42% 742.59−0.53% 1; 112.21−0.23% 1; 160.83−0.47% 1; 320.60−2.10%

TE 6 9,261 465.36−0.42% 742.58−0.53% 1; 112.20−0.23% 1; 160.83−0.47% 1; 317.28−2.35%

1 LE1 5,292 431.91−7.58% 691.34−7.39% 1; 060.18−4.90% 1; 107.68−5.02% 1; 273.80−5.57%

1 LE2 9,261 432.13−7.53% 692.01−7.30% 1; 061.63−4.77% 1; 109.47−4.87% 1; 276.17−5.40%

1 LE3 13,230 429.63−8.06% 686.85−8.00% 1; 051.63−5.67% 1; 098.96−5.77% 1; 262.98−6.38%

Each model employs a 10 × 10 Q9 mesh. The relative difference between each model and the reference is reported in the superscript.
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variables similar to each other when thin plates (a∕h � 167 case)
are modeled. The optimal design variables for the thin plate are
around hT0; T1i ≈ h20; 32i°. As occurred in the unconstrained
problem, LWand ESL lead to the same solution when thick plates
are analyzed. In this case, the optimal design variables are around
hT0; T1i ≈ h12; 24i°. It is appreciated that, for each of the width-
to-thickness ratios and structural theories, the optimal design lays
in the constraint boundary.
Some differences are appreciated between the solutions to the

unconstrained and the constrained problems for both width-to-
thickness ratios. First, an abrupt sign change occurs between T0

and T1 in the unconstrained problem, as observed in Figs. 9a and 9c,
whereas a smoother fiber path is appreciated in the constrained one
(see Figs. 10a and 10c). Concerning the first buckling mode, a
sharper form pointing toward the left inferior and right upper cor-
ners is observed for the constrained solution in Figs. 10b and 10d,
while a rounder shape is presented in the unconstrained laminate
in Figs. 9b and 9d. This difference is due to the larger stiffness

close to the shortened edges in the thick hT0; T1i � h12.10; 23.83i°
and thin hT0; T1i � h20.81; 33.08i° design compared to the thick
hT0; T1i � h−1.90; 40.97i° and thin hT0; T1i � h−17; 52i° uncon-
strained designs.

D. Fundamental Frequency Optimization

The fundamental frequency optimization problem reads as

min
x

− f1�x� (29)

where x � fT0; T1g are the design variables relative to a fully
clamped plate whose stacking sequence is θ � �0hT0; T1i;
0h90� T0; 90� T1i�s, as in the work by Akhavan and Ribeiro
[8]. The lower and upper bounds are xL � −90° and xU � 90°,
respectively. The material properties are the ones used in Sec. V.B
and listed in Table 4, while the width and length of the plate are
a � b � 1 m. Two width-to-thickness ratios are considered,

Table 8 Optimal results of the unconstrained buckling optimization problem for the �0 � hT0;T1i�3s plate,
and comparison between surrogate model ~Fcr and direct analysis Fcr of the optimized stacking sequence

Parameter

a∕h � 10 a∕h � 167

LW-LE2 ESL-TE 1 ESL-TE 3 LW-LE2 ESL-TE 1 ESL-TE 3

hT0, h−1.90, h−3.38, h−3.37, h−17, h−17, h−11.77,
T1i �°� 40.97i 40.46i 40.97i 52i 52i 51.88i
~Fcr, N 8.24 ⋅ 106 9.34 ⋅ 106 8.73 ⋅ 106 3.58 ⋅ 103 3.58 ⋅ 103 3.58 ⋅ 103

Fcr, N 8.28 ⋅ 106 9.37 ⋅ 106 8.73 ⋅ 106 3.48 ⋅ 103 3.56 ⋅ 103 3.33 ⋅ 103
Error, % −0.51 −0.31 0.06 2.73 1.00 7.40

c) ESL-TE3 response surface
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d) ESL-TE3 contour plot

a) LW-LE2 response surface
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b) LW-LE2 contour plot

Fig. 7 Response surface and contour plot of the �0 � hT0;T1i�3s plate with width-to-thickness ratio a∕h � 167 for the LW-LE2 and ESL-TE3 models.
Red crosses in (a) and (c) indicate the sample points used to construct the surrogate models.
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Table 9 Optimal results of the constrained buckling optimization problem for the �0 � hT0;T1i�3s plate
subjected to uniformend shortening and restrained transverse edges, comparison between surrogatemodel ~Fcr

and direct analysis Fcr of the optimized stacking sequence, and maximum value of the steering curvature

Parameter

a∕h � 10 a∕h � 167

LW-LE2 ESL-TE 1 ESL-TE 3 LW-LE2 ESL-TE 1 ESL-TE 3

hT0, h12.10, h9.57, h12.28, h20.81, h17.41, h18.93,
T1i�°� 23.83i 21.20i 24.01i 33.08i 29.45i 31.08i
~Fcr, N 8.08 ⋅ 106 9.14 ⋅ 106 8.51 ⋅ 106 3.05 ⋅ 103 3.05 ⋅ 103 3.15 ⋅ 103

Fcr, N 8.08 ⋅ 106 9.05 ⋅ 106 8.47 ⋅ 106 3.18 ⋅ 103 3.20 ⋅ 103 3.18 ⋅ 103
Error, % 0.07 1.07 0.49 −3.97 −4.84 −0.59
κmax, m−1 1.57 1.57 1.57 1.57 1.57 1.57

Fig. 8 Distributions of a) σxx and b) σzz for the different width-to-thickness ratios and LW-LE2 and ESL-TE3 structural theories. For both width-to-
thickness ratios, their respective LW-LE2 solution from Table 8 was used to calculate the stress distributions.

Fig. 9 Fiberpaths and first bucklingmodeof theLWoptimumsolution for theunconstrainedbuckling loadoptimizationproblem for thick (a, b) and thin
(c, d) laminates.

Article in Advance / RACIONERO SÁNCHEZ-MAJANO AND PAGANI 9

D
ow

nl
oa

de
d 

by
 1

30
.1

92
.2

5.
50

 o
n 

Ju
ly

 1
4,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
29

76
 



namely, a∕h � 10 and a∕h � 100, which represent the case of
thick and thin laminates, respectively.
The effect of the structural theory on the fundamental frequency

optimization results is analyzed for thick and thin laminates. The FE
mesh comprises 10 × 10 Q9 elements with different through-the-
thickness expansion functions and modeling approaches, namely,
ESL-TE 1, ESL-TE 3, and LW employing an LE2 discretization.
The mesh convergence analysis has been omitted for the sake of
brevity.
As in Sec. V.C, the optimization problem is solved by using a

surrogate model that mimics f1 over the design space. Therefore, f1
is approximated by ~f1; i.e., f1 ≈ ~f1 in Eq. (29). Likewise, 15 samples
were generated by means of LHS to construct the response surface.
Note that the same hT0; T1i pairs are used to build the surrogate for
the different structural theories and width-to-thickness ratio. All the
structural models used a truncated fourth-order response surface to
mimic the FE simulations. The LW response surface and its contour

plot are represented in Fig. 11. Concerning the GA parameters, 40
individuals were considered per generation, with a crossover proba-
bility equal to 80 and 5% mutation probability.
Table 10 reports the optimum design variables achieved with the

various structural theories and width-to-thickness ratios for the
unconstrained optimization problem. One can observe that LW and
ESL provide similar solutions for both thick (a∕h � 10) and thin
(a∕h � 100) laminates. In all of the obtained laminations, T1 has a
negative value as appreciated in Figs. 12a and 12c. In it, fibers are
pointing toward the x �� a∕2 edges with constantT1 orientation. In
these edges, the local elastic modulus [3] in the x directions is greater
than in themiddle of the plate. Conversely, the fibers point toward the
y �� b∕2 edges at x � 0, where they present the maximum trans-
verse stiffness. This fiber pattern is in agreement with the optimiza-
tion results for the fully clamped squared plate shown in Table 8 from
[24]. Moreover, agreement in the negative sign of T1 between the
proposed ESL solutions and those reported in [24] is found. That

Fig. 10 Fiber paths and first bucklingmode of the LWoptimum solution for the constrained buckling load optimization problem for thick (a, b) and thin
(c, d) laminates.
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a) LW-LE2 response surface b) LW-LE2 contour plot

Fig. 11 Response surface and contour plot of the fully clamped �0hT0;T1i;0h90� T0;90� T1i� plate with width-to-thickness ratio a∕h � 10. Red
crosses in (a) indicate the sample points used to construct the surrogate models.
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work [24] employed shell-like S4R Abaqus elements with similar
capabilities as the ESL-TE 1 model used in this paper.
The curvature-constrained fundamental frequency optimization

reads as

min
x

− f1�x� s:t: − 1∕rmin ≤ κ�x� ≤ 1∕rmin (30)

where κ�x� is calculated using Eq. (5). The optimization results are
summarized in Table 11. Changes with respect to the unconstrained
results are appreciated. Again, LW and ESL models provide similar
results for both thick and thin laminates. Themain difference is found
in the prediction of the fundamental frequency for thick laminates,
where ESL models lead to overestimated values of f1, especially

Fig. 12 Fiber paths and first vibrationmode of the LW optimum solution for the unconstrained fundamental frequency optimization problem for thick
(a, b) and thin (c, d) laminates.

Table 11 Optimal results of the constrained first fundamental frequency optimization problem for the

�0hT0;T1i;0h90� T0;90� T1i�s fully clamped plate, comparison between surrogate model ~f1 and direct
analysis f1 of the optimized stacking sequence, and maximum value of the steering curvature

Parameter

a∕h � 10 a∕h � 100

LW-LE2 ESL-TE 1 ESL-TE 3 LW-LE2 ESL-TE 1 ESL-TE 3

hT0, h−90, h−84.68, h−85.84, h−89.73, h−90, h−90,
T1i �°� −34.96i −31.67i −32.41i −34.58i −34.96i −34.95i
~f1, Hz 710.63 739.16 713.76 117.25 118.36 117.40

f1, Hz 717.03 751.76 720.08 118.01 118.96 118.07
Error, % −0.89 −1.67 −0.88 −0.64 −0.50 −0.57
κmax, m−1 1.57 1.57 1.57 1.57 1.57 1.57

Table 10 Optimal results of the unconstrained first fundamental frequency optimization problem for the
fully clamped �0hT0;T1i;0h90� T0;90� T1i�s plate, and comparison between surrogate model ~f1 and direct

analysis f1 of the optimized stacking sequence

Parameter

a∕h � 10 a∕h � 100

LW-LE2 ESL-TE 1 ESL-TE 3 LW-LE2 ESL-TE 1 ESL-TE 3

hT0, h−90, h−90, h−90, h−90, h−90, h−90,
T1i �°� −2.92i −2.30i −2.41i −1.15i −1.26i −1.15i
~f1, Hz 735.23 769.86 738.96 125.48 126.51 125.60

f1, Hz 737.43 774.47 741.71 123.21 124.19 123.24
Error, % −0.29 −0.59 −0.37 1.84 1.87 1.91
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Fig. 13 Fiber paths and first vibrationmode of the LWoptimum solution for the constrained fundamental frequency optimization problem for thick (a,
b) and thin (c, d) laminates.

Fig. 14 Histograms gathering the optimal design variables for the unconstrained and constrained buckling optimization problems for the different
width-to-thickness ratios a∕h and structural theories.
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ESL-TE 1. It is worth noting that the solutions to the constrained
problem lay on the constraint boundary, as occurred in the buckling
optimization problem. Finally, the fiber patterns of the constrained
LW solutions for thick and thin laminates are represented in Fig. 13
with their respective first vibration modes.

VI. Conclusions

This paper dealt with the unconstrained and constrained optimiza-
tionofVATplates.TheVSCstructuresweremodeled bymeansofESL
and LW CUF-based models. After the verification against literature
results of both the buckling load and fundamental frequency, an LHS

sampling strategy was used to generate the input that provided the
aforementioned magnitudes as an outcome of the FE simulations.
Surrogate models based on polynomial expressions were built using
the problem input–output and employed to mimic the buckling load
and fundamental frequency, which served as the objective function of
the optimization problem. GAwas utilized to provide the optimum
design variables.
According to the results shown in this paper, the following com-

ments can be made:
1) When optimizing the buckling load of VAT plates, ESL models

led to similar results in terms of buckling load and design variables as
those obtained with an LW theory in the case of thick and thin plates,

a) Buckling optimization b) Fundamental frequency optimization

Fig. 15 Absolute error between the optimal hT0;T1i obtained by ESL approaches with respect to those retrieved by an LW model. The radius of the
circles represents the relative error between the actual simulations using the ESL models with respect to LW.

Fig. 16 Histograms gathering the optimal design variables for the unconstrained and constrained fundamental frequency optimization problems for the
different width-to-thickness ratios a∕h and structural theories.
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for both unconstrained and constrained optimization problems, as
shown in Fig. 14. In this regard, ESL approaches should be preferable
when optimizing the buckling load of VAT plates since they need
lower DOF than its LW counterparts. Nevertheless, ESL will over-
estimate the buckling load since they lead to stiffer models. This is
displayed in Fig. 15a, where larger circles are appreciated for the ESL
models, especially ESL-TE 1.
2)When optimization of the fundamental frequency is faced, it has

been shown that ESL models lead to similar optimal solutions for
both unconstrained and constrained problems, as well as width-to-
thickness ratios. This is appreciated in Fig. 16. In the case of thin
plates, an ESL approach is advantageous compared to LW models
since lower DOF are needed to obtain similar values of both the
optimal design variables and fundamental frequency, as appreciated
in Fig. 15b. However, despite providing similar, if not identical,
optimal design variables, ESL-TE 1 models overestimate the fre-
quency by roughly 40 Hz due to the higher stiffness this model
leads to.
3) Surrogate models are helpful in solving optimization problems

because of the quick evaluation of the objective function/constraints
that they mimic. Moreover, if few design variables are considered, a
graphical representation of the response surfaces can help predicting
the region where the optimum might be located (see Figs. 7b,7d, and
11b). However, errors might be committed if not enough samples are
used tobuild such surrogates or if a lousysampling strategy is followed;
i.e., some regions of the design space are unexplored. Thismight repre-
sent an essential issue if failure constraints or uncertainty are consid-
ered in the optimization problem. In those cases, an optimization that
uses the results from the actual simulation might be preferred.
Future investigations will account for the manufacturing defects

that arise during the fabrication of VAT structures, such as gaps and
overlaps, and will face the minimization of stress concentration
factors in open-hole composite structures. In the latter case, LW
models might lead to different optimal solutions when compared
with ESL approaches. Because LW theories provide the kinematic
variables of each independent layer, they can predict the 3D stress
state of the laminated structure. Precisely, they can capture the shear
and normal transverse stresses guaranteeing the C0

z requirements.
ESL cannot predict the aforementioned stresses, nor guarantee theC0

z

requirements unless very high order is employed. In that case, the
increase in terms of DOF could be disadvantageous if compared to an
LWapproach.
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