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Abstract: The search of active, stable and low costs catalysts for the oxygen reduction reaction
(ORR) is crucial for the extensive use of fuel cells and metal–air batteries. The development of
metal-free catalysts, instead of platinum-based materials, can dramatically reduce the cost and
increase the efficiency of these devices. In this work, carbon nanohorns (CNHs) have been covalently
functionalized with N-containing heterocycles by the Tour reaction protocol and tested as metal-
free ORR catalysts. The insertion of N-functionalities favored the complete reduction of oxygen
to hydroxyl ions, while their absence favored the production of hydrogen peroxide. With the
aim of determining the N-species responsible for the ORR activity of CNHs, photoemission and
electrochemical measurements were combined. Results suggest that protonated N is the main species
involved in the ORR process, facilitating the adsorption of oxygen, with their consequent reduction
to neutral hydrogenated N species.

Keywords: carbon nanohorns; nitrogen groups; oxygen reduction reaction; in line XPS

1. Introduction

Alkaline fuel cells (AFCs) and rechargeable metal–air batteries (MABs) are next-
generation energy devices for clean power generation [1–4]. However, the improvement
of their efficiencies as well as the reduction in their costs are crucial for their extensive
use, both in stationary and mobile applications, which would facilitate the transition to a
more sustainable future. Both devices have in common the electrochemical reaction that
takes place at the cathode side during the discharge process, which is the oxygen reduc-
tion reaction (ORR) in an alkaline environment. The alkaline character of the electrolyte
allows for the use of non-noble metals or even metal-free catalysts, instead of platinum-
based materials, which can dramatically reduce the costs and increase the efficiency of the
electrochemical devices.

Carbon materials have been extensively studied as a new class of metal-free ORR
catalysts [5–7]. There exists a wide range of carbon materials with different properties, such
as activated carbon, graphite, graphene, fullerene, carbon black, carbon nanotubes (CNTs),
etc., and most of them have been tested as ORR catalysts [8–10]. In particular, doped carbon
materials have attracted much attention since it has been demonstrated that the doping
of carbon materials with more electronegative atoms, such as nitrogen, phosphorus, and
sulfur, creates a positive charge density on adjacent carbon atoms that facilitates oxygen
adsorption and charge transfer [10–12]. Nitrogen, in particular, has been widely studied due
to its suitable atomic size and electronegativity [9,13,14]. Nitrogen-doped carbon materials
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usually contain different nitrogen species, which are expected to present a different ORR
activity. The role of these species has already been investigated, however, there is still a big
controversy on which species are involved in the ORR mechanism. In the literature, some
groups defend that pyridinic N species are the active ones [13–16], whereas other groups
attribute the activity of this type of materials to graphitic N species [17–19].

In this work, we have studied carbon nanohorns (CNHs) covalently functionalized
with N-containing heterocycles as metal-free ORR catalysts. CNHs are conical carbon
nanostructures constructed from an sp2 carbon sheet. Their special morphology and
graphitic structure provide them with suitable properties for electrochemical applica-
tions [20]. However, they have been less investigated than other carbon materials, such as
CNTs or graphene [14,21,22].

We have decorated the CNHs with nitrogen functionalities by chemical functionaliza-
tion through the Tour reaction protocol [23]. As reported by Giambastiani and coworkers,
this is an effective method to prepare metal-free carbon-based catalysts with excellent
ORR catalytic activity [13]. In addition to the physicochemical and electrochemical char-
acterization of the functionalized carbon materials, here we present an in situ study of
the evolution of nitrogen functionalities under ORR conditions in order to shine light on
their role and involvement in the ORR mechanism. Our results support that protonated N
species facilitate oxygen adsorption and are the ones involved in the actual ORR.

2. Materials and Methods
2.1. Materials

All reagents and solvents were purchased from Sigma-Aldrich (Milan, Italy) and used
as received if not otherwise specified. Single-walled CNHs were purchased from Carbo-
nium s.r.l. (Padua, Italy) and present a dahlia-type shape with a diameter of 60–120 nm.
Electron microscopy evidence of the structure and morphology of the CNHs used in this
work can be found in the literature [24–26].

2.2. Synthesis of Functionalized Carbon Nanohorns (CNHs)

CNH-Py-Br. As-purchased CNHs (8.3 mg, 0.69 mmol of C) have been dispersed
in 1-cyclohexyl-2-pyrrolidone (CHP, 7.0 mL) through pulsed sonication for 10 min and
transferred in a two-necked round-bottomed flask. A solution of 4-amino-2-bromopyridine
(142.4 mg, 0.82 mmol) in 3 mL of CHP was added, and the mixture was heated to 80 ◦C
under a nitrogen atmosphere. Then, isopentylnitrite (100 µL, 0.74 mmol) was added
carefully. After 15 min of continuous stirring, the reaction mixture was diluted with cold
methanol (100 mL) and filtered through a PTFE membrane filter (Fluoropore, 0.22 µm pore
size). The filtrate was washed with methanol (4 × 20 mL) and dried under an IR lamp for
15 min.

The product was dispersed in CHCl3 (7 mL) through pulsed sonication (5 min) followed
by centrifugation (4500 rpm, 15 min, 20 ◦C). The supernatant was recovered and characterized.

CNH-Py-F. As-purchased CNHs (9.3 mg, 0.77 mmol of C) have been dispersed in
CHP (7.0 mL) through pulsed sonication for 10 min and transferred in a two-necked round-
bottomed flask. A solution of 4-amino-2-fluoropyridine (93.4.0 mg, 0.83 mmol) in 3 mL
of CHP was added, and the mixture was heated to 80 ◦C under a nitrogen atmosphere.
Then, isopentylnitrite (100 µL, 0.74 mmol) was added carefully. After 15 min of continuous
stirring, the reaction mixture was diluted with cold methanol (100 mL) and filtered through
a PTFE membrane filter (Fluoropore, 0.22 µm pore size). The filtrate was washed with
methanol (4 × 20 mL) and dried under an IR lamp for 15 min.

2.3. Physicochemical Characterization

Each product was dispersed in CHCl3 (7 mL) through pulsed sonication (5 min)
followed by centrifugation (4500 rpm, 15 min, 20 ◦C). The supernatant was recovered
and characterized.
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Thermogravimetric analysis (TGA) was carried out using a Q5000IR TGA (TA Instru-
ments, New Castle, DE, USA) under nitrogen by an isotherm at 100 ◦C for 10 min followed
by heating at 10 ◦C/min rate until 1000 ◦C.

DLS measurements were carried out on a Zetasizer Nano S (Malvern Instruments,
Malvern, UK), setting the material as polystyrene latex (RI = 1.590, Abs = 0.010) and the
measurement angle at 173◦, backscatter (NIBS default). DLS analyses were carried out in
CHCl3 at 25 ◦C (equilibration time = 120 s), performing 3 measurements of 11 runs with run
duration set at 10 s for each measurement and using quartz cuvettes, according to the sol-
vent, with a 1 cm optical path. Kinetic analysis was performed, collecting 60 measurements
(11 runs with run duration set at 10 s each) with 600 s delay between measurements.

Raman spectra of samples drop-casted on precleaned glass micro slides (Corning,
Corning, NY, USA) and dried under vacuum were recorded using an Invia (Renishaw,
Wotton-under-Edge, UK) Raman microspectrometer (50 × objective) using the 633 nm line
of a He–Ne laser at room temperature with a low laser power (<1 µW).

Pulsed sonication was carried out using a S-3000 sonicator (Misonix, Farmingdale, NY,
USA) equipped with a titanium tip (power level: 2.0, pulse on: 3 s, pulse off: 3 s).

Centrifugations were carried out using a MR23i centrifuge (Thermo Electron Corpora-
tion, Waltham, MA, USA) with a varying angle rotor (model 11174711/11174720).

X-ray photoelectron spectroscopy (XPS) measurements were acquired in a custom-
made UHV system working at a base pressure of 10−10 mbar, equipped with an EA125
electron analyzer (Omicron Taunusstein, Germany) and an X-ray source with a dual Al−Mg
anode. Core-level photoemission spectra (C 1s, N 1s, O 1s, F 1s, and Br 3d regions) were
collected in normal emission at room temperature with a non-monochromatized Mg Kα

X-ray source (1253.6 eV). Single spectra were acquired using 0.1 eV steps, 0.5 s collection
time, and 20 eV pass energy. In order to analyze the single components of the C 1s and
N 1s regions, the spectra were separated into chemically shifted components. For the C
1s region, an asymmetrical shape was used for the sp2 component, whereas symmetrical
Voight functions were used for the sp3 component and the C-O functional groups. For the
N 1s region, symmetrical Voight functions were used.

2.4. Electrochemical Characterization

Ex situ electrochemical characterization was conducted in a conventional three-electrode
cell using a rotating disk electrode (RDE). A glassy carbon rod and an Ag/AgCl (KCl sat)
electrode were used as counter and reference electrodes, respectively. Measurements were
carried out in a 0.1 M KOH solution saturated in Ar or O2 at room temperature. The working
electrodes were prepared by drop-casting. A catalyst ink was prepared by mixing 1 mg
of catalyst and 10 µL of Nafion dispersion (5 wt.%, Sigma-Aldrich, Milan, Italy) in 500 µL
of ultrapure water (Millipore Milli-Q system). An aliquot of 15 µL of the suspension was
deposited onto a 3 mm diameter glassy carbon disk. First, cyclic voltammograms (CVs)
were recorded in Ar- and O2-saturated electrolyte. Subsequently, linear sweep voltamme-
tries (LSVs) were recorded at different rotation rates at 10 mV s−1 in O2-saturated 0.1 M
KOH. The electron number (n) transferred during the reaction was calculated employing
the Koutecky–Levich formalism.

2.5. In-Line Photoemission and Electrochemical Measurements

Measurements were performed in an ultrahigh vacuum (UHV) system that consists of
two independent UHV chambers, the analysis (XPS) and the electrochemical (EC) chambers,
connected through a transfer system. The UHV-EC transfer system, which consists of two
manipulators (horizontal and vertical), is connected to the main preparation chamber
through a gate valve. The horizontal manipulator is used to transfer the sample from the
analysis chamber to the EC chamber, whereas the vertical one allows the sample to be raised
to couple it to the electrochemical cell, which is connected to the EC chamber from the
top. A custom made PEEK (polyether ether ketone) cell was used for the electrochemical
measurements. A Pt wire was used as counter electrode and an Ag/AgCl/Cl- (3M KCl)
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electrode placed in a Luggin capillary was used as reference electrode. A 0.1 M KOH
solution, prepared from high purity reagents (Sigma-Aldrich) and saturated in Ar or
O2, was used as the electrolyte. The electrolyte was pumped into the EC cell through
a tubing system using a syringe pump (N-1010, Pump Systems Inc., Farmingdale, NY,
USA), which allows for an accurate control of the flow. The electrolyte inlet consists of a
capillary tube (diameter ca. 0.35 mm) placed in the center of the cell, whereas the outlet
is constituted by eight holes (diameter 0.5 mm) placed around the central capillary. Prior
to the EC measurements, the tubing system was purged with Ar to remove the oxygen
and then, it was filled with the electrolyte. All the experiments were carried out at RT
using a flow rate of 1 mL min−1. First, CVs were recorded in a small potential window
(−0.6 V to +0.2 V vs. Ag/AgCl) to identify the working potentials and, subsequently,
chronoamperometric curves were recorded at those potentials for 1200 s. The potentials
studied were −0.1 V, −0.35 V, and −0.6 V vs. Ag/AgCl. After each EC treatment, the
sample was transferred back to the analysis chamber to determine the chemical changes
induced by the electrochemical work using XPS. Photoemission data were obtained as
described above using the non-monochromatized Al Kα X-ray source (1486.7 eV) and using
0.1 eV steps, 0.5 s collection time and 20 eV pass energy.

3. Results and Discussion
3.1. Synthesis and Physicochemical Characterization of CNH Derivatives

Following the previously reported CNH functionalization procedure [26], we explored
the possibility of synthesizing two CNH derivatives bearing different pyridyl moieties:
CNH-Py-Br and CNH-Py-F (see Scheme 1).
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Scheme 1. General strategy for the functionalization of CNHs with pyridine derivatives via diazoti-
zation reaction (CHP = 1-cyclohexyl-2-pyrrolidone).

The synthetic approach, based on our previous modifications [27,28] of the Tour
reaction [23,29] was carried out in 1-cyclohexyl pyrrolidone (CHP) in the presence of
4-amino derivatives of 2-substituted pyridines and isoamyl nitrite (see experimental details
in Section 2). This functionalization approach has the advantage of preventing relevant
alterations of the structure and morphology of the basal plane, thus retaining its shape and
electronic properties [27].

Thermogravimetric analysis (TGA) of the CNH derivatives (Figure 1) shows an in-
creased weight loss below 400 ◦C, compared to pristine CNH, due to the decomposition of
organic moieties. Functionalization degrees (FD) obtained from TGA measurements [26,30]
(FD: CNH-Py-Br = 1.2%; CNH-Py-F = 0.9%) refer to the fraction of all C atoms of the CNH
that are functionalized, while only the more exposed atoms can react.
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Figure 1. Overlay of the thermograms of pristine CNH (black), CNH-Py-Br (red), and CNH-Py-F
(blue) in a nitrogen atmosphere.

The effective functionalization of CNH is confirmed by the concentration of stable
solutions in CHCl3 (solubility: CNH-Py-Br = 1.4 mg/mL; CNH-Py-F = 1.1 mg/mL; see
Section 2 for details), while pristine CNH did not afford stable solutions given the strong
π-stacking interactions established within the individual CNH. Indeed, the organic moieties
introduced with functionalization provide solubility to the nanostructure by limiting the
tendency of CNH to aggregate.

Raman spectra of pristine and functionalized CNHs are reported in Figure 2. The ratio
between the intensities of D (1320 cm−1) and G (1600 cm−1) bands are almost unaffected
(D/G: CNH = 1/25; CNH-Py-Br = 1.23; CNH-Py-F = 1.15), indicating that the native
structure of CNH is substantially preserved upon functionalization. In this sense, we can
infer that the functionalization is high enough to improve dispersibility in liquid media, but
also low enough to likely preserve electronic properties of the pristine carbon nanostructure.
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Figure 2. Raman spectra of pristine CNH (black), CNH-Py-Br (red), and CNH-Py-F (blue).
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DLS analysis (Figure 3) provides an estimate of the solvodynamic diameter (SD) of
the particles present in solution. SD values (CNH-Py-Br: 172 nm; CNH-Py-F: 88 nm) are
compatible with the dimensions of functionalized CNHs [29] and suggest, in the case of
CNH-Py-Br, the possible formation of a multilayered aryl coating expanding the size of the
nanostructure, as previously observed with CNTs [27]. A radical process involved in the
diazotization reaction may be responsible for both the growth of this coating and the loss
of bromine, as suggested by XPS measurements (vide infra).
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Figure 3. DLS analysis of CNH-Py-Br (red) and CNH-Py-F (blue).

The introduction and the nature of nitrogen, fluorine, and bromine species was inves-
tigated using XPS (Figure 4). Figure 4a shows the successful introduction of N species in
both the CNH-Py-Br and CNH-Py-F samples. The analysis of the N 1s region shows that in
addition to pyridinic N species at 398.7 eV, another three components at 399.7 eV, 401.2 eV,
and 402.5 eV are also present. Unexpectedly, the main component is the one at 399.8 eV
that could be attributed to azobenzene bonds formed through a diazo coupling reaction, as
already observed for products of the Tour reaction [27]. However, it is more likely to assign
this component to hydrogenated pyridinic N species formed under reaction conditions [31].
The component at 401.2 eV can be instead attributed to protonated pyridinic N species [31].
These results suggest therefore the sole presence of pyridinic N species (hydrogenated,
protonated, or not), confirming the success of the functionalization process. Finally, the
small amount of oxidized N species (<5 at.%) can be attributed to the oxidation of N species
in contact with air [31].

The presence of the halogen was only confirmed for the CNH-Py-F sample, as shown
in Figure 4b. The analysis of the F 1s region suggests two different fluorine environments.
The component at lower binding energy can be associated with the 2-fluoropyridine moiety,
while the one at a higher binding energy is ascribed to organic fluorine [13]. On the contrary,
bromine was not detected in the CNH-Py-Br sample. This result could be attributed to
radical addition mechanisms during the functionalization process, which could induce the
breakage of the carbon–bromine bond.
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Figure 4. (a) N 1s XPS region of the CNH-Py-Br and CNH-Py-F samples, and (b) F 1s XPS region of
the CNH-Py-F sample. The deconvolution into single chemical components is included in (a,b).

3.2. Electrochemical Characterization

The pristine and functionalized CNH were tested as metal-free catalysts towards
the ORR. Figure 5a–c show the results obtained for the three materials. In Ar-saturated
electrolyte, the currents observed were associated with the double layer of the carbon
material, i.e., the charges accumulated on the electrode surface due to chemical and/or
electrical interactions. However, in the presence of oxygen, a sharp negative current at
around −0.3 V vs. Ag/AgCl, attributed to the reduction of oxygen, was observed for all the
materials. This value is similar to that reported in the literature for carbon materials [13,14],
indicating that these materials are active towards the ORR. No differences in the onset
potential were observed for the different functionalized samples (Figure 5g), although
higher current densities were delivered by the functionalized materials, suggesting that the
functional groups have an important effect on the activity of the materials.

In order to elucidate if the functionalization has any effect on the ORR mechanism,
LSVs at different rotation rates were performed in O2-saturated electrolyte. The results
are reported in Figure 5d–f. By applying the Koutecky–Levich analysis, the number of
exchanged electrons was determined (Figure 5h). Pristine CNHs mainly reduced oxygen to
hydrogen peroxide since they show a value of n around two in the entire potential window
studied. The functionalization of the CNHs favored the complete reduction of oxygen to
hydroxyl ion, as deduced from the increase in the n values from two to four. No differences
were observed for the two functionalized samples, suggesting that the change in the ORR
mechanism from two to four electrons can be mainly attributed to the N species, and that
the presence of fluorine has not a significant effect.
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Figure 5. (a–c) Cyclic voltammograms recorded in Ar- and O2-saturated 0.1 M KOH; (d–f) linear
sweep voltammograms recorded at different rotation rates in O2-saturated 0.1 M KOH; (g) comparison
of the ORR activity at 1600 rpm; and (h) number of electrons exchanged as a function of the potential
determined by the Koutecky–Levich analysis for the pristine CNH (green), CNH-Py-Br (red), and
CNH-Py-F (blue) samples.

3.3. In-Line Photoemission and Electrochemical Measurements

In order to investigate the role of the functional groups and the active species involved
in the ORR, we combined XPS and EC measurements to determine the changes undergone
by the CNH-Py-F sample under ORR conditions. First, CVs in Ar- and O2-saturated
electrolyte were performed in order to select the potentials of interest (Figure 6a). Three
potentials were selected: −0.10 V (pre-catalytic conditions), −0.35 V (beginning of catalysis),
and −0.60 V (catalytic conditions). Then, the sample was polarized at those potentials
(Figure 6b), as detailed in Section 2.5. After each electrochemical treatment, the sample was
analyzed by XPS.

Figure 6c shows the analysis of the N 1s photoemission line. The comparison of the
spectra before and after the addition of Nafion shows the presence of a new component
associated with N-F interactions and the increase in the protonated pyridinic component
as well as the decrease in the pyridinic one. This result suggests an interaction between
the N groups of the sample and Nafion. In particular, it has already been reported that
pyridinic groups could preferentially interact with the F atom of Nafion, which would
explain the decrease in this component and the increase in the N-F and protonated ones.
This hypothesis agrees well with the data reported in the literature for the fluorination of
N-doped carbon materials, where it has been demonstrated that the component at around
400.4–401.2 eV corresponds to the attachment of a fluorine atom in meta position to a
pyridine-like nitrogen atom [32].
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Figure 6. (a) Cyclic voltammograms recorded in Ar- and O2-saturated 0.1 M KOH of the CNH-Py-F
in the XPS-EC cell; (b) current-time curves obtained at different potentials indicated in (a); and
(c) deconvolution of the N 1s photoemission line in single-chemical components before and after the
EC measurements.

Under precatalytic conditions, at −0.10 V, no significant changes were observed,
suggesting that the sample is stable under these conditions. Under catalytic conditions, on
the contrary, as the potential decreased, the component associated with the NOx groups
decreased, since they are reduced under ORR conditions. In addition, the hydrogenated
N species (399.8 eV) increased, whereas the protonated ones (401.2 eV) decreased. The
component associated with the N-F interaction remains unmodified in the whole range of
potentials studied. The analysis of the N 1s region is reported in Table 1.

Table 1. Analysis of the single chemical components of the N 1s photoemission line for the CNH-NF
sample before and after the EC measurements.

Sample Py-N
(398.6 eV)

Py-NH
(399.7 eV)

N-F
(400.4 eV)

Py-NH+

(401.2 eV)
NOx

(402.3 eV)

CNH-Py-F (as prepared) 31.7% 44.8% --- 18.4% 5.1%
CNH-Py-F + Nafion 5.6% 26.6% 30.7% 24.0% 13.1%

−0.10 V 1 12.2% 28.9% 29.5% 22.6% 6.8%
−0.35 V 1 17.2% 30.7% 29.1% 20.5% 2.5%
−0.60 V 1 15.7% 33.9% 30.0% 18.1% 2.3%

1 Potentials vs. Ag/AgCl.

In the literature, pyridinic N species have been mainly associated with the activity
of the nitrogen-doped carbon materials [15,16], however, some other groups attribute the
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activity of this type of materials to the graphitic N groups [17–19]. Therefore, there is still a
big controversy in the literature with this regard.

Our results indicate that the protonated N species are reduced under ORR conditions
to neutral NH species when oxygen is adsorbed on an adjacent carbon atom. This reduction
explains the decrease in the protonated component (401.1 eV) and the increase in the
hydrogenated one (399.8 eV). Therefore, the presence of protonated species favors the
adsorption of oxygen, which is the initial ORR stage. The adsorption of oxygen on a carbon
atom adjacent to the protonated N species is accompanied by the simultaneous reduction
of such species, as suggested in the literature [33].

4. Conclusions

In this work we synthetized N-doped carbon nanostructures by functionalizing CNHs
with pyridine derivatives, respectively bearing a fluorine or a bromine atom in ortho posi-
tion with respect to nitrogen, through a diazotization reaction. According to XPS analysis,
bromine was lost during the functionalization process, while fluorine was retained. Three
different pyridinic species (pyridinic, hydrogenated pyridinic, and protonated pyridinic N
species) were present in the functionalized materials. The functionalized CNH derivates
were tested as metal-free ORR catalysts, and compared to pristine CNHs. The effective
N-doping achieved in both derivatives enabled the complete reduction of oxygen affording
hydroxyl ion, while hydrogen peroxide evolution was obtained with pristine CNHs. From
the combined XPS–electrochemistry study, we found that protonated pyridinic N is the
main N species involved in the ORR mechanism for our CNH derivatives, favoring the
adsorption of oxygen in one adjacent carbon atom. However, the presence of fluorine
did not induce any difference in the catalytic behavior. The participation of protonated
pyridinic N species in the ORR process induces their reduction to hydrogenated pyridinic
N species.
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