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It is well known that point-contact Andreev reflection spectroscopy provides reliable measurements of the
energy gap(s) in a superconductor when the contact is in the ballistic or diffusive regime. However, especially
when the mean free path of the material under study is small, obtaining ballistic contacts can be a major chal-
lenge. One of the signatures of a Maxwell contribution to the contact resistance R is the presence of “dips” in the
differential conductance, associated with the sudden appearance of a Maxwell term, in turn, due to the attainment
of the critical current of the material in the contact region. Here we show that using a proper model for the R(I)
of the material under study, it is possible to fit the experimental curves (without the need of normalization) ob-
taining the correct values of the gap amplitudes even in the presence of such dips, as well as the temperature de-
pendence of the critical current in the contact. We present a test of the procedure in the case of Andreev-

reflection spectra in Mgy gsAlg 15B, single crystals.

Keywords: point-contact spectroscopy, Andreev reflection, critical current.

1. Introduction

One of the fundamental requirements a normal-super-
conductor (N/S) point contact has to fulfill, in order to al-
low spectroscopic measurements of the superconducting
energy gap, is that the bias voltage V, applied to the junc-
tion directly measures the excess energy with which the
electrons from one bank are injected in the other [1, 2].
This requires that: i) electrons acquire excess energy eV,
while crossing the contact region; ii) the measured voltage
Vexp actually coincides with (or is as close as possible to)
the voltage drop at the interface, V.

The first requirement is equivalent to asking that elec-
trons do not undergo inelastic scattering while crossing the
contact region; this, in turn, means that the contact should
be in the ballistic regime (i.e., the mean free path is much
larger than the contact diameter, i.e., £ > a), or, at most, in
the intermediate, so-called, diffusive [1] regime in which
electrons can undergo elastic scattering events in the con-
tact region, but not inelastic ones.

The second requirement can never be strictly fulfilled
since, as pointed out by Chen et al. [3], the experimental
voltage drop V,,, is generally measured in a pseudo-four-
probe arrangement, and therefore at the ends of a series of
resistances: that of the contact and those of the two banks

of the junction. For example, if one uses a metallic tip
pressed against a superconductor, one has to pay attention
to the fact that the voltage drop experimentally measured
contains contributions not only from the contact but also
from the tip (R,) and potentially from the superconducting
bank (R,) if, for some reason, it is driven into the resistive
state. The overall resistance in series to that of the contact
is generally called spreading resistance. The resistance of
the tip (if one uses a metal like Ag, Au, or Pt) is usually
much smaller than the resistance of the contact itself and
therefore R, can be disregarded. The resistance of the su-
perconducting bank R, can instead play an important role
(especially in thin films or 2D materials) and comes into
play when the current drives the superconductor to its
normal state. Since the critical current decreases with in-
creasing the temperature, this usually does not affect the
conductance spectra at low temperatures, but can bend
their high-voltage tails and finally determine their overall
downward shift when the temperature approaches T, [4-6].
This effect occurs independently of whether the point con-
tact is ballistic or not because it involves the bulk of the
superconductor. A correction of the experimental conduct-
ance curves aimed at eliminating this unwanted effect (that
heavily affects the normalization of the spectra) was pro-
posed by Paul Seidel’s group [6] who studied the effect of
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the spreading resistance on the conductance spectra of pla-
nar hybrid SNS junctions. The junctions were made by
using a thin film of Ba(Fe, Co),As; as the base electrode,
separated by a gold barrier layer from a Pb counter elec-
trode [7]. Thanks to the geometry of the system, the au-
thors were able to characterize the electrodes and the junc-
tion separately, by using eight electrical connections. They
thus directly measured the differential resistance of the
superconducting film, R, =dV /dl, as a function of the
current |, at any temperature. Then, they showed that by
subtracting the contribution of the current-dependent
spreading resistance from the conductance allowed correct-
ing the latter in such a way that the anomalous bending and
shift disappeared [6].

Here we will focus on the so-called “dips” that are often
seen in point-contact spectra on various materials at much
lower voltages, showing that they are based on the same
physics. In Ref. 9 these dips were instead associated with
the depression of the superconducting order parameter at
the N/S interface. This would lead to Andreev reflection
being sensitive to the (smaller) proximity gap, and to quasi-
particle transmission being sensitive to the larger bulk gap.
Although suggestive, this model cannot explain the occur-
rence of dips at energies larger than the bulk gap. Our in-
terpretation is in line with that of Ref. 10, where the dips
were explained as being due to the point contact not being
in the ballistic regime. Excluding the case of a purely Max-
well regime, in which no spectroscopy is possible, it is indeed
rather common to obtain point contacts whose resistance can
be described by means of the Wexler formula [11, 12]

2h L\pg+
= Tﬂ((_jm' M
e°aKg minT a/ 4a

as if it were a series of two contributions. In this equation,
which holds for heterocontacts, the first term is the Sharvin
resistance Rg, where kg i =min[ke ke ,], a is the
contact radius, and t is a function of the Fermi velocities
Ve, and Ve ,. The second term accounts for the Maxwell
contribution to the contact resistance, R,,, and contains the
resistivities of both the banks of the junction. The prefactor
y(¢/a) is a slowly varying function of the Knudsen ratio,
that we will approximate to unity. As pointed out in Ref. 3,
this way of writing the Maxwell resistance is not complete-
ly accurate since it intrinsically contains contributions from
both the region of the contact and regions of the material
far from the contact. As a first approximation, we will
however disregard this detail. Eq. (1) properly accounts for
the prevalence of the Sharvin term (oc a=2) or of the Max-
well one (oc a™t) depending on the values of the contact
size a. As long as the superconducting bank is in the zero-
resistance state, p, =0 and only a contribution containing
the (usually negligible) resistivity of the metallic counter
electrode is present. However, as noted in Ref. 10, the con-
tribution of p, appears as soon as the superconductor is

driven to the resistive state in the region of the contact by
the current flowing through it. Owing to the characteristic
shape of the V-l curve of a superconductor, the resistivity
of the material is zero for | =0, shows a peak at a current
close to I, and then decreases smoothly to a value different
from zero. In Ref. 10, Sheet et al. were able to show that,
by assuming a “model” V-1 curve for the superconductor,
the current dependence of the Maxwell term gives rise to
typical “dips” in the differential conductance of the point
contact, in addition to the structures associated to Andreev
reflection at the N/S interface. The fit of the Andreev-
reflection spectra (including the dips) with a 2D BTK
model [13-15] (that is actually designed for ballistic con-
tacts) was shown to give rise to an overestimation of the
gap amplitudes.

In this paper, we will use a similar approach, but we
will go further. As a matter of fact, we will develop an
analytical, phenomenological model to reproduce the real-
istic shape of the V-l curve of the superconductor, and
show that, by properly inserting the corresponding dV/dl in
the expression of the point-contact differential conduct-
ance, it is possible not only to fit experimental Andreev-
reflection spectra that present the dips, but also to recover
the proper values of the gaps. This approach has the ad-
vantage that, by adjusting the parameters that control the
critical current and the shape of the Maxwell resistance as
a function of temperature, it is possible to fit the spectra at
various temperatures and in different materials.

2. The model for the Maxwell resistance as a function of
current

In Ref. 6, the differential resistance of a Ba(Fe, Co),As;
thin film was directly measured as a function of tempera-
ture. We found a functional form that is able to mimic ra-
ther well the shape of these experimental dV/(1)/dI curves:
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where A, B, n, C, k, and I, are parameters that control
different details of the shape of the curve, and I is the
critical current. For the temperature dependence of the cri-
tical current |, we used the expression
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taken from Ref. 16, where 1,(0) is the critical current at
zero temperature.
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Fig. 1. (Color online) (a) Differential resistance dV/dI as a function of the current intensity | for different values of 1./ 1,(0), generated
by our model in order to fit the experimental curves of Ref. 6. Here, 1.(0) =85 mA. The correspondence between 1. /1.(0) and T /T, is
constructed by assuming a typical behavior of the critical current as a function of temperature [Eqg. (3)]. (b) The corresponding V (1)
characteristics, obtained by integration. The critical current |, that appears in the model corresponds to the current at which the V I
curves crossover from the almost linear TAFF regime to the typical superlinear flux creep regime [8].

In order to explain the role of the various parameters,
it is worth analyzing some theoretical curves generated
by using this model. Figure 1(a) shows some curves, all
having the form of Eq. (2), that fit almost perfectly the
experimental curves reported in Ref. 6; the relevant V()
curves, obtained by integration, are instead shown in Fig. 1(b).
The functional form of Eq. (2) is clearly able, with a suita-
ble tuning of the parameters, to reproduce the temperature
dependence of the spreading resistance as a function of the
current. In particular, the first term in Eq. (2) reproduces
the peak and the following decrease at high currents of the
differential resistance. The second term, proportional to C,
is the integral of a sigmoid and just provides a linear term
at low current, that saturates to a constant value Cl, at
I > 1, (inall curves of the figure, I, ~0.71;). This lin-
ear term is more and more important when the temperature
is increased and allows the reproduction of the fast in-
crease in Ry at currents smaller than 1, which is observed
at high temperature. The parameter | is the critical cur-
rent, here defined as the current that, in the V(1) curves
[Fig. 1(b)] marks the transition from the thermally-assisted
flux flow (TAFF) regime to the flux creep regime [8]. This
corresponds to the departure of the curves of Fig. 1(b) from
the low-current linear behavior. The width of the peak in the
differential resistance curves of Fig. 1(a) is controlled by the
parameter n, while its height is essentially determined by A.
All the curves tend to a finite and constant value of resistance
(that we will call R, in the following) which is related to the
value of the parameters B and C. If C =0, B = R;%, while if
C # 0, the additional linear term gives rise to a constant con-
tribution to R, equal to Cl ;. As for the parameter k, it was
always about 6.2 in all the curves of Fig. 1.

3. Fit of the experimental spectra

Once understood that the functional form of Eq. (2) is
sufficiently flexible to reproduce the shape of the V(I)
and R, (1) curves experimentally measured in a given ma-
terial, we tried to apply it to the fit of the experimental
dl/dV spectra, shown in Fig. 2, that were measured in a
Mg, s5Al0 5B, single crystal, and that present very clear
dips. Note that: i) the material is completely different from
the iron-based compound in which the R, (1) curves we used
to construct the model were measured; ii) our sample is a
single crystal and not a film; iii) we are going to use the
model of Eqg. (2) to mimic the current dependence of the
Maxwell term Ry, in the contact (and not the onset of the
spreading resistance R, associated to the resistive state of
the film, as in Ref. 6). Despite the model being used in com-
pletely different conditions from those which led to its de-
velopment, we will show that it provides excellent results.

The spectra of Fig. 2 were measured in a single crystal
of Mg,AlB, with x = 0.15, grown by using the high-
pressure cubic anvil technique described in Ref. 17 and by
optimizing time, pressure and temperature to avoid any phase
segregation up to x = 0.32. Indeed, no impurities, twins or
intergrowing crystals were detected [18]. Due to the diffi-
culty in obtaining significant Al doping levels in MgB,,
some small inhomogeneity of the doping content can be
expected. The high quality of the crystals allowed us to ob-
tain spectroscopic contacts and textbooklike PCARS spec-
tra, from which we could extract the energy gaps as a func-
tion of the doping content [18]. The curves shown in Fig. 2
are instead “non-ideal” spectra that were already shown,
although with a vertical offset, in Ref. 2 as a perfect example
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Fig. 2. (Color online) Experimental unnormalized spectra mea-
sured in a point contact on a Mg ¢-Al , ;5B single crystal at dif-
ferent temperatures. The onset of the resistive transition of the
crystal was T>" =27.8 K while the Andreev-reflection signal
disappears at T* = (25.5+0.15) K.

of the temperature dependence of the dips. Here, the absence
of any offset allows for appreciating the position of the nor-
mal-state conductance curve with respect to the superconduct-
ing ones. Here, the Andreev-reflection features completely
disappear somewhere between 25.37 and 25.73 K, and we
thus defined T, = (25.5+0.15) K. By the way, the onset of
the superconducting transition in this crystal was at
T = 27.8 K: this difference may be ascribed to the afore-
mentioned inhomogeneity in the Al content, but also to a
small heating in the contact [1, 19], which is expected to take
place as soon as the Maxwell term appears. It is clear from
Fig. 2 that, at low temperature, the high-energy tails of the
experimental curves still tend (from above) to the experi-
mental normal-state conductance, despite the presence of
clear dips between 5.0 and 7.5 mV. However, above 20 K,
the high-energy tails lie below the normal state at T,. This
is clearly due to the breakdown of superconductivity in the
bulk, i.e., the effect described and treated by Ddéring et al.
[6] that we are not considering here. Therefore, if we want
to concentrate on the curves that only present dips due to
the Maxwell term, we have to focus on the range of tem-
peratures between 4.2 and 18.14 K.

Let us thus use Eg. (2) to model the current dependence
of the Maxwell resistance R,, that, according to Eq. (1),
can be considered to be in series with the contact resistance.
Therefore, we can compute the Ry, (1) curve, which clearly
depends on the parameters listed above.

Then, we calculate the theoretical normalized conduct-
ance associated to Andreev reflection in the contact, g,
according to the 2D BTK model [13-15] generalized to the
case of two gaps [2, 20] since the material under study is
Al-doped MgB,, [17, 18]. The parameters required to cal-
culate ogri are the gap amplitudes A; and A,, the barrier
parameters Z, and Z,, the broadening parameters I'; and

I',, and the relative weight of the contribution of the first
gap to the spectra, w; (such that w, =1—w;). The calculat-
ed theoretical normalized curve, g, must then be multi-
plied by the normal-state conductance in order to get the
unnormalized differential conductance. However, one can-
not use for this purpose the actual normal-state conduct-
ance G because the appearance of an additional re-
sistance in series with the Sharvin one [when p, starts to be
different from zero, see Eq. (1)] not only makes the meas-
ured resistance of the whole series increase (thus shifting the
normal-state conductance curve downwards [4, 5]) but also
makes the experimental voltage V,,, be different from the
voltage drop across the contact [3, 6, 10], V., because

|
Veep (1) =V (1) + [ Ry (1)l (4)
0

The stretching of the voltage scale, together with the
downward shift due to the additional Ry, term, implies that
the experimental normal-state conductance G*® is small-
er, and extended to higher voltages, than the hypothetical
normal-state conductance curve that one would measure if
the contact was ballistic, i.e., G However, the "ideal"
normal-state conductance can be reconstructed by invert-
ing the experimental one, subtracting R, and correcting
the voltage scale according to Eq. (4).

The unnormalized BTK conductance of the junction
is thus

d .
d—\jcwc) = Ggry (Vo) G2 (V, ). (5)

This, once inverted (to get the unnormalized BTK re-
sistance) and expressed as a function of the current, can be
summed to the Maxwell term Ry, (1), thus providing the
total resistance of the series. This result must be inverted
again, giving the total conductance (including the dips). At
the end of the process, one can express the total differential
conductance as a function of the total voltage. This curve
can be directly compared to the experimental unnormalized
conductance as a function of V. It is thus possible to find
the best set of parameters that makes the theoretical curve
properly fit the experimental one.

Figure 3(a) reports the results of the fit of the raw con-
ductance curves of Fig. 2, up to 18.1 K. The symbols rep-
resent the experimental curves and the lines the fitting
functions. For the sake of comparison, panel (b) of the
same figure displays the fit one would obtain by using the
two-band, 2D BTK model, without accounting for the dips.
The quality of the fit in Fig. 3(a) is extremely good despite
the fact that the functional form of the Maxwell term [Eq. (2)]
was taken from the experimental R, (1) curves of a film of
a completely different material. This suggests that the
functional form of Eq. (2) is very general, and can be
adapted (by suitably choosing the parameters) to different
cases. On the contrary, the fit shown in Fig. 3(b) is reliable
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Fig. 3. (a) (Color online) As-measured, unnormalized differential
conductance dlI/dV of a soft point contact on Mg, ,5Al, ,5B, Sin-
gle crystal, at different temperatures (symbols) together with the
relevant fits (solid lines) that include both Andreev reflection and
the current-dependent Maxwell term. The dashed horizontal line
is the normal-state conductance at T = 25.7 K. All the curves have
been vertically offset for clarity, apart from the lowest-temperature
one (black symbol) and the normal-state one. (b) Experimental point-
contact curves, normalized to the actual normal-state conductance
atT =25.7 K, vertically offset for clarity and fitted to the standard
2D BTK model.

at low temperature, when the dips fall at an energy slightly
larger than the large gap, but becomes more and more
meaningless on increasing the temperature, since the dips
shift to lower voltages and end up by heavily interfering
with the gap structures.

The values of the gap amplitudes extracted from the fit of
the experimental conductance curves are shown in Fig. 4(a).
The model that includes dips gives the gap amplitudes A,
(the smaller) and A, (the larger), indicated by solid sym-
bols, which follow rather well a BCS-like trend (dashed
lines). The fit with the 2D BTK model alone, instead, pro-
vides the same values of the gap amplitudes only at 4.2 K.
On increasing the temperature, the large gap A, (red open
circles) immediately decreases, because of the shift of the

(a) model with dips
e o o A .
....... Y oA
> 3 o i
E ..........
e G ~ T
- e |
o 8 .
3 |
standard 2D BTK
19 | oy b
oA,
04+———— LI L | O O LI B
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0.4 O/O—O\O\O

0.2 0.2
36 9 121518 36 9 121518

T,K T,K

Fig. 4. (Color online) (a) Temperature dependence of the energy
gaps used to fit the experimental conductance curves. Solid sym-
bols indicate the gaps obtained by using the 2D BTK model in-
cluding dips [as in Fig. 3(a)], while open symbols represent the
gaps obtained by using the 2D BTK model alone [as in Fig. 3(b)].
The dashed lines indicate the BCS-like temperature dependen-
cies. (b) Temperature dependence of the broadening parameters
I'; and I",. (c) Temperature dependence of the barrier parameters
Z, and Z,. Lines in (b) and (c) are just guides to the eye.

dips to lower energies; the uncertainty on the amplitude of
A, becomes larger than A, itself already at 8.3 K, and at
higher temperatures the large gap is completely undeter-
mined (the fit converges to a small value of A,, but with a
huge uncertainty, meaning that the fit is possible as well
with a single gap). The values of the small gap (black open
squares) do not deviate very much from those provided by
the model with dips, just because A, is much less affected
by the presence and the displacement of the dips.

Figures 4(b) and 4(c) report the temperature depend-
ence of the other fitting parameters contained in the 2D
BTK part of our model. The broadening parameter T',,
associated with the small gap, remains practically constant
around 0.4 meV, and is thus much smaller than the gap
amplitude A,; it just had to be slightly decreased at the
highest temperature. T",, associated with the large gap, is
much smaller than A, in the whole temperature range, and
increases from 1.2 meV at 4.2 Kto 1.4 meV at 18.1 K. The
barrier parameters, in principle, should not change with
temperature, being related to the potential barrier at the
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Fig. 5. () Temperature dependence of the critical current in the con-
tact region as extracted from the fit of the conductance curves (sym-
bols) and the relevant fit with the theoretical 1,(T) curve [Eq. (3)].
The fitting is almost perfect, with 1.(0) = (0.470+ 0.004) mA, and
T, = (29.0£0.3) K. (b) Temperature dependence of the parameter
n that enters Eq. (2). (c) Temperature dependence of the parame-
ter A that enters Eq. (2). Dashed lines in (b) and (c) are just
guides to the eye.

interface and to the mismatch of Fermi velocities on the
two banks [1, 2]. Indeed, Z, is perfectly constant and equal
to 0.3; Z, instead had to be slightly reduced on increasing
temperature to perfectly fit the low-bias region of the
curves (the maximum variation is however <16%). By the
way, the same fitting parameters acquire non-physical val-
ues in the case of the pure 2D BTK model, further indicat-
ing its inadequacy. In particular, T', is almost zero at low
temperature and jumps to 5 meV already at 12.2 K, while
I'; is about 0.5 meV at low temperature and decreases to
zero on increasing the temperature. In either case (i.e., 2D
BTK model, or model with dips) we kept the weight w;
constant at all temperatures. In particular, w; = 0.724 in
the fit with dips, and w; = 0.892 in the 2D BTK fit.

As for the parameters that control the shape of the Max-
well resistance as a function of temperature, we fixed
the values of some of them in order to reduce as much as
possible their number. First of all, with reference to Eq. (2),
we kept C = 0. This means that, unlike in the case shown in
Fig. 1, the fit did not require any low-current linear behavior
of the R(I) curves. The fact that C = 0 also implies that the

parameters k and I, do not appear any longer, and that
B =R;. This is fixed by the vertical shift of the conduct-
ance in the normal state, due to the additional Maxwell term.
This value was kept constant as a function of temperature,
i.e, R, =026 Q that implies B =3.846 Q. Therefore,
the only parameters that we changed as a function of tempera-
ture are A, n and |, and their behavior is shown in Fig. 5. In
particular, |, decreases monotonically as a function of tem-
perature [solid symbols in Fig. 5(a)] with a trend that can be
very well fitted by the temperature dependence of Eqg. (3).
The fit of the data points with that function provides
I.(T =0)=(0.470+£0.004) mA, and T, =(29.0+0.3) K.
The critical temperature is higher than the experimental TCA,
and also than the temperature at which the superconducting
transition starts (T>" =27.8K). This mismatch can be
partly due to the heating effect in the contact [1, 19], but it
may also arise from the fact that MgB, being a two-band
superconductor, Eq. (3) may not perfectly reflect the tem-
perature dependence of the critical current [21]. Note that
the values of | here obtained represent the values of the
current in the contact that makes the resistivity of the mate-
rial become different from zero (because of vortex motion).
As for the other parameters of Eq. (2), Figs. 5(b) and 5(c)
show that n increases by 17% on increasing the tempera-
ture, i.e., from 2.25 to 2.65, while A decreases as a func-
tion of T, from 3.61 to 2.95 (thus changing by about 18%).
This behavior suggests some interplay between A and n
and, indeed, their product is almost constant, ranging from
8.12Kat4.2Kto7.82Kat18.1 K.

Overall, accounting for the dips required three parame-
ters in addition to those included in the two-band, 2D BTK
model. However, these parameters control the shape and
the position of the dips and, once adjusted so as to obtain a
very good fit to the experimental curve, allow obtaining
the value of the large gap A, even though the structures
associated to this gap are visibly eroded by the dips. Note
that the case-study we have chosen here is actually a par-
ticularly critical one since, even at the lowest temperature,
the dips are very close to the large-gap structures. In many
cases, fortunately, the dips lie far apart from the gaps at
low temperature and start to interfere with them only at
higher temperatures. In these cases, the use of this model
can allow determining the gaps in a wider temperature
range than the standard 2D BTK model.

4. Conclusions

It is rather common, especially in superconductors with
small mean free path, to obtain Andreev-reflection spectra
that display, in addition to the gap structures, typical dips
that have been associated to the onset of a Maxwell contri-
bution to the contact resistance. This, in turn, occurs when
the injected current makes the material become resistive.
The presence of dips heavily complicates the process of
normalization of the spectra, and may prevent their fit with
standard models for Andreev reflection, such as the BTK
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[13] model or its generalizations [14, 15]. Here, we found a
phenomenological functional form for the resistance of a
superconductor as a function of current that is able to re-
produce experimental measurements at different tempera-
tures [6]. Then, we showed that the inclusion of this term
in the expression of the differential conductance of a point
contact, together with the model for Andreev reflection,
allows a very good fit of the experimental spectra without
requiring their normalization. The fit provides a corrected
value of the energy gaps and also allows obtaining the
temperature dependence of the critical current intensity in
the contact.
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MopentoBaHHs epeKTiB KPUTUYHOTO CTPYMY
B MIKPOKOHTaKTHI CneKkTpocKonii aHapeeEBCLKOro
BiAOUTTS

Dario Daghero, Erik Piatti, Nikolai D. Zhigadlo,
Renato Gonnelli

Jlobpe BimOMO, IO MIKPOKOHTaKTHA CHEKTPOCKOINS aHIPEEB-
CBKOTO BIIOWTTS 3a0e3ledye HafiiHI BUMIPIOBAHHS E€HEPIeTHYHOL
mMHA (IOUTHH) Y HAATPOBITHUKY, KON KOHTAKT 3HAXOIWTHCS B
OanictigHOMY 200 Mudy3iiHOMY pexkumi. OIHAK, OCOOIMBO KO
JIOBKIHA BUIBHOTO TIPOOITY Y JOCIIPKYBaHOMY MaTepiajl € MaJoro,
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A model for critical current effects in point-contact Andreev-reflection spectroscopy

OTpHMaHHs OaTICTHYHHX KOHTAKTIB MOXE OYTH CEpHO3HOIO IpO-
onemoro. OTHUM 13 03HAK «MaKCBEIUTIBCHKOT0» BHECKY /IO KOHTAKT-
HOTO onopy R € HasBHICTB «@IpOBaNiB» y AuepeHmiatbHii MpoBia-
HOCTI, TIOB’5I3aHUX 13 PAaIITOBOIO MOSIBOIO «MAaKCBEJUTIBCHKOTO) UJICHA
y 3B’SI3KY 3 IOCSTHEHHSM KPUTHIHOIO CTPyMy MaTepialy B KOHTaK-
THilf obmacti. Tyr My moka3yemo, 1110, BHKOPHCTOBYIOUH BiITOBIHY
mozenb st R(l) mocmimkyBaHOro marepiaiy, MOYKHA TIirHATH
eKCTIepUMeHTaNIbHI KpuBi (0e3 HeoOXiIHOCTI HopMati3allii) Ta OTpH-

MaTy TIPaBIIbHI 3HAYECHHS aMIDTITYJ MIUTMH HAaBiTh 32 HAsSBHOCTI
TaKUX MPOBAJB, & TAKOK TEMIIEPATYpPHY 3ICKHICTH KPUTUIHOTO
CTpyMy B KOHTakTi. Hamu mpencraBieno mepeBipKy NpoOLenypH y
BUIAJKy CIEKTPIB aHAPEEBCHKOTO BITOWTTS B MOHOKpPHCTAIAX
Mgy 75Alo 25B5.

KirouoBi croBa: MiKpOKOHTAaKTHA CHEKTPOCKOIISI, aHAPEEBCHKE
BiIOUTTS, KPUTHIHUH CTPyM.
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