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It is well known that point-contact Andreev reflection spectroscopy provides reliable measurements of the 
energy gap(s) in a superconductor when the contact is in the ballistic or diffusive regime. However, especially 
when the mean free path of the material under study is small, obtaining ballistic contacts can be a major chal-
lenge. One of the signatures of a Maxwell contribution to the contact resistance R is the presence of “dips” in the 
differential conductance, associated with the sudden appearance of a Maxwell term, in turn, due to the attainment 
of the critical current of the material in the contact region. Here we show that using a proper model for the R(I) 
of the material under study, it is possible to fit the experimental curves (without the need of normalization) ob-
taining the correct values of the gap amplitudes even in the presence of such dips, as well as the temperature de-
pendence of the critical current in the contact. We present a test of the procedure in the case of Andreev-
reflection spectra in Mg0.85Al0.15B2 single crystals. 

Keywords: point-contact spectroscopy, Andreev reflection, critical current. 
 

 
1. Introduction 

One of the fundamental requirements a normal-super-
conductor (N/S) point contact has to fulfill, in order to al-
low spectroscopic measurements of the superconducting 
energy gap, is that the bias voltage cV  applied to the junc-
tion directly measures the excess energy with which the 
electrons from one bank are injected in the other [1, 2]. 
This requires that: i) electrons acquire excess energy ceV  
while crossing the contact region; ii) the measured voltage 

expV  actually coincides with (or is as close as possible to) 
the voltage drop at the interface, cV . 

The first requirement is equivalent to asking that elec-
trons do not undergo inelastic scattering while crossing the 
contact region; this, in turn, means that the contact should 
be in the ballistic regime (i.e., the mean free path is much 
larger than the contact diameter, i.e., a ), or, at most, in 
the intermediate, so-called, diffusive [1] regime in which 
electrons can undergo elastic scattering events in the con-
tact region, but not inelastic ones. 

The second requirement can never be strictly fulfilled 
since, as pointed out by Chen et al. [3], the experimental 
voltage drop expV  is generally measured in a pseudo-four-
probe arrangement, and therefore at the ends of a series of 
resistances: that of the contact and those of the two banks 

of the junction. For example, if one uses a metallic tip 
pressed against a superconductor, one has to pay attention 
to the fact that the voltage drop experimentally measured 
contains contributions not only from the contact but also 
from the tip ( 1R ) and potentially from the superconducting 
bank ( 2R ) if, for some reason, it is driven into the resistive 
state. The overall resistance in series to that of the contact 
is generally called spreading resistance. The resistance of 
the tip (if one uses a metal like Ag, Au, or Pt) is usually 
much smaller than the resistance of the contact itself and 
therefore 1R  can be disregarded. The resistance of the su-
perconducting bank 2R  can instead play an important role 
(especially in thin films or 2D materials) and comes into 
play when the current drives the superconductor to its 
normal state. Since the critical current decreases with in-
creasing the temperature, this usually does not affect the 
conductance spectra at low temperatures, but can bend 
their high-voltage tails and finally determine their overall 
downward shift when the temperature approaches cT  [4–6]. 
This effect occurs independently of whether the point con-
tact is ballistic or not because it involves the bulk of the 
superconductor. A correction of the experimental conduct-
ance curves aimed at eliminating this unwanted effect (that 
heavily affects the normalization of the spectra) was pro-
posed by Paul Seidel’s group [6] who studied the effect of 
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the spreading resistance on the conductance spectra of pla-
nar hybrid SNS junctions. The junctions were made by 
using a thin film of Ba(Fe, Co)2As2 as the base electrode, 
separated by a gold barrier layer from a Pb counter elec-
trode [7]. Thanks to the geometry of the system, the au-
thors were able to characterize the electrodes and the junc-
tion separately, by using eight electrical connections. They 
thus directly measured the differential resistance of the 
superconducting film, 2 = /R dV dI , as a function of the 
current I , at any temperature. Then, they showed that by 
subtracting the contribution of the current-dependent 
spreading resistance from the conductance allowed correct-
ing the latter in such a way that the anomalous bending and 
shift disappeared [6]. 

Here we will focus on the so-called “dips” that are often 
seen in point-contact spectra on various materials at much 
lower voltages, showing that they are based on the same 
physics. In Ref. 9 these dips were instead associated with 
the depression of the superconducting order parameter at 
the N/S interface. This would lead to Andreev reflection 
being sensitive to the (smaller) proximity gap, and to quasi-
particle transmission being sensitive to the larger bulk gap. 
Although suggestive, this model cannot explain the occur-
rence of dips at energies larger than the bulk gap. Our in-
terpretation is in line with that of Ref. 10, where the dips 
were explained as being due to the point contact not being 
in the ballistic regime. Excluding the case of a purely Max-
well regime, in which no spectroscopy is possible, it is indeed 
rather common to obtain point contacts whose resistance can 
be described by means of the Wexler formula [11, 12] 

 1 2
2 2 2

,min

2= ,
4F

hR
a ae a k

ρ +ρ + γ  τ  

  (1) 

as if it were a series of two contributions. In this equation, 
which holds for heterocontacts, the first term is the Sharvin 
resistance SR , where ,min ,1 ,2= min [ , ]F F Fk k k , a is the 
contact radius, and τ is a function of the Fermi velocities 

,1Fv  and ,2Fv . The second term accounts for the Maxwell 
contribution to the contact resistance, MR , and contains the 
resistivities of both the banks of the junction. The prefactor 

( / )aγ   is a slowly varying function of the Knudsen ratio, 
that we will approximate to unity. As pointed out in Ref. 3, 
this way of writing the Maxwell resistance is not complete-
ly accurate since it intrinsically contains contributions from 
both the region of the contact and regions of the material 
far from the contact. As a first approximation, we will 
however disregard this detail. Eq. (1) properly accounts for 
the prevalence of the Sharvin term ( 2a−∝ ) or of the Max-
well one ( 1a−∝ ) depending on the values of the contact 
size a. As long as the superconducting bank is in the zero-
resistance state, 2 = 0ρ  and only a contribution containing 
the (usually negligible) resistivity of the metallic counter 
electrode is present. However, as noted in Ref. 10, the con-
tribution of 2ρ  appears as soon as the superconductor is 

driven to the resistive state in the region of the contact by 
the current flowing through it. Owing to the characteristic 
shape of the –V I  curve of a superconductor, the resistivity 
of the material is zero for = 0I , shows a peak at a current 
close to cI  and then decreases smoothly to a value different 
from zero. In Ref. 10, Sheet et al. were able to show that, 
by assuming a “model” –V I  curve for the superconductor, 
the current dependence of the Maxwell term gives rise to 
typical “dips” in the differential conductance of the point 
contact, in addition to the structures associated to Andreev 
reflection at the N/S interface. The fit of the Andreev-
reflection spectra (including the dips) with a 2D BTK 
model [13–15] (that is actually designed for ballistic con-
tacts) was shown to give rise to an overestimation of the 
gap amplitudes. 

In this paper, we will use a similar approach, but we 
will go further. As a matter of fact, we will develop an 
analytical, phenomenological model to reproduce the real-
istic shape of the –V I  curve of the superconductor, and 
show that, by properly inserting the corresponding dV/dI in 
the expression of the point-contact differential conduct-
ance, it is possible not only to fit experimental Andreev-
reflection spectra that present the dips, but also to recover 
the proper values of the gaps. This approach has the ad-
vantage that, by adjusting the parameters that control the 
critical current and the shape of the Maxwell resistance as 
a function of temperature, it is possible to fit the spectra at 
various temperatures and in different materials. 

2. The model for the Maxwell resistance as a function of 
current 

In Ref. 6, the differential resistance of a Ba(Fe, Co)2As2 
thin film was directly measured as a function of tempera-
ture. We found a functional form that is able to mimic ra-
ther well the shape of these experimental dV(I)/dI curves: 

 
12

( ) = =
n n

c c
s

I IdVR I A B
dI I I

−
      − +           

  

 (1 / )cut
0

1
1 e

I

k I IC dI
− −

+
+∫ , (2) 

where A, B , n, C , k , and cutI  are parameters that control 
different details of the shape of the curve, and cI  is the 
critical current. For the temperature dependence of the cri-
tical current cI , we used the expression 

 
1/22 4

( ) = (0) 1 1c c
c c

T TI T I
T T

      
   − −   
         

 (3) 

taken from Ref. 16, where (0)cI  is the critical current at 
zero temperature. 
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In order to explain the role of the various parameters, 
it is worth analyzing some theoretical curves generated 
by using this model. Figure 1(a) shows some curves, all 
having the form of Eq. (2), that fit almost perfectly the 
experimental curves reported in Ref. 6; the relevant ( )V I  
curves, obtained by integration, are instead shown in Fig. 1(b). 
The functional form of Eq. (2) is clearly able, with a suita-
ble tuning of the parameters, to reproduce the temperature 
dependence of the spreading resistance as a function of the 
current. In particular, the first term in Eq. (2) reproduces 
the peak and the following decrease at high currents of the 
differential resistance. The second term, proportional to C , 
is the integral of a sigmoid and just provides a linear term 
at low current, that saturates to a constant value cutCI  at 

cut>I I  (in all curves of the figure, cut 0.7 cI I
). This lin-

ear term is more and more important when the temperature 
is increased and allows the reproduction of the fast in-
crease in sR  at currents smaller than cI  which is observed 
at high temperature. The parameter cI  is the critical cur-
rent, here defined as the current that, in the ( )V I  curves 
[Fig. 1(b)] marks the transition from the thermally-assisted 
flux flow (TAFF) regime to the flux creep regime [8]. This 
corresponds to the departure of the curves of Fig. 1(b) from 
the low-current linear behavior. The width of the peak in the 
differential resistance curves of Fig. 1(a) is controlled by the 
parameter n, while its height is essentially determined by A. 
All the curves tend to a finite and constant value of resistance 
(that we will call R∞ in the following) which is related to the 
value of the parameters B  and C . If = 0C , 1=B R−

∞ , while if 
0C ≠ , the additional linear term gives rise to a constant con-

tribution to R∞ equal to cutCI . As for the parameter k , it was 
always about 6.2 in all the curves of Fig. 1. 

3. Fit of the experimental spectra 

Once understood that the functional form of Eq. (2) is 
sufficiently flexible to reproduce the shape of the ( )V I  
and ( )sR I  curves experimentally measured in a given ma-
terial, we tried to apply it to the fit of the experimental 
dI/dV spectra, shown in Fig. 2, that were measured in a 
Mg0.85Al0.15B2  single crystal, and that present very clear 
dips. Note that: i) the material is completely different from 
the iron-based compound in which the ( )sR I  curves we used 
to construct the model were measured; ii) our sample is a 
single crystal and not a film; iii) we are going to use the 
model of Eq. (2) to mimic the current dependence of the 
Maxwell term MR  in the contact (and not the onset of the 
spreading resistance 2R  associated to the resistive state of 
the film, as in Ref. 6). Despite the model being used in com-
pletely different conditions from those which led to its de-
velopment, we will show that it provides excellent results. 

The spectra of Fig. 2 were measured in a single crystal 
of Mg1−xAlxB2 with x = 0.15, grown by using the high-
pressure cubic anvil technique described in Ref. 17 and by 
optimizing time, pressure and temperature to avoid any phase 
segregation up to x = 0.32. Indeed, no impurities, twins or 
intergrowing crystals were detected [18]. Due to the diffi-
culty in obtaining significant Al doping levels in MgB2, 
some small inhomogeneity of the doping content can be 
expected. The high quality of the crystals allowed us to ob-
tain spectroscopic contacts and textbooklike PCARS spec-
tra, from which we could extract the energy gaps as a func-
tion of the doping content [18]. The curves shown in Fig. 2 
are instead “non-ideal” spectra that were already shown, 
although with a vertical offset, in Ref. 2 as a perfect example 

Fig. 1. (Color online) (a) Differential resistance dV/dI as a function of the current intensity I  for different values of / (0)c cI I , generated 
by our model in order to fit the experimental curves of Ref. 6. Here, (0) = 85cI  mA. The correspondence between / (0)c cI I  and / cT T  is 
constructed by assuming a typical behavior of the critical current as a function of temperature [Eq. (3)]. (b) The corresponding ( )V I  
characteristics, obtained by integration. The critical current cI  that appears in the model corresponds to the current at which the –V I  
curves crossover from the almost linear TAFF regime to the typical superlinear flux creep regime [8]. 
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of the temperature dependence of the dips. Here, the absence 
of any offset allows for appreciating the position of the nor-
mal-state conductance curve with respect to the superconduct-
ing ones. Here, the Andreev-reflection features completely 
disappear somewhere between 25.37 and 25.73 K, and we 
thus defined = (25.5 0.15) KA

cT ± . By the way, the onset of 
the superconducting transition in this crystal was at 

= 27.8on
cT  K: this difference may be ascribed to the afore-

mentioned inhomogeneity in the Al content, but also to a 
small heating in the contact [1, 19], which is expected to take 
place as soon as the Maxwell term appears. It is clear from 
Fig. 2 that, at low temperature, the high-energy tails of the 
experimental curves still tend (from above) to the experi-
mental normal-state conductance, despite the presence of 
clear dips between 5.0 and 7.5 mV. However, above 20 K, 
the high-energy tails lie below the normal state at cT . This 
is clearly due to the breakdown of superconductivity in the 
bulk, i.e., the effect described and treated by Döring et al. 
[6] that we are not considering here. Therefore, if we want 
to concentrate on the curves that only present dips due to 
the Maxwell term, we have to focus on the range of tem-
peratures between 4.2 and 18.14 K. 

Let us thus use Eq. (2) to model the current dependence 
of the Maxwell resistance MR  that, according to Eq. (1), 
can be considered to be in series with the contact resistance. 
Therefore, we can compute the ( )MR I  curve, which clearly 
depends on the parameters listed above. 

Then, we calculate the theoretical normalized conduct-
ance associated to Andreev reflection in the contact, BTKσ , 
according to the 2D BTK model [13–15] generalized to the 
case of two gaps [2, 20] since the material under study is 
Al-doped MgB2 [17, 18]. The parameters required to cal-
culate BTKσ  are the gap amplitudes 1∆  and 2∆ , the barrier 
parameters 1Z  and 2Z , the broadening parameters 1Γ  and 

2Γ , and the relative weight of the contribution of the first 
gap to the spectra, 1w  (such that 2 1= 1w w− ). The calculat-
ed theoretical normalized curve, BTKσ , must then be multi-
plied by the normal-state conductance in order to get the 
unnormalized differential conductance. However, one can-
not use for this purpose the actual normal-state conduct-
ance exp

nG  because the appearance of an additional re-
sistance in series with the Sharvin one [when 2ρ  starts to be 
different from zero, see Eq. (1)] not only makes the meas-
ured resistance of the whole series increase (thus shifting the 
normal-state conductance curve downwards [4, 5]) but also 
makes the experimental voltage expV  be different from the 
voltage drop across the contact [3, 6, 10], cV , because 

 exp
0

( ) = ( ) ( )
I

c MV I V I R I' dI'+ ∫ . (4) 

The stretching of the voltage scale, together with the 
downward shift due to the additional MR  term, implies that 
the experimental normal-state conductance exp

nG  is small-
er, and extended to higher voltages, than the hypothetical 
normal-state conductance curve that one would measure if 
the contact was ballistic, i.e., ideal

nG . However, the "ideal" 
normal-state conductance can be reconstructed by invert-
ing the experimental one, subtracting R∞, and correcting 
the voltage scale according to Eq. (4). 

The unnormalized BTK conductance of the junction 
is thus 

 ideal( ) = ( ) ( ).c BTK c n c
c

dI V V G V
dV

σ  (5) 

This, once inverted (to get the unnormalized BTK re-
sistance) and expressed as a function of the current, can be 
summed to the Maxwell term ( )MR I , thus providing the 
total resistance of the series. This result must be inverted 
again, giving the total conductance (including the dips). At 
the end of the process, one can express the total differential 
conductance as a function of the total voltage. This curve 
can be directly compared to the experimental unnormalized 
conductance as a function of expV . It is thus possible to find 
the best set of parameters that makes the theoretical curve 
properly fit the experimental one. 

Figure 3(a) reports the results of the fit of the raw con-
ductance curves of Fig. 2, up to 18.1 K. The symbols rep-
resent the experimental curves and the lines the fitting 
functions. For the sake of comparison, panel (b) of the 
same figure displays the fit one would obtain by using the 
two-band, 2D BTK model, without accounting for the dips. 
The quality of the fit in Fig. 3(a) is extremely good despite 
the fact that the functional form of the Maxwell term [Eq. (2)] 
was taken from the experimental ( )sR I  curves of a film of 
a completely different material. This suggests that the 
functional form of Eq. (2) is very general, and can be 
adapted (by suitably choosing the parameters) to different 
cases. On the contrary, the fit shown in Fig. 3(b) is reliable 

Fig. 2. (Color online) Experimental unnormalized spectra mea-
sured in a point contact on a Mg0.85Al0.15B2 single crystal at dif-
ferent temperatures. The onset of the resistive transition of the 
crystal was = 27.8 Kon

cT  while the Andreev-reflection signal 
disappears at = (25.5 0.15) KA

cT ± . 
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at low temperature, when the dips fall at an energy slightly 
larger than the large gap, but becomes more and more 
meaningless on increasing the temperature, since the dips 
shift to lower voltages and end up by heavily interfering 
with the gap structures. 

The values of the gap amplitudes extracted from the fit of 
the experimental conductance curves are shown in Fig. 4(a). 
The model that includes dips gives the gap amplitudes 1∆  
(the smaller) and 2∆  (the larger), indicated by solid sym-
bols, which follow rather well a BCS-like trend (dashed 
lines). The fit with the 2D BTK model alone, instead, pro-
vides the same values of the gap amplitudes only at 4.2 K. 
On increasing the temperature, the large gap 2∆  (red open 
circles) immediately decreases, because of the shift of the 

dips to lower energies; the uncertainty on the amplitude of 
2∆  becomes larger than 2∆  itself already at 8.3 K, and at 

higher temperatures the large gap is completely undeter-
mined (the fit converges to a small value of 2∆ , but with a 
huge uncertainty, meaning that the fit is possible as well 
with a single gap). The values of the small gap (black open 
squares) do not deviate very much from those provided by 
the model with dips, just because 1∆  is much less affected 
by the presence and the displacement of the dips. 

Figures 4(b) and 4(c) report the temperature depend-
ence of the other fitting parameters contained in the 2D 
BTK part of our model. The broadening parameter 1Γ , 
associated with the small gap, remains practically constant 
around 0.4 meV, and is thus much smaller than the gap 
amplitude 1∆ ; it just had to be slightly decreased at the 
highest temperature. 2Γ , associated with the large gap, is 
much smaller than 2∆  in the whole temperature range, and 
increases from 1.2 meV at 4.2 K to 1.4 meV at 18.1 K. The 
barrier parameters, in principle, should not change with 
temperature, being related to the potential barrier at the 

Fig. 3. (a) (Color online) As-measured, unnormalized differential 
conductance dI/dV of a soft point contact on Mg0.75Al0.25B2 sin-
gle crystal, at different temperatures (symbols) together with the 
relevant fits (solid lines) that include both Andreev reflection and 
the current-dependent Maxwell term. The dashed horizontal line 
is the normal-state conductance at = 25.7T  K. All the curves have 
been vertically offset for clarity, apart from the lowest-temperature 
one (black symbol) and the normal-state one. (b) Experimental point-
contact curves, normalized to the actual normal-state conductance 
at = 25.7T  K, vertically offset for clarity and fitted to the standard 
2D BTK model. 

Fig. 4. (Color online) (a) Temperature dependence of the energy 
gaps used to fit the experimental conductance curves. Solid sym-
bols indicate the gaps obtained by using the 2D BTK model in-
cluding dips [as in Fig. 3(a)], while open symbols represent the 
gaps obtained by using the 2D BTK model alone [as in Fig. 3(b)]. 
The dashed lines indicate the BCS-like temperature dependen-
cies. (b) Temperature dependence of the broadening parameters 

1Γ  and 2Γ . (c) Temperature dependence of the barrier parameters 

1Z  and 2Z . Lines in (b) and (c) are just guides to the eye. 
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interface and to the mismatch of Fermi velocities on the 
two banks [1, 2]. Indeed, 2Z  is perfectly constant and equal 
to 0.3; 1Z  instead had to be slightly reduced on increasing 
temperature to perfectly fit the low-bias region of the 
curves (the maximum variation is however < 16%). By the 
way, the same fitting parameters acquire non-physical val-
ues in the case of the pure 2D BTK model, further indicat-
ing its inadequacy. In particular, 2Γ  is almost zero at low 
temperature and jumps to 5 meV already at 12.2 K, while 

1Γ  is about 0.5 meV at low temperature and decreases to 
zero on increasing the temperature. In either case (i.e., 2D 
BTK model, or model with dips) we kept the weight 1w  
constant at all temperatures. In particular, 1 = 0.724w  in 
the fit with dips, and 1 = 0.892w  in the 2D BTK fit. 

As for the parameters that control the shape of the Max-
well resistance as a function of temperature, we fixed 
the values of some of them in order to reduce as much as 
possible their number. First of all, with reference to Eq. (2), 
we kept = 0C . This means that, unlike in the case shown in 
Fig. 1, the fit did not require any low-current linear behavior 
of the ( )R I  curves. The fact that = 0C  also implies that the 

parameters k  and cutI  do not appear any longer, and that 
1=B R−

∞ . This is fixed by the vertical shift of the conduct-
ance in the normal state, due to the additional Maxwell term. 
This value was kept constant as a function of temperature, 
i.e., = 0.26R∞ Ω  that implies 1= 3.846B −Ω . Therefore, 
the only parameters that we changed as a function of tempera-
ture are A, n and cI , and their behavior is shown in Fig. 5. In 
particular, cI  decreases monotonically as a function of tem-
perature [solid symbols in Fig. 5(a)] with a trend that can be 
very well fitted by the temperature dependence of Eq. (3). 
The fit of the data points with that function provides 

( = 0) = (0.4 A70 0. m004)cI T ± , and = (29.0 0.3) KcT ± . 
The critical temperature is higher than the experimental A

cT , 
and also than the temperature at which the superconducting 
transition starts ( on = 27.8 KcT ). This mismatch can be 
partly due to the heating effect in the contact [1, 19], but it 
may also arise from the fact that MgB2 being a two-band 
superconductor, Eq. (3) may not perfectly reflect the tem-
perature dependence of the critical current [21]. Note that 
the values of cI  here obtained represent the values of the 
current in the contact that makes the resistivity of the mate-
rial become different from zero (because of vortex motion). 
As for the other parameters of Eq. (2), Figs. 5(b) and 5(c) 
show that n increases by 17% on increasing the tempera-
ture, i.e., from 2.25 to 2.65, while A decreases as a func-
tion of T , from 3.61 to 2.95 (thus changing by about 18%). 
This behavior suggests some interplay between A and n 
and, indeed, their product is almost constant, ranging from 
8.12 K at 4.2 K to 7.82 K at 18.1 K. 

Overall, accounting for the dips required three parame-
ters in addition to those included in the two-band, 2D BTK 
model. However, these parameters control the shape and 
the position of the dips and, once adjusted so as to obtain a 
very good fit to the experimental curve, allow obtaining 
the value of the large gap 2∆  even though the structures 
associated to this gap are visibly eroded by the dips. Note 
that the case-study we have chosen here is actually a par-
ticularly critical one since, even at the lowest temperature, 
the dips are very close to the large-gap structures. In many 
cases, fortunately, the dips lie far apart from the gaps at 
low temperature and start to interfere with them only at 
higher temperatures. In these cases, the use of this model 
can allow determining the gaps in a wider temperature 
range than the standard 2D BTK model. 

4. Conclusions 

It is rather common, especially in superconductors with 
small mean free path, to obtain Andreev-reflection spectra 
that display, in addition to the gap structures, typical dips 
that have been associated to the onset of a Maxwell contri-
bution to the contact resistance. This, in turn, occurs when 
the injected current makes the material become resistive. 
The presence of dips heavily complicates the process of 
normalization of the spectra, and may prevent their fit with 
standard models for Andreev reflection, such as the BTK 

Fig. 5. (a) Temperature dependence of the critical current in the con-
tact region as extracted from the fit of the conductance curves (sym-
bols) and the relevant fit with the theoretical ( )cI T  curve [Eq. (3)]. 
The fitting is almost perfect, with (0) = (0.47 A0 0.0 m04)cI ± , and 

= (29.0 0.3)cT ±  K. (b) Temperature dependence of the parameter 
n  that enters Eq. (2). (c) Temperature dependence of the parame-
ter A that enters Eq. (2). Dashed lines in (b) and (c) are just 
guides to the eye. 
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[13] model or its generalizations [14, 15]. Here, we found a 
phenomenological functional form for the resistance of a 
superconductor as a function of current that is able to re-
produce experimental measurements at different tempera-
tures [6]. Then, we showed that the inclusion of this term 
in the expression of the differential conductance of a point 
contact, together with the model for Andreev reflection, 
allows a very good fit of the experimental spectra without 
requiring their normalization. The fit provides a corrected 
value of the energy gaps and also allows obtaining the 
temperature dependence of the critical current intensity in 
the contact. 
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Моделювання ефектів критичного струму 
в мікроконтактній спектроскопії андреєвського 

відбиття 

Dario Daghero, Erik Piatti, Nikolai D. Zhigadlo, 
Renato Gonnelli 

Добре відомо, що мікроконтактна спектроскопія андреєв-
ського відбиття забезпечує надійні вимірювання енергетичної 
щілини (щілин) у надпровіднику, коли контакт знаходиться в 
балістичному або дифузійному режимі. Однак, особливо коли 
довжина вільного пробігу у досліджуваному матеріалі є малою, 
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A model for critical current effects in point-contact Andreev-reflection spectroscopy 
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отримання балістичних контактів може бути серйозною про-
блемою. Одним із ознак «максвеллівського» внеску до контакт-
ного опору R є наявність «провалів» у диференціальній провід-
ності, пов’язаних із раптовою появою «максвеллівського» члена 
у зв’язку з досягненням критичного струму матеріалу в контак-
тній області. Тут ми показуємо, що, використовуючи відповідну 
модель для R(I) досліджуваного матеріалу, можна підігнати 
експериментальні криві (без необхідності нормалізації) та отри-

мати правильні значення амплітуд щілин навіть за наявності 
таких провалів, а також температурну залежність критичного 
струму в контакті. Нами представлено перевірку процедури у 
випадку спектрів андреєвського відбиття в монокристалах 
Mg0,75Al0,25B2. 

Ключові слова: мікроконтактна спектроскопія, андреєвське 
відбиття, критичний струм.
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