
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluation and mitigation of faults affecting Swin Transformers / Gavarini, Gabriele; Ruospo, Annachiara; Sanchez,
Ernesto. - ELETTRONICO. - (2023), pp. 1-7. (Intervento presentato al  convegno 29th IEEE International Symposium on
On-Line Testing and Robust System Design (IOLTS 2023) tenutosi a Chania,Crete (Greece) nel July 3rd - 5th, 2023)
[10.1109/IOLTS59296.2023.10224882].

Original

Evaluation and mitigation of faults affecting Swin Transformers

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IOLTS59296.2023.10224882

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2980263 since: 2023-07-13T12:26:35Z

IEEE



Evaluation and mitigation of faults affecting
Swin Transformers

G. Gavarini, A. Ruospo, E. Sanchez
Politecnico di Torino, DAUIN, Torino, Italy

Abstract—In the last decade, a huge effort has been spent
on assessing the reliability of Convolutional Neural networks
(CNNs), probably the most popular architecture for image clas-
sification tasks. However, modern Deep Neural Networks (DNNs)
are rapidly overtaking CNNs, as state-of-the-art results for
many tasks are achieved with the Transformers, innovative DNN
models. Transformers’ architecture introduces the concept of
attention as an alternative to the classical convolution operation.
The aim of this work is to propose a reliability analysis of
the Swin Transformer, one of the most accurate DNN used for
Image Classification, that greatly improves the results obtained
by traditional CNNs. In particular, this paper shows that, similar
to CNNs, Transformers are susceptible to single faults affecting
weights and neurons. Furthermore, it is shown how output
ranging, a well-known technique to reduce the impact of a fault
in CNNs, is not as effective for the Transformer. The alternative
solution proposed by this work is to introduce a ranging not only
on the output, but also on the input and on the weight of the fully
connected layers. Results show that, on average, the number of
critical faults (i.e., that modify the network’s output) affecting
neurons decreases by a factor of 1.91, while for faults affecting
the network’s weights this value decreases by a factor of 1 · 105.

Index Terms—Deep Neural Network, Reliability, Fault Injec-
tion, Transformer

I. INTRODUCTION

Nowadays, Deep Neural Networks (DNNs) are one of the most
used algorithms to solve many different tasks, ranging from Image
classification to Natural Language Processing. Due to their effec-
tiveness, they are used in multiple fields: as generative language
models, in robotics and even in finance. Moreover, thanks to the
benefit they provide, they are often employed in safety-critical
environments. However, while DNNs were initially believed to
be inherently fault-tolerant, due to their distributed and parallel
nature, multiple studies remark how this is not the case [1], [2].

Until now, the main focus of multiple research works has
been to understand how faults affect and propagate in the most
commonly used DNN models: Convolutional Neural Networks
(CNNs). While some studies have focused on hardware-level fault
simulations and remedies [3], others have proposed more high-
level solutions [1], [4], [5]. A software-level approach, while
typically unintrusive and easy to apply, can be effective to assess
the resilience of DNN models to hardware faults. In particular,
multiple solutions trade a tolerable loss in accuracy for a more
fault resistant architecture. For example, in [4], the matrix multi-
plication used to compute the results of a convolutional layer are
strengthened by means of a checksum implementing Algorithm-
Based Fault Tolerance (ABFT). A different solution, presented in
[5], [6], introduces a range restriction on the non-linear activation

function: when the data is represented as 32 bit floating-point val-
ues, this solution proves to be extremely effective and inexpensive.

However, while CNNs are starting to become more and more
fault-tolerant, they are falling behind in terms of effectiveness: the
trend in DNNs is rapidly shifting towards Transformers [7]. This
new kind of architecture has been proved to be more successful
than CNNs in solving different tasks, thanks to the newly intro-
duced attention mechanism. Attention is an innovative concept
that allows to efficiently deal with sequences of elements, without
the drawbacks of previous architecture, such as the Long-Short
Term Memory (LSTM) networks. While Transformers have been
initially employed in machine translation, they have been quickly
and successfully adopted in other tasks such Image Classification,
Instance and Semantic Segmentation [8].

The reliability of this new type of DNN architectures still need
to be properly addressed. To the best of authors’ knowledge, very
few research works target Transformers’ reliability. For example,
in [9], the authors study the reliability of a selected group of
Transformer neural networks, proposing to apply a revised version
of some of the techniques used to mitigate faults in CNNs. In
particular, they propose to use ABFT to strengthen linear opera-
tions and range-restriction for non-linear computations. This work
experimentally demonstrates that, similar to what was found in the
case of DNNs, some intrinsic mitigation is also found in the case
of Transformers. However, this is far from a compressive analysis.
Therefore, it is necessary to further investigate the applicability of
solutions originally developed for CNNs to Transformers.

This research work proposes a novel analysis of Swin Trans-
former, a state-of-the-art architecture capable of reaching one the
best accuracy on the ImageNet dataset while being trained only
on publicly available data. The first objective of this paper is to
explore Transformers from a reliability point of view, highlighting
their differences and similarities with CNNs. Once this has been
addressed, this work proposes a methodology capable of dealing
with some of the weakness of Transformers. In particular, taking
advantage of both its similarity, and its difference, with respect to
a convolutional layer, this paper proposes a technique to safely
estimate the output of a neuron of the network in presence of
a fault, by ignoring out-of-range inputs and weights (i.e., the
network parameters) prior to the computation of the output.

The reminder of the paper is organized as follows: Section II
provides a brief background on Transformer Neural Networks and
the Swin Transformer, as well as some state-of the art solution
to improve the fault reliability of CNNs and Transformers. Next,
Section III describes the analysis performed on the network, as
well as the techniques used to have a more educate estimate of the
neuron outputs. Section V reports on the experimental results. To



conclude, Section VI summarizes the contributions of the paper
and describes future directions.

II. BACKGROUND AND RELATED WORKS

To address the concerns relative to the fault tolerance of Trans-
formers, this work first presents their architecture, juxtaposing it
to the one of CNNs used for Image Classification. Then, a brief
overview on some of the state-of-the-art fault analysis and mitiga-
tion techniques for both CNNs and Transformers is provided.

A. Transformers
Transformer Neural Networks were originally developed for

sequence modelling and translation tasks. The advantage of this
kind of networks is that they are able to efficiently work with
sequences and to introduce a relation between multiple elements
thanks to the attention mechanism. The self-attention mechanism
(first proposed in [7]) can be thought as a function that correlates
a query Q and a key-value K,V pair to an output, that mea-
sures how relevant the pair is to the query. As Q,K, V can be
expressed as vectors, the output value can be computed via matrix
multiplications. Fig. 1 shows this implementation. Additionally,
[7] proposes to parallelize the attention mechanism. By computing
multiple separate attention outputs in parallel, each representing a
head, it is possible to obtain a multi-head self-attention mechanism
that increase the processing performances, as illustrated in Fig. 1.

In order to apply the attention mechanism to Image Classifi-
cation, it is necessary to formulate this problem as a sequence.
In particular, the solution proposed by Swin Transformer [8] is to
subdivide the input image into multiple non-overlapping windows
(or patches) and to encode the pixels present in each window
as a vector. The encoded vector is then fed to a multi-head
attention mechanism (detailed in Fig. 2) and the output vectors
of neighbouring patches are merged together. The ensemble of the
attention mechanism and of the patch merging constitutes the basic
block of the architecture. The Swin Transformer is composed of
multiple consecutive blocks. This subdivision allows a hierarchical
partitioning of the image, similarly to what happens in a canonical
CNN structure. For this reason, [8] proposes the Swin Transformer
also as backbone for networks employed in different tasks, such as
Instance and Semantic Segmentation.

B. Fault Analysis on CNNs
So far, CNNs have been the main target of reliability investiga-

tions targeting the reliability of DNNs, especially at the software

Fig. 1: The attention mechanism (left) and its multi-head
extension (right) as presented in [7]

Fig. 2: The Swin Transformer Block

level. Even if a convolutional layer offers a great deal of parameter
over-provisioning and redundancy, it is vulnerable to faults, espe-
cially if the parameters are represented as 32-bit floating point [2].
Since a fault in the most significant bit of the exponent produces
extremely large values, out of their typical range, many have noted
that a good solution is to take advantage of the non-linear ReLU
operation, adding an upper limit to the propagated value [5], [10].
This extremely low-cost solution is capable of greatly reducing the
number of faults that propagate to the network’s output, at the cost
of a reduced network accuracy.

This latter solution is not effective against faults that do not
produce significant variations in elements of the network. For this
reason, [11] proposes to use Open-Set Recognition, typically used
for recognizing out-of-distributions images, to identify those faults
that change the network prediction and do not cause out-of-range
values. In particular, by computing some metrics on the output of
the network, this work is able to identify the majority of faults
affecting the network. Also in this case, however, the accuracy of
the network is affected.

A different solution, that that does not apply only to faults
affecting the most critical bit of the exponent in 32-bit floating-
point networks, has been proposed in [4]. In this paper, the au-
thors propose to use well-known Algorithm-Based Fault Tolerance
(ABFT) techniques to strengthen the matrix operations used to
implement the convolution operations. The core idea of ABFT is
to identify and correct errors in matrix multiplications by adding
a checksum. However, since this can significantly increase the
computational costs, they propose to replace one column and one
row of the original matrices with a checksum. Similarly to the
constrained ReLU solution, however, the ABFT proposed in [4]
has an impact on the network accuracy, albeit in an acceptable
manner.

C. Fault Analysis on Transformers

As Transformer-based architectures are much more recent than
CNNs, there have been fewer research studies investigating the
fault resilience of these models. In particular, recent works have
focused on understanding how to extend fault mitigation mecha-
nisms already present on different DNNs architecture to transform-
ers. The work presented in [9] studies how multiple bit-flips on
certain layers’ output may affect the performance of the network.
Thanks to this, they are able to assign a vulnerability factor to
each layer. Furthermore, they propose to increase the reliability
of the network by using well-known techniques for CNNs, such
as range restriction for non-linearities [5] and algorithm-based
fault tolerance (ABFT) [4] for linear computations. As this latter
method can be quite expensive, they propose to apply it only
to the most vulnerable layers of the network that have a higher
vulnerability factor.



Block Analysis Transformer Analysis

Fault Model patch embed layer 0 layer 1 layer 2 layer 3 head attn.qkv attn.porj mlp.fc1 mlp.fc2

Stuck-at Parameters 6,620 6,784 6,782 6,826 6,778 6,776 6,760 6,756 6,764 6,764
Bit-flip Neurons 6,468 6,762 6,769 6,769 6,768 5,584 6,768 6,766 6,769 6,769

TABLE I: Number of faults injected in each layer in order to achieve an error margin e = 1% and a confidence level of 90%.

III. PROPOSED SOLUTION

This work proposes an analysis of a state-of-the-art Transformer
DNN used for Image Classification: Swin Transformer [8]. Simi-
larly to other DNNs, this particular architecture is mainly defined
by a collection of weights (i.e., the network parameters), grouped
in layers and in blocks of layers. The output of each layer is a
multidimensional tensor, where each element is called a neuron.
The network produces as output an n-dimensional score vector,
where n is the number of classes. The j th element of this vector
represents the probability that the input image belongs to class j.

The first objective of this work is to propose an analysis on how
different blocks of layers behave in presence of faults, to under-
stand whether there is a link between the depth of the network
and its fault resilience. After that, this work focuses on studying
the transformer block (Fig. 2) in presence of faults, comparing it
to the convolution operation. Having a clear picture on the fault
resilience of the Swin Transformer, this work proposes a solution
to increase the resistance of the network to faults.

As discussed in Section II-B, an inexpensive solution that
greatly decreases the impact of critical faults is to put an upper
bound on the ReLU activation function [5]. While this has also
been done to improve Transformers reliability [9], the advantages
of this technique are not clear, mainly due to the lack of activation
functions between Fully Connected (FC) layers. For this reason,
this paper proposes to apply a non-linear filtering operation to all
the FC layers of the network. The core idea is to set out-of-bound
inputs and weights to zeros, while clipping out-of-bound output
values. The idea of replacing faulty values with zeros has also been
explored by [12], when dealing with segmentation CNNs.

However, in an FC layer, imposing a range restriction is not
as effective as in a Convolutional layer: the lack of a convolution
means that the faulty value of a neuron is not mitigated by its
neighbours’ values. As such, differently from what previously
proposed, values that are out-of-bound (i.e., that are outside the
imposed range) should not be simply clipped, rather an effort
should be made to reduce the faulty value impact on the network
computations. In this optic, the proposed solution details a more
refined range restriction technique to obtain a more exact estimate
of the neuron output value. In particular, the range restriction
technique is applied to the inputs, outputs and weights of Fully
Connected layers, as described in the following sections.

A. Weight Range Restriction

Since in fully connected layers a weight is used only to compute
the value of a single output neuron, a faulty out-of-bound weight
can be replaced with a 0, preventing it from contributing to the
network output. Given an FC layer with N input features and M
output features, the value of an output neuron on can be computed
as:

om =
N∑

n=o

in · wn,m (1)

Assuming that a fault affect weight wṅ,m makes it go out of
bound, a more accurate estimate of the golden output om can be
obtained by voiding its contribution, setting wṅ,mto0. As such, we
can rewrite (1) as:

om =
N∑

n=o
n ̸=ṅ

in · wn,m (2)

The reader should note that (1) and (2) are equivalent in absence
of faults, since the weights values are known at inference time.
This means that this weight range restriction technique does not
affect the accuracy of the network in absence of faults.

B. Input Range Restriction

A similar reasoning can be extended to the input values.
However, differently from the weight: (i) a single input neuron
contributes to multiple outputs and (ii) modifying an out-of-
bound input can change the network output in absence of faults.
Therefore, while an out-of-bound input neuron has a bigger impact
on the network, changing all the layer’s output neurons, it can be
treaded the same as a weight out of bound and set to 0.

For this reason, if an input neuron in is out-of-bound, (2) can be
extended to:

om =
N∑

n=o
n ̸=n,ṅ

in · wn,m (3)

C. Output Range Restriction

As a last measure, a range restriction is applied to the output
of the layer. This is necessary, as the value of the computed with
the weight and input restriction might still be over-estimating the
actual value of the neuron. For this, we implement a solution that
takes advantage of a linearized version of the hyperbolic tangent,
the hard hyperbolic tangent function htanh:

htanh(x, xU , xL) =


x if x > xL and x < xU

xU if x ≥ xU

xL if x ≤ xL

(4)

In particular, in the context of output filtering, this function can
be applied in conjunction with (3):

om = htanh(
N∑

n=o
n̸=n,ṅ

in · wn,m, oU , oL) (5)



(a) SDC-1 s@ Parameters (b) SDC-1 bit-flip neurons (c) SDC-1% s@ Parameters (d) SDC-1% bit-flip neurons

Fig. 3: Block Reliability of the different blocks of Swin Transformer for stuck-at faults in the network parameters and bit-flip
in the output neurons. The graphs also report the observed error margin deriving from the statistical observation.

Where oU and oL are the upper and lower bound. The reader
should note that, compared with traditional range restriction tech-
niques, the proposed methodology provides a better estimate of the
output of a neuron. The objective of restricting weights and inputs
is not to protect their value, but rather to provide a more accurate
estimate of the output of a neuron. This is possible because, differ-
ently from a traditional CNN, the core layer of the Transformer
is a linear layer. This means that, it is possible to isolate the
contribution of every single weight and input. Therefore, when a
weight-input pair is deemed to be harmful (i.e., out of range), its
contribution can be nullified by setting its value to 0.

D. Profiling

For the input and output restriction processes, it is important to
individuate, at run time, the correct upper and lower bounds for
each layer. This can be easily done with a profiling phase, where
the intermediate layer results are scanned to individuate the min-
imum and the maximum values of each input and output neuron.
To have an unbiased estimate of these values, it is important to
have a large dataset to be processed, disjoint from the one used to
evaluate the range restriction method effectiveness.

The reader should note that bound values can be either specific
for a single element or relative to multiple elements. For example,
it is possible to have an output bound that is the same for all the
neurons of a layer, while having an input bound that is different
for each neuron.

IV. CASE STUDY

As previously discussed, the aim of this work is to study how
the Swin Transformer reacts to faults and how to improve its
resilience. There are multiple variants of this network, character-
ized by a different number of parameters. Since all the variants
have all the same identical structure, this work studies the Tiny
variant, that has the lower number of parameters. As the target
is to study the architecture and the impact of the Transformers in
terms of network reliability, studying a larger version is more com-
putationally expensive and does not offer additional insights. Tiny
Swin Transformer is a Transformer Neural Network composed of
29 · 106 parameters that reaches an ImageNet top-1 accuracy of
81.3%. The network used in this paper is pre-trained as described
in [8].

The fault injection process has been carried out using a fault
injection tool called SCI-FI [13], a PyTorch-based software fault
injector that speeds up the injection process by implementing two
techniques: the Fault Dropping and the Delayed Start. The first
consists in dropping faults that have no impact after the layer they
are injected in, while the second allows the inference to start from
the computation of the layer affected by the fault, avoiding the
computation of previous layers.

The dataset used for the reliability analysis and for the fault
mitigation is the ImageNet validation set, composed of 50, 000
images, 50 for each of the 1, 000 classes. To avoid adding any
bias to evaluation of the fault mitigation efficacy, this dataset is
further divided into two equally sized subsets: the first split is
used to evaluate the reliability of the network and of the proposed
mitigation technique, while the second has been used for the
profiling described in Section III-D.

To have a more comprehensive view of the whole process, this
paper studies the behaviour of the network under two well-known
single fault models: stuck-at faults in the network parameters and
bit-flip in the network output neurons. It is true that memories
can be protected with error correction codes (ECC) mechanisms,
but not all devices come with this extra circuitry, especially low-
power and low-cost AI-oriented edge devices. Then, this justifies
the adoption of the above-mentioned fault models.

A fault consists in a random bit of the weight or of the output
being set to a fixed value (stuck-at) or to its inverse (bit-flip). Due
to the dimensions of the targeted neural network, an exhaustive
fault injection campaign would have been too expensive to be
performed. For this reason, this work studies Swin Transformer
by using the statistical approach described in [14]. In particular,
instead of injecting all the possible N faults, only a subpopulation
of n faults is injected in order to achieve a target error rate e = 1%
with a target confidence of 90% on the observed metric. For the
reliability analysis, since the aim is to perform a block-wise study,
this sampling process is done at a block level. This means that the
population N is relative to all the faults injectable in that block,
and that for each block a different sample n is chosen. Further
details on the sizing of the fault injection campaigns are reported
in Table I.



(a) SDC-1 s@ Parameters (b) SDC-1 bit-flip neurons (c) SDC-1% s@ Parameters (d) SDC-1% bit-flip neurons

Fig. 4: Reliability of the different component of Swin Transformer for stuck-at faults in the network parameters and bit-flip in
the output neurons. The graphs also report the observed error margin deriving from the statistical observation.

V. EXPERIMENTAL RESULTS

The analysis of Swin Transformer is split in three parts. First, an
analysis on how different blocks behave when affected by faults
is presented, to have an overview on the fault resilience of the
network. Then, the analysis moves to a deeper level, focusing on
the fault resilience of the various components of the Transformer
blocks. Finally, this section discusses the effectiveness of the
proposed range restriction mechanism in reducing the impact of
faults.

A. Block Reliability

The first objective is to determine how resilient are the different
blocks of the network. The main reason for this investigation
is to locate the most critical high-level component of the Swin
Transformer architecture. Additionally, the experiments discussed
in this section aim to show the masking ability of each component.
To investigate the criticality, we measure the percentage of faults
that change the golden network prediction, often referred to as
Silent Data Corruption 1 (SDC-1). At the same time, to evaluate
the masking ability of each layer we measure the SDC-1%, which
measures how many faults change the score of more than 1% of the
golden value. This means that a layer with an SDC-1% of 0% has
a near perfect masking ability, as all the faults change the score
associated with the predicted class by less than 1%. The reader
should note that, while an SDC-1 fault is not necessarily also an
SDC-1%, in our experiments 99.33% of all the SDC-1 faults are
also SDC-1%.

Tiny Swin Tensor is composed of a patch-embedding layer
(patch_embed) followed by 4 transformers blocks (layers_0
trough layers_3); the output of the last block is finally pro-
cessed by an FC layer (head). The complete results of the FI
campaigns are shown in Fig. 3. It is interesting to observe from
Fig. 3a and Fig. 3b that the patch-embedding block is more
susceptible than the other blocks to faults in the output neurons.
This is probably due to the fact that the patch-embedding block
is the only one of the network that contains a convolutional layer.
Another interesting observation that can be made is that all the
blocks react similarly to faults in the parameters and faults in
the neurons, beside the patch-embedding. Yet again, this can be
explained by the presence of the convolutional operation. Finally,
it is also possible to observe how (Fig. 3c and Fig. 3d) the SDC-
1% rate for every block is similar to the SDC-1 rate. For example,

in layer_0, for the parameters fault model, we can observe that
only 2.58% of faults are SDC-1 and 3.15% of faults are SDC-
1%. This means that: (i) more than 96% of faults have a negligible
impact and (ii) the majority of the faults that have a significant
impact (i.e., are SDC-1%) also change the network prediction.

B. Transformer Reliability

As illustrated in Fig. 2, the Swin Transformer block is composed
of 2 main parts, interleaved by normalization layers. In particular,
the first part is devoted to the computation of the attention (attn)
and is formed by two FC layers and a Softmax activation function.
The second part is a Multi-Layer Perceptron (MLP) composed of
two fully connected layers and a GeLU activation layer. For each
part (attn and MLP), it is also present a residual connection that
concatenates their outputs with their inputs.

The results of the fault injections in this Transformer are re-
ported in Fig. 4. As observed for the Block Analysis (Section
V-A), the number of SDC-1 and SDC-1% are very similar for each
component of the Transformer, hinting that most faults are either
SDC-1 or they have a negligible effect on the output.

Concerning the faults affecting the parameters (Fig. 4a), it
does not emerge a clear pattern of criticality: the first layer
(attn.qkv) seems to be the least susceptible of all, while the
following projection layer is the most susceptible. The reason
why attn.qkv is the least susceptible to faults on the weight
is because extremely high output and, in general, out-of-bound
values are masked by the Softmax function, that normalizes values
in the [0, 1] range.

From Fig. 4b the reader can observe how deeper layers have
a higher resilience to faults. However, from Fig. 4d it appears
clear that all layers have a similar percentage of SDC-1% faults.
This suggests that deeper layers in the Transformer are better at
masking faults. The higher percentage of SDC-1 faults measured
for the attn.qkv block when it is affected by neurons faults,
compared to when it is affected by parameters faults, is due to the
fact that a neuron fault affecting the Softmax layer is classified as
affecting the attn.qkv block.

C. Fault Mitigation

For the proposed fault mitigation techniques, we first executed
a profiling inference run to get: (i) the maximum and minimum
value of each weight tensor of the network and, (ii) the maximum



Layer
Parameters

stuck-at
Neurons
bit-flip Overhead

[%]
Unprotected

SDC-1
[%]

Protected
SDC-1

[%]
Improv.

Unprotected
SDC-1

[%]

Protected
SDC-1

[%]
Improv.

patch.embed 3.08 9 · 10−4 x3 · 103 5.24 2.76 x1.89 -
layers 0 2.58 2 · 10−5 x1 · 105 1.89 0.86 x2.19 -
layers 1 2.40 5 · 10−6 x5 · 105 1.80 0.80 x2.25 -
layers 2 2.71 2 · 10−6 x1 · 106 1.37 0.83 x1.65 -
layers 3 1.17 0 - 0.78 0.41 x1.90 -
head 1.22 0 - 1.54 1.52 x1.01 -
network-wise 2.49 2 · 10−5 x1 · 105 1.73 0.87 x1.99 68.61

TABLE II: Layer-by-layer improvements provided by the presented fault mitigation technique with the added overhead.

and minimum value of each input neuron for each layer and (iii)
the maximum and minimum value of each output neurons for each
layer. This allows us to correctly apply (5) on the first split of
validation dataset, as described in Section IV.

To apply the proposed technique to all the linear layers of the
network, (5) has also been applied to the convolutional layer inside
the patch-embedding layer. As shown in Table II, different blocks
react differently to the proposed mitigation technique. For what
concerns stuck-at faults on the network parameters, the efficacy of
the method improves the deeper the block is: faults are completely
masked starting from the last Transformer block (layers_3). In
general, the effect of critical faults is diminished by several orders
of magnitude: among all the faults injected in the network, only
the 2 · 10−5% changes the protected network output, against the
2.49% of faults in the unprotected network. Overall, we observe
an improvement of a factor of 1 · 105.

For what concern the output neuron fault model, the effect of the
proposed technique is more modest, albeit still significant. Con-
trarily from what observed for the stuck-at faults in the network
parameters, there is not a direct correlation between the benefits
provided by the range restriction and the depth of the model.
Curiously, we observe how the proposed fault mitigation technique
does not increase the resiliency of the last layer. This is, however,
to be expected since the output in this layer is the final score of
the network, hence a change in this layer necessarily changes the
final score. Overall, the number of critical faults is halved, as the
improvement factor offered by the proposed technique is of 1.99.

The main drawback of this technique is the overhead added by
the range restriction. While we consider the profiling cost to be
negligible, as it simply requires an inference over the first split of
the dataset, the total overhead added by the proposed technique,
in terms of additional time required for a network inference, is of
68.61%. However, the reader should note that the reason for such
a high cost can be ascribed to the high-level implementation of
the range restriction: the result shown in this section are obtained
by implementing (5) at PyTorch level. Better results, in terms of
added computational time, can be obtained with a low-level CUDA
specific implementation. Furthermore, it is possible to change the
impact of the proposed methodology by changing the granularity
at which the range restriction is applied. In fact, applying range
restriction individually to each neuron is much more expensive
than applying a layer-wise range restriction. Therefore, the granu-
larity at which the proposed solution is applied acts as a trade-off
between the efficacy of the method and its computational cost.

The complete results of the hardening techniques are reported
in Table II. Using the proposed technique, the accuracy of the
Swin Transformer on the second split of the validation dataset
is reduced from 86.09% to 85.21%. We believe that this can be
viewed as an acceptable result in terms of accuracy loss, as it is
outweighed by a substantial increase in fault tolerance. The reader
should note that, however, by multiplying the maximum bound
value for a coefficient α > 1 and the minimum for a coefficient
β < 1 it is possible to reduce the accuracy loss. Clearly, using
these parameters negatively affects the efficacy of the ranging
technique.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The rapid advancement in how DNNs are implemented requires
new analysis and new fault mitigation techniques. In particular, as
Transformers are rapidly replacing CNNs as the optimal choice
for many tasks, an assessment of their reliability is needed. While
fault mitigation techniques developed for CNNs can be extended to
Transformer, ad-hoc solutions can provide further improvements.
For these reasons, this work proposes an analysis of Swin Trans-
former, a state-of-the-art Transformer-based DNN used for Image
Classification. Additionally, this work proposes to apply range
restriction techniques as a heuristic to obtain a reliable estimate
of neuron outputs. While this technique proves to be effective for
different kinds of fault models, its cost is not negligible. Therefore,
future works will include an improvement of its computational
cost, by means of a specifically designed CUDA kernel. Further-
more, as this approach can also be applied to convolutional layers,
a further investigation will be on the application of the proposed
mitigation to canonical and known CNN architectures. A final
direction worth exploring is the identification of the most critical
neurons in Transformer DNNs: since putting these neurons to 0
could be counter-productive, a more specific solution should be
devised.

ACKNOWLEDGMENT

This study was carried out within the FAIR - Future Artificial
Intelligence Research and received funding from the European
Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA
E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2,
INVESTIMENTO 1.3 – D.D. 1555 11/10/2022, PE00000013).
This manuscript reflects only the authors’ views and opinions,
neither the European Union nor the European Commission can be
considered responsible for them.



REFERENCES

[1] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review,” IEEE Access, vol. 5, pp. 17 322–17 341, 2017.

[2] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability analysis
of a deep neural network,” in 2019 IEEE Latin American Test Symposium
(LATS), 2019, pp. 1–6.

[3] J. E. R. Condia, J.-D. Guerrero-Balaguera, F. F. Dos Santos, M. S.
Reorda, and P. Rech, “A multi-level approach to evaluate the impact of
gpu permanent faults on cnn’s reliability,” in 2022 IEEE International
Test Conference (ITC), 2022, pp. 278–287.

[4] F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2019.

[5] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector
for deep neural networks through range restriction,” in 2021
51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2021, pp. 1–13. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/DSN48987.2021.00018

[6] L.-H. Hoang, M. A. Hanif, and M. Shafique, “Ft-clipact: Resilience
analysis of deep neural networks and improving their fault tolerance
using clipped activation,” in Proceedings of the 23rd Conference on
Design, Automation and Test in Europe, ser. DATE ’20. San Jose, CA,
USA: EDA Consortium, 2020, p. 1241–1246.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” CoRR, vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[8] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted
windows,” CoRR, vol. abs/2103.14030, 2021. [Online]. Available:
https://arxiv.org/abs/2103.14030

[9] X. Xue, C. Liu, Y. Wang, B. Yang, T. Luo, L. Zhang, H. Li, and X. Li,
“Reliability analysis of vision transformers,” 2023. [Online]. Available:
https://arxiv.org/abs/2302.10468

[10] F. Angione et al., “Test, reliability and functional safety trends for
automotive system-on-chip,” in 2022 IEEE European Test Symposium
(ETS), 2022, pp. 1–10.

[11] G. Gavarini, D. Stucchi, A. Ruospo, G. Boracchi, and E. Sanchez,
“Open-set recognition: an inexpensive strategy to increase dnn relia-
bility,” in 2022 IEEE 28th International Symposium on On-Line Testing
and Robust System Design (IOLTS), 2022, pp. 1–7.

[12] S. BurelT, A. EvansT, and L. Anghel, “Improving dnn fault tolerance
in semantic segmentation applications,” in 2022 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2022, pp. 1–6.

[13] G. Gavarini, A. Ruospo, and E. Sanchez, “Sci-fi: a smart, accurate and
unintrusive fault-injector for deep neural networks,” in 2023 European
Test Symposium, 2023, In press.

[14] A. Ruospo, G. Gavarini, C. D. Sio, J. Guerrero, L. Sterpone, M. S.
Reorda, E. Sanchez, R. Mariani, J. Aribido, and J. Athavale, “Assessing
convolutional neural networks reliability through statistical fault injec-
tions,” in 2023 Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2023, [In press].


