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An Active Learning Activity for the Construction of a Finite-Field Slide
Rule for Undergraduate Students

Marco Abrate

Politecnico di Torino, Italy

ABSTRACT: Math manipulatives and physical math activities offer numerous benefits in the learning
process in all educational levels: they provide concrete representations of abstract concepts, thus helping
more students to understand them, and they are an opportunity for students to explore and test their
understanding of mathematical concepts. Moreover, in active learning activities conducted with tangible
objects, students are physically engaged in the lessons, and are given a fun way to practice their math
skills, which contributes with retention and positive feeling.
In this article, an active teaching activity aimed at first-year college students is presented, designed to
deepen the understanding of finite fields through the construction of a slide rule. The tool presented is
easy to make and can be used effectively in a short time. The activity described was carried out as part of
a larger workshop on modular arithmetic and the basics of cryptography offered to first-year engineering
students at Politecnico di Torino.
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Introduction

Students who are beginning a college career may encounter some difficulties due to some new topics or
to the rigor of higher education programs, and often feel unprepared for the academic demand. Without
an adequate institutional support, these difficulties may cause a lack of academic achievement that may
play a role in the decision to drop out studies [1, 2].
To encourage undergraduate students to continue their studies and to increase their performance in STEM
education, some active learning activities can be implemented, so that students become protagonists of
the teaching-learning process, responsible for their own educational process, in line with the constructivist
paradigm [3, 4, 5, 6, 7]: students can find greater motivation and to have a more confident approach to
subjects that prove particularly challenging in the early years of college. Active learning is a broad
concept, activating teaching methods and teacher-led learning processes [8, 9, 10]. The use of active
learning activities, and in particular laboratories employing the use of concrete objects or implementing
engaging learning contexts that foster positive feelings toward particular subjects, is often seen as a
solution suitable mainly for primary and middle school students [11]. However, the novelty of some
topics and some ways of dealing with concepts already seen makes university students novices in particular
contexts, and their vulnerability allows them to be compared to younger students tackling certain topics
for the first time [12, 13, 14].
The activity we are proposing concerns an algebra workshop designed for undergraduate Engineering
student of the first year, and is part of a larger project involving the activation of several laboratories
offered to first- and second-year students at Politecnico di Torino, called La.M.Po. (Laboratorio di
Matematica del Politecnico di Torino). Our laboratories aim to integrate active learning into traditional
Calculus and Linear Algebra courses [15] and are designed to work with small groups of students, who are
involved in the activities through the use of concrete objects and a focus on scientific applications. Our
activity covers an introduction to modular calculus, and is part of an preparatory lab on cryptography in
which the basics of modular calculus in finite fields and some public-key and private-key cryptographic
techniques are presented.
In this paper we will focus our attention on a particular activity in the lab that aims to reflect on the
role of prime numbers and finite fields in cryptography and to the construction of some finite fields;
since computation within finite fields, especially with regard to the product, is particularly abstract and
difficult to accomplish, especially for students who are approaching this type of algebraic structure for
the first time, a slide rule, analogous to those introduced for real numbers in the seventeenth century, is
constructed in our activity. This tool allows students to quickly perform calculations within finite fields,
observing the deep structure underlying these kinds of calculations. Our main objective is to stimulate
students to approach the study of algebra, particularly that of finite groups and fields, through the
construction of a computational tool capable of implementing the product in multiplicative cyclic groups.
Through this tool, students have the opportunity to handle an object that allows them to visualize in a
concrete way some concepts that are often perceived as abstract. Moreover, they can increase the level of
confidence in algebra through experience, allowing a deeper understanding as well as the development of
an appropriate language property. The procedure that we will follow can be a useful teaching tool, usable
at any school level if properly adapted to the target audience, to explain the importance of cyclic groups
and to motivate the attention that texts place on finding a generator and classifying algebraic structures
according to whether or not a single generator can be identified. Furthermore, in the construction the
student has the opportunity to try his hand at finding a primitive root of a group, touching on the
difficulties encountered in its determination and, at the same time, discovering the great advantages that
can result in terms of computational performance. In addition, the realized slide rule makes it possible
to perform directly and efficiently some calculations that often discourage students approaching modular
arithmetic or the theory of finite fields and their extensions for the first time.

1 Context

Our activity has been proposed to 75 first-year students, divided into three classes of 25 students each.
Each class worked for three hours: they participated to an introductory cryptography lab, where they
learned the rudiments of modular calculus. Within the laboratory, rest classes modulo n were introduced
and modular calculus in finite rings and fields of the type Zn was experimented (in special cases where the
number of elements was small enough to operate with elementary tools); then the problem of finding the
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generators of the multiplicative group of the finite ring was presented, and the possibility of determining
a single generator in some special cases, and the advantage of operating with cyclic multiplicative groups
was shown. Within this laboratory, thanks to the employment of a slide rule made directly by the students,
they were able to acquire a certain manual dexterity in performing calculations even of a certain difficulty
in a short time, operating quickly within algebraic structures without the aid of electronic devices, also
considering that the most commonly used pocket calculators do not allow modular calculations. Moreover,
they can visualize the deeper meaning of the operations they were performing, something made impossible
when operating with modular arithmetic by means of a computer.

2 Mathematical background and notations

Here we will see an overview of the principles by which slide rules were invented, how they work, and
the algebraic operations (on R) allowed by exploiting the properties of real logarithms (product, inverse
calculus, division, calculus of proportions), and we will see how similar principles can be used for imple-
menting analogous operations in cyclic multiplicative groups. For simplicity, we will refer specifically to
multiplicative groups of finite field. However, the same procedure that will be described below can be
replicated for constructing rulers to operate on any cyclic group.

2.1 The mathematics behind the slide rule

At the turn of the 16th and 17th centuries, the study of the properties of powers and geometric progres-
sions brought out the possibility of performing multiplications by transforming them into sums: these
studies led to the introduction of logarithms, defined by John Napier in 1614 and later studied by Napier,
Briggs, Gunter, and Oughtred among others. In particular, Gunter, in 1620, was the first to create the
slide rule, a tool that allowed various calculations, including multiplication and division, to be performed
by exploiting precisely the properties of the newly introduced logarithms. The use of the slide rule, which
initially remained limited to a small circle of technicians and scientists, spread widely in the 19th and
20th centuries, until the introduction of faster and more accurate electronic calculators replaced it for
good.
The functioning of the slide rule used to perform multiplication and division (and some other derived
operations, such as powers, inverse calculation, and others), is based on the possibility of representing
any positive real number as an image of a real number through the exponential function (in any a base)
and being able to use the groups isomorphism

a· : (R,+) −→ (R+, ·)
x 7−→ ax

to be able to perform the product in (R+, ·) by means of a sum in (R,+) by exploiting the property
whereby

ax1+x2 = ax1 · ax2 .

With the slide rule, it is possible to perform, by juxtaposition, the sum between the two numbers x1 and
x2, interpreted as ax1 and ax2 respectively, so that the sum can be interpreted as the result of ax1 · ax2 .
The idea that will be developed in the following is to use similar properties of the exponential function
in finite fields to make a simple tool to perform products, divisions, powers, inverse calculations, as well
as other operations involving the product, in finite cyclic multiplicative groups. In fact, the existence of
a primitive root in a cyclic group allows each element of the group to be represented as a power of that
element: if we denote by g the generator of the group G, we will have that for all x in G, there exists i in
N such that x = gi; moreover, if x1 , x2 ∈ G then there exist i1 and i2 such that x1 = gi1 , x2 = gi2 and,
by the properties of exponentials, x1 · x2 = gi1+i2 .

2.2 Finite fields

This section is concerned with the mathematical aspects relevant to finite fields and their multiplicative
group. All the properties we report are well-known from the elementary theory of cyclic groups and
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commutative rings with unity. Let F be a finite field of characteristic p. F contains the field Rp of residue
classes of the integers mod p

Rp = {1, 2, 3, ..., p− 1, p = 0}.

Since the number of elements in F is finite, the degree m = (F/Rp) is finite. Let ω1, ω2, ..., ωm be a basis
of F/Rp. Then every f ∈ F may be uniquely described in the form

f = c1ω1 + · · ·+ cmωm

where the ci are elements of Rp for every 1 ≤ i ≤ m. The number of elements in F is therefore q = pm.
Hence, the number q of elements in a finite field F is the m − th power of the characteristic where
m = (F/Rp). Moreover, the q − 1 nonzero elements of F form a multiplicative group of order q − 1.

Theorem 2.1. To each power pm of a prime p there is exactly one field (apart from isomorphism) with
pm elements.

Theorem 2.2. Every finite multiplicative subgroup of a field is cyclic.

Corollary 2.3. The multiplicative group of a finite field is cyclic.

2.2.1 Examples

Let us now give some typical examples of cyclic groups in multiplicative notation. These are examples
of groups for which a slide rule can be constructed as described in the following sections.

Example 2.4. The simplest example of a finite field is that of residue classes of the integers mod p,
i.e. the field

Fp = {0, 1, · · · , p− 1}.

For example, let us consider the (unique) field of 7 elements

F7 = {0, 1, 2, 3, 4, 5, 6}.

Its multiplicative group F∗
7 is a cyclic group of order 6. It can be seen that the primitive roots of F∗

7 are
3 and 5.

Example 2.5. Let us construct the field of 32 elements. The ground field is F3 = {0, 1, 2}; in F3[x],
consider the irreducible polynomial x2 + 1. Let ω denote a root of x2 + 1. F3[ω] consists of the elements
a + bω, where a, b ∈ F3, and ω2 = 2. The field F3[ω] has then 9 elements and is sometimes denoted by
GF (9) (which stands for Golois field): it is unique (apart from isomorphism), and can be identified with
the set of polynomials whose degrees are at most 1, with x2 = 2. Its multiplicative group is cyclic of order
32 − 1 = 8 and the primitive roots are four, namely x+ 2, 2x+ 2, 2x+ 1, and x+ 1.

In the following, we will denote by Fq the finite field with q elements, where q = pm. It should be noted
that the discussion that follows would still be valid for finite rings whose multiplicative group is cyclic;
however, in such structures the product between two elements of the multiplicative group would not allow
us to represent all the nonzero elements of the ring, so the slide rule construction would only partially
describe the ring product.

3 Main activity: making the slide rule for F∗q
The use of the slide rule is a central part of the proposed workshop, so one of the activities in which
students are involved is to build their own paper slide rule, using readily available materials. Although
the idea of using slide rules for educational purpose his known [16, 17, 18], the activity proposed in this
article is different, both in the type of algebraic structures in which it operates and in the way it is done.
In this section we provide a standard procedure to the construction of a multiplicative slide rule in a
fixed finite field Fq, where q = pm, p is an odd prime and m ≥ 1.

The objectives of the activity are:

� to deepen the finite fields structure;
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� to discover the properties of cyclic groups through a tangible object to internalize and reinforce the
understanding of the same properties through direct experience involving the student’s sight and
touch;

� learn how to use the slide rule to perform basic operations (multiplication, division, inverse calcu-
lation).

� to be more aware of the complexity of calculus and the possibilities of reducing complexities by
means of abstractions;

� to enrich the students’ culture and stimulate their curiosity about computational tools.

To make the paper slide rule for finite, cyclic groups we use (see Figure 1):

� scissors;

� cardboard;

� paper clip;

� pen or pencil.

Figure 1: Materials to make your own cyclic slide rule.

Once the order q is chosen, it follows that the multiplicative group F∗
q has q − 1 elements: thus, we can

cut out from the cardboard two regular (q − 1)-sided polygons (if possible) or two circles1. One should
be small enough to fit inside the other: for example, we cut out two polygons having circumscribed
circumferences of radius 11 cm and 8 cm respectively (or about 4 and 3 inches respectively). Then, make
a hole right in the center of the two shapes, place the two templates so that their centers coincide, and
fix them using a fastener (Figure 2).

Figure 2: Making your own cyclic slide rule.

1As is well known, not all regular polygons are constructible with a ruler and compass, and not all constructible are
easy to construct; on the other hand, when the number of sides is large enough, it may not be meaningful to have polygons
available, and making something that looks like a circle may be sufficient for our purpose. If a computer, equipped with a
software that allows to plot regular polygons having an arbitrary number of sides, and a printer are available, one can still
consider having polygons.
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Now, we look for a primitive root in the multiplicative group F∗
q , i.e. a g ∈ F∗

q whose period is φ(q) = q−1.
Hence we can write down a table containing all the powers of the elements in F∗

q up to the first generator
of the group. At this stage, we have a primitive root, and all its powers are listed ordered by exponent:
F∗
q =

{
g, g2, g3 · · · , gq−1

}
. The elements of F∗

q can be written one on each side of both regular polygons:
in particular, we decide to follow the order given by the powers of g and write the numbers clockwise.
The multiplicative slide rule for F∗

q is now ready to be used.
In Figure 3 a slide rule for F∗

7 is shown. It is obtained fixing two regular hexagons: we chose the number
3 as the generator and wrote its ordered powers around the ruler.

Figure 3: A multiplicative slide rule for F∗
7 obtained with g = 3.

A slide rule can also be made to work on a finite field of the type Fpm , where p is a prime and m > 1.
Let us consider the field F9, constructed as the set of polynomials whose degrees are at most 1, with
operations defined modulo the irreducible polynomial x2 + 1 (see Example 2.5). We choose g = x+ 2 as
a generator of F∗

9, and then we list the powers of g: {x+ 2, x, 2x+ 2, 2, 2x+ 1, 2x, x+ 1, 1}. We realized
the slide rule for F∗

9 fixing two octagons and writing the ordered powers of g on their sides (see Figure 4).

Figure 4: A multiplicative slide rule for F9, with g = x+ 2.

3.1 How to use the multiplicative slide rule

The multiplicative slide rule can now be used to perform a number of calculation, such as:

� multiplication;

� inverse calculation;

� division;

� ratios;

� powers.

In the following, we give a brief guide on how to find the results of the listed calculations. We refer to a
polygonal slide rule, but the shape of the rule is not meaningful.
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3.1.1 Multiplication

The main operation for which the idea of building a slide rule arose is multiplication: from the ability to
make products come all the other functions of the instrument. To multiply two numbers, align the side
relative to the first number in the inner polygon to the side at 1 of the outer. Find the other number on
the same polygon and read across to find the result.
The reason multiplication can be performed this way is to be found in the properties of the powers of
generator g and in the way we constructed our tool. In fact, if we start from the initial position where
all the numbers are aligned, when we want to calculate a · b (mod p) we perform a clockwise rotation of
the inner polygon by α steps, where α is such that a = gα due to order given to the numbers around
the slide rule. Now, the number b on the outer polygon can be found β steps away from the 1, moving
clockwise, where β is such that b = gβ . Thus, reading across we find the number corresponding to gα+β

(i.e. sliding the rule is equivalent to adding the logarithms of a and b (mod p− 1)), that is we read

gα+β = gα · gβ = a · b,

as expected.
Is straightforward to see that, since the product is commutative, the same result is obtained if one align
the side relative to the number a in the outer polygon to the side at 1 of the inner: the result is now on
the outer polygon, aligned with the b on the inner. In other words, product commutativity results in the
interchangeability of the discs.

Example 3.1. Suppose we want to evaluate the product 5 · 4 (mod 7): we can align the number 5 in the
inner polygon to the number 1 of the outer. Across the number 4 on the outer polygon we read 6, that is
5 · 4 ≡ 6 (mod 7) (see Figure 5a).
Moreover, moving around the slide rule, we can read the whole list of the multiples of 5 in F7: in fact,
since every element c ∈ F∗

7 is written on the outer polygon, it is aligned with 5 · c (mod 7). That is, we are
able to perform 6 multiplications at once.

(a) (b)

Figure 5: The multiplication table of 5 in F7 and that of x in F9.

It can be pointed out that, since the roles of the two polygons are interchangeable and being the number
1 on the inner polygon aligned with the number 3 on the outer, we can also read all the results obtained
by a multiplication by 3; we have thus performed an aggregate of 11 multiplications at once (in some
configurations of the slide rule some of these operations are possibly repeated).

Example 3.2. Let’s use the same procedure in F9 as realized in Example 2.5 to evaluate x · (2x + 1)
using the slide rule shown in Figure 4: we can align the x in the inner polygon to 1 of the outer. Across
the polynomial 2x+ 1 on the outer polygon we read x+ 1, that is x · (2x+ 1) ≡ x+ 1 (mod (x2 + 1)) (see
Figure 5b).
Moreover, moving around the slide rule, we can read the whole list of the multiples of x and the multiples
of 2x+ 1 in F9: here we perform 15 multiplications at once.

3.1.2 Inverse calculation

Using the slide rule, it is also possible to rapidly find the multiplicative inverse of every element in F∗
q .

To find the inverse of an element, align the side relative to the number to invert, say a, of one polygon to
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the side at 1 of the other. Find the side at 1 of the first polygon and read across to find the result (call
it b).
In fact, it is easy to observe that sliding the rule that way is equivalent to perform the product a · b and
find out that the result is 1, that is b = a−1. As an example, looking again at Figure 5a, we see that
5 and 3 are the inverse of each other in F7. Similarly, in Figure 5b it can be seen that in F9 2x is the
inverse of x and vice versa.

3.1.3 Division and ratios

Consider the division a · b−1. To perform the calculation, align the two numbers a and b: the result of
the division can be read across the number 1 found on the polygon of b. This calculation is indeed a
generalization of the inverse calculation, where the number a was assumed to be 1.
Moreover, combining some of the considerations seen above, relating to the interchangeability of the disks
or the computation of the inverse, it is easy to observe that, keeping the slide rule in the same position,
at 1 on the polygon of a will read the result of b · a−1.
In Figure 6, two divisions in F7 and F9 are shown. For example, in Figure 6a it can be seen that
4 · 3−1 ≡ 6 (mod7), and in Figure 6b that x · (x+ 1)−1 ≡ 2x+ 2 (mod(x2 + 1)).

(a) 4 · 3−1 ≡ 6 (mod7) (b) x(x+ 1)−1 ≡ 2x+ 2 (mod(x2 + 1))

Figure 6: Some divisions in F7 and in F9.

It is interesting to point out that the same configurations show a number of divisions: in Figure 6a one
can see all the pair (a, b) such that a · b−1 ≡ 6 (mod7), namely (4, 3), (5, 2), (1, 6), (3, 4), and (2, 5);
in Figure 6b are shown all the pair (a, b) such that a · b−1 ≡ 2x + 2 (mod(x2 + 1)), namely (2, x + 2),
(2x+ 1, x), (2x, 2x+ 2), and so on.

4 Educational considerations

During the workshop held in the classroom, students made slide rules for multiplication in F7 and F11.
Each student designed and constructed his or her own slide rules, taking about 30 minutes: the production
of the objects was supervised by the teachers who moderated the discussions among the students involved.
Once the slide rules were constructed and their operation was explained, all students were able to easily
execute operations within the structures considered. Some very interesting aspects emerged from the
classroom observation, which the author suggests as a starting point for further developing the presented
activity.

� Giving students the opportunity to critically pose themselves with respect to a definition through
discussion and debate is challenging and helps them discover possibilities and implications that they
may not always be able to reach on their own, whether due to lack of motivation or merely lack of
time.

� This construction of the slide rule usually has a great impact on participants for several reasons.
First of all, it is operationally simple enough, but it confronts students with some algebraic aspects
that they had not thought much about previously. The search for a primitive root can be very
instructive: it can be pointed out that different student can produce different, but in fact equivalent,
slide rule depending on the choice of the generator.
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These observations can be discussed with the students, in order to highlight some of the abstract
properties of finite fields that can have concrete consequences.

� Through this activity, students have the opportunity to handle discrete exponentials, and they can
be conducted further to explore the difficulties of dealing with discrete logarithms.

� The manipulation of powers on a slide rule constitute an example of applying the concept of
isomorphism between algebraic structures.

� Students can also go beyond the concept of primitive roots and find a level of abstraction whereby
one no longer sees the motivation behind a procedure, but handles it at a higher level using a
mechanism.

� They also experience positive emotions related to being able to perform the calculations, which are
often perceived as complicated and an end in themselves.

� The fact that with the slide rule multiplication, division and ratios are approached in essentially
the same way is a consequence of the connection between these operations. This approach allows
for nontrivial thinking about these simple operations, and for a broader look at basic arithmetic.

� A step forward can be done in order to introduce powers: a scale of squares can be added on the
inner circle, writing below every element of the field the corresponding square (see Figure 7). This
update provides a ready-to-use list of squares, which is useful for dealing with quadratic residuals
within the field, and allows the introduction of some techniques for calculating possible powers.

Figure 7: A slide rule for F7 with the scale of squares.

Looking at the configuration in Figure 7, we can quickly find what is 33 (mod 7): since 33 = 32 · 3,
using the squares’ scale we read 32 ≡ 2 (mod 7) and then 33 ≡ 2 · 3 ≡ 6 (mod 7).

� There are many cases where introductory cryptography workshops are offered to young students [19,
20, 21]. The activity proposed in this article can be adapted for high school or middle school
students, reducing the formalism but maintaining the content: it can provide a tool for teachers
and students to make the learning process activated in the lab more effective.

5 Conclusion and Remark

Active learning activities and experiential-based learning can also be designed and conducted successfully
at the college level. The use of manipulatives in learning mathematical concepts offers students a different
way of learning and engaging in the lesson, and allows them to consolidate learning in a positive context.
The laboratory activity presented aims to engage undergraduate students in learning in the area of finite
fields. The opportunity for students to handle a tool whose behavior is based on the seemingly abstract
properties of these structures allows them to give concrete form to a new topic and approach it in an
engaging way that increases interest and motivation.
The main part of this paper is centered on the description of the activity of constructing a slide rule
to perform multiplications in a finite field and the teaching aspects of this activity. The students who
performed this activity showed interest in the subject; they also felt positive and successful in better
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understanding the concepts with the support of the manipulatives and because of the possibility of easily
performing operations that are challenging to perform in their heads.
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