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A B S T R A C T

A comparison of several classifiers is presented, with a focus on the key choice and construction of a minimal
set of suitable material features. To this end, an investigation is conducted over a properly selected and high
quality database reporting low temperature superconductors, featurized by composition-based descriptors.
Fully general strategies to reduce the number of descriptors for material classification are proposed and
discussed. The first strategy aims at testing possible invariance of the target material property (here the
critical temperature) with respect to (binary) groups of composition-based features in the form 𝑥𝑎𝑖 𝑥

𝑏
𝑗 , 𝑎, 𝑏 ∈ R.

In addition, a multi-objective optimization procedure for reducing the set of composition-based material
descriptors is also suggested and tested on the chosen use case. The latter procedure is then proven to be
particularly convenient to be used in combination with Bayesian type classifiers. Finally, by means of the
best-performing classification models, an analysis is conducted over all the ∼ 40, 000 inorganic compounds
without Ni, Fe, Cu, O in Materials Project (and not in the SuperCon database, here used for model training)
and the corresponding predictions are provided. Among those, 41 materials are classified to show 𝑇c ≥ 15K
with a probability higher than or equal to 0.6.
1. Introduction

Construction of reliable and predictive models for material prop-
erties is becoming an aspect of general interest in a number of areas.
With a special focus on materials for energy applications, the in silico
prediction of physical properties without resorting to time consuming
simulations or expensive experiments is of utmost importance. One of
the reason being that low-cost, long-lasting materials with high perfor-
mance is key for energy storage technologies, as it may be responsible
from most of the total cost [1].

A number of technological areas ranging from the energy up to
healthcare sector are being transformed by superconducting materials
and may greatly benefit from the discovery of new high performance
materials. Superconductors are materials characterized by zero electri-
cal resistivity when cooled below a superconducting critical tempera-
ture 𝑇c [2]. Due to this fundamental property, such compounds have
attracted attention in a wide range of different fields. Superconducting
Magnetic Energy Storage (SMES) systems allow to store energy by
means of a DC current flowing through a superconducting coil; as a
consequence, energy can be stored in the resulting magnetic field with
almost no loss and can be released back by discharging the coil [3].
Superconducting electromagnets are employed in fusion reactors like

∗ Corresponding author.
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tokamak [4], Magnetic Resonance Imaging (MRI) [5,6], Nuclear Mag-
netic Resonance (NMR) machines [7,8], particle accelerators [9]. Other
applications include Superconducting Quantum Interference Devices
(SQUIDs) [10], particle detectors [11], fast fault current limiters [12].
As such, discovery of new superconductors in the near future is highly
desirable and can have a crucial impact on the energy sector (among
others).

Therefore, several recent research studies have made extensive
use of Machine Learning (ML)-based approaches. In particular, Stanev
et al. [13] trained and validated models both for classification–prediction
of the classes superconductor/non-superconductor - and for regression-
prediction of the critical temperature, employing composition-based
features together with the experimental 𝑇cs of known superconduc-
tors. Konno et al. [14] represented each chemical formula with four
tables, corresponding to the periodic table blocks 𝑠, 𝑝, 𝑑, 𝑓 , with
such information being the input of a convolutional Deep Neural
Network (DNN) able to predict the critical temperature. Le et al. [15]
trained and validated a Variational Bayesian Neural Network using
superconductors composition-based features for the 𝑇c prediction. Roter
et al. used only chemical elements and stoichiometry, with no ex-
tracted features, to predict the critical temperature [16] and to cluster
superconductors [17].
vailable online 6 July 2023
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Fig. 1. Overview of the protocol used to find a reduced set of ruling descriptors for conventional superconductivity and for the construction of optimized mixed features. Over
7000 chemical compositions were featurized with 145 descriptors. A regression model has been trained and validated over this dataset, and during the pre-processing routines
(i.e., feature reduction by means of linear correlation analysis, descriptors variance analysis, correlation analysis with the 𝑇c, see Supplementary Note 4 for details), many of those
features are discarded, ending up with 81 descriptors. By means of SHAP, those 81 features are ranked in terms of importance. The work aimed at finding optimized mixed features
for both regression/classification in the form 𝑥𝑎𝑖 𝑥

𝑏
𝑗 ; and for classification, with power or linear combination of the primitive features. The latter descriptors were tested over both

new entropy-based classifiers and other classifiers.
In this work, the focus is deliberately directed to classical low
temperature superconductors, given the possibility to rely upon a high-
quality database [18]. In light of this, during the data collection process
from the database for training purposes, the exclusion of all materials
containing the elements Fe, Ni, and Cu was implemented (to prevent
unconventional superconductivity [19]). Furthermore, the removal of
materials containing oxygen was also carried out to avoid oxides and
increase the likelihood of including materials in this analysis that are
more prone to exhibit ductile behavior.

After the extraction of 145 composition-based features by means
of Matminer [20] for each material formula, a tree-based regression
model was trained and validated for the prediction of the critical
temperature, over which insights were obtained of the most important
features by means of SHAP [21–23]. Based on those features, several
binary classifiers are thus compared, to distinguish compounds with the
critical 𝑇c exceeding a predefined threshold value from the remaining
samples.

A special focus of this study is on the identification and construction
of a minimal and optimal set of key material descriptors (or features) to
be adopted for classification purposes. To this end, two main strategies
were pursued as briefly described below and schematically represented
in Fig. 1:

• First, the aforementioned SHAP analysis was performed, estab-
lishing a descriptor ranking based on the relevance of single
features {𝑥𝑖=1,…,𝑛}, where 𝑛 is the maximum number of adopted
features;
2

• In the spirit of the work by Tegmark and collaborators [24], a
general approach is proposed for investigating possible symme-
tries of the target quantity (here 𝑇c) with respect to groups of
the originally chosen features (according to the order suggested
by SHAP). Without loss of generality, the focus is on feature
binary groups in the form 𝑥𝑎𝑖 𝑥

𝑏
𝑗 , with 𝑎, 𝑏 ∈ R being properly

selected constants. To this end, a proper algorithm based on the
computation of the output gradient with respect to the input
features by means of a Deep Neural Network (DNN) is discussed.

• Ultimately, a general framework for drastically reducing the
number of the classifier features is proposed in the form of
both single and multi-objective optimization problem. Among
other purposes, the latter approach proves particularly conve-
nient to synthetically construct new descriptors particularly suited
for Bayesian type classifiers, including a novel entropy-based
classifier introduced and tested in this work.

Finally, the classifiers with the best performance was employed to
rank ∼40,000 compounds from Materials Project [25] and not occurring
in the SuperCon.

2. Methods

2.1. Dataset creation

First, the focus is directed towards the construction of a database
suitable for ML regression to predict the critical temperature. In par-
ticular, the SuperCon database [18] collects both inorganic (under the
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class ‘‘Oxide and Metallic’’) and organic materials (under the class
‘‘Organic’’). Only the entire subset of inorganic compounds was con-
sidered, consisting of ∼33,000 entries, of which ∼7000 have no 𝑇c; for
those latter compounds, 𝑇c = 0K was assumed. All materials whose
formulae contain symbols like ‘−’, ‘+’, ‘,’, strings like ‘X’, ‘Z’, ‘z’ when
not included in meaningful elements symbols (e.g., ‘Zn’), and with
𝑇c > 150K, were dropped. Those exclusions resulted in a reduction of
the number of compounds to ∼26,000. Furthermore, after normalizing
the formulae stoichiometry, the same approach explained by Stanev
et al. [13] was used for dealing with the duplicates. In particular,
when the same compound was reported with different 𝑇c values, it was
retained with the average critical temperature only if std(𝑇c) ≤ 5K,
otherwise all of its occurrences were dropped, ending up with ∼16,000
unique compounds. Moreover, only the classical superconductivity was
taken into account, by dropping materials with Ni, Fe, Cu and O
(to avoid oxides). Finally, four outliers with 𝑇𝑐 > 50K are dropped
(see Supplementary Note 6 for details). These latter steps left ∼7200
materials for classical superconductivity, of which ∼6700 have 𝑇c <
5K. Those cleaning pre-processing were addressed by employing the
ython Pandas package [26].

Each brute formula was thus converted into 145 composition-based
escriptors by means of Matminer [20]. Specifically, as stated by
ard et al. [27], they include stoichiometric attributes (depending on

he elements’ ratios), elemental property statistics (representing mean,
bsolute deviation, minimum and maximum of 22 atomic properties,
.g., atomic number, atomic radii), electronic structure attributes (cor-
esponding to the average fraction of electrons in s, p, d, f valence shells
ver all the elements in the compound) and ionic compound attributes
including whether it is possible to form an ionic compound assuming
ll elements are present in a single oxidation state).

.2. Regression models and descriptors choice

As a second step, two different regression ML models were trained
nd validated models for the prediction of the critical temperature.
he former is a tree-based model, allowing the exact computation of
he coefficients of importance in terms of the 𝑇c by means of the Tree
HAP interpretation algorithm [21,22]. The latter is a Deep Neural
etwork (DNN), allowing the computation of the gradient of the critical

emperature with respect to the input features, namely ∇𝑇c(𝑥1,… , 𝑥𝑛),
hich is necessary for the identification of the invariant groups in the

orm 𝑥𝑎𝑖 𝑥
𝑏
𝑗 .

Specifically, the former model is an ETR-based pipeline, with hyper-
arameter tuning in 5-fold cross validation, trained over the 85% of the
ataset and tested over the remaining 15%. The latter is a DNN trained
nd validated over the 85% of the database – of which the 85% was
sed for the training and the remaining 15% for the validation – and
ested over the remaining 15%. For further details about the regression
odels, please refer to Supplementary Notes 3 and 4.

.3. Invariant groups identification procedure

For the identification of the invariant binary groups in the form 𝑥𝑎𝑖 𝑥
𝑏
𝑗

he following procedure was applied.
The critical temperature is a function of more variables, namely

c = 𝑇c(𝑥1,… , 𝑥𝑛). If 𝑇c is invariant with respect to a group of features
n the form 𝑥𝑎𝑖 𝑥

𝑏
𝑗 , when this group is a constant 𝑐 – even varying the

components 𝑥𝑖, 𝑥𝑗 separately – the critical temperature does not change
as well. This yields

𝑎 ln(𝑥𝑖) + 𝑏 ln(𝑥𝑗 ) = 𝑐 (1)

where 𝑐 = ln(𝑐). If 𝑐 is constant, d𝑐 = 0; so, Eq. (1) can be rewritten as,

d𝑥𝑖 + 𝑏
d𝑥𝑗 = 0. (2)
3

𝑥𝑖 𝑥𝑗
An orthogonal vector 𝐧 to the locus of points with d𝑐 = 0 in a point 𝐱0 =
(𝑥𝑖,0, 𝑥𝑗,0) has components (𝑎∕𝑥𝑖,0, 𝑏∕𝑥𝑗,0), which normalized becomes
he following unit vector:

̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎

𝑥𝑖,0

√

(

𝑎
𝑥𝑖,0

)2
+
(

𝑏
𝑥𝑗,0

)2
, 𝑏

𝑥𝑗,0

√

(

𝑎
𝑥𝑖,0

)2
+
(

𝑏
𝑥𝑗,0

)2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (3)

The condition of invariance with respect to the group 𝑥𝑎𝑖 𝑥
𝑏
𝑗 requires

that the components of the gradient ∇𝑇c(𝑥1,… , 𝑥𝑛) are aligned with �̂�
in 𝐱0. This yields the system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝜕𝑇c
𝜕𝑥𝑖

)

𝐱0
− �̂�1 = 0

(

𝜕𝑇c
𝜕𝑥𝑗

)

𝐱0
− �̂�2 = 0

(4)

where
(

𝜕𝑇c
𝜕𝑥𝑖

)

𝐱0

=
(

𝜕𝑇c
𝜕𝑥𝑖

)

𝐱0

(

(

𝜕𝑇c
𝜕𝑥𝑖

)2

𝐱0
+
(

𝜕𝑇c
𝜕𝑥𝑗

)2

𝐱0

)−1∕2

(

𝜕𝑇c
𝜕𝑥𝑗

)

𝐱0

=
(

𝜕𝑇c
𝜕𝑥𝑗

)

𝐱0

(

(

𝜕𝑇c
𝜕𝑥𝑖

)2

𝐱0
+
(

𝜕𝑇c
𝜕𝑥𝑗

)2

𝐱0

)−1∕2 (5)

and �̂�1, �̂�2 represent the two components of the unit vector �̂�. If the non-
linear system in Eq. (4) is satisfied for the same exponents (𝑎, 𝑏) over
all the domains of the variables (𝑥𝑖, 𝑥𝑗 ) - namely 𝑥𝑖,min ≤ ∀𝑥𝑖 ≤ 𝑥𝑖,max
nd 𝑥𝑗,min ≤ ∀𝑥𝑗 ≤ 𝑥𝑗,max - the group 𝑥𝑎𝑖 𝑥

𝑏
𝑗 is an intrinsic variable.

From the practical viewpoint, this has required the computation
of the gradient ∇𝑇c(𝑥1,… , 𝑥𝑛), where the function 𝑇c(𝑥1,… , 𝑥𝑛) is rep-
resented by the DNN – built by means of Tensorflow [28] – linking
the critical temperature with the input features. In particular, once
the network was trained and validated, an automatic differentiation
was employed to compute those partial derivatives. Specifically, for
getting e.g.,

(

𝜕𝑇c
𝜕𝑥𝑗

)

over all the domain of the variable 𝑥𝑗 , all the other
variables (𝑥1,… , 𝑥𝑗−1, 𝑥𝑗+1,… , 𝑥𝑛) were fixed to their average values in
the original database. Finally, for each group of two features 𝑥𝑖 and 𝑥𝑗 ,
the values of 𝑎 and 𝑏 were computed 100 different times respectively,
comparing them for getting insight of possible invariance. The above
approach was tested in the Supplementary Note 2 by means of properly
designed synthetic example.

2.4. QEG-based probabilistic classifier

In addition to more classical classifiers, an attempt was made to
construct a maximum Shannon entropy-based probabilistic classifier
employing the notion of Quasi Equilibrium Manifold as defined in
[29,30] and implemented in the discrete version of the Quasi Equilib-
rium Grid (QEG) as discussed in [31–34]. The main idea is described be-
low. Given a number 𝑠 of important descriptors, those features from the
original dataset were first discretized by means of a 𝑠−dimensional bin-
ning, where each descriptor accounts for a number of bins 𝑁1,… , 𝑁𝑠.
The aim was thus to build a probability distribution 𝑝(𝑥1,… , 𝑥𝑠) having
the same mean vector and covariance matrix of the original binned
data; among the infinite distributions respecting those bounds, this
methodology focuses on the one maximizing the Shannon Entropy.
Given the total number of 𝑠 − dimensional bins 𝑁 = 𝑁1 × ⋯ × 𝑁𝑠, the
general idea consists in starting with a flattened probability distribution
𝐩0 = (𝑝1,… , 𝑝𝑁 )0 and ending up with a corrected distribution, which
respects the imposed constraints of mean vector and covariance matrix.
The QEG guarantees that, if 𝐩0 lies on the surface of maximum Shannon
Entropy, also any corrected distribution will lie on the same surface. For
this reason, 𝐩0 as the uniform distribution was always chosen, where
each entry is 1∕𝑁 .
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Fig. 2. Results of the ETR model. a Predictions and b corresponding normalized cumulative curve for the coefficients of importance. Model performances are shown in terms of
coefficient of determination 𝑅2, mean absolute error (MAE), and root mean squared error (RMSE), with the size of training and testing sets 𝑁train and 𝑁test , respectively.
Table 1
Relevant composition-based descriptors and their meaning [27].

Descriptor name Meaning

MagpieData range MeltingT Range of melting 𝑇 over the elements of a
compound

0-norm Number of different chemical species
MagpieData mode NdUnfilled Mode of 𝑑 unfilled orbitals over the elements
MagpieData mode NsUnfilled Mode of 𝑠 unfilled orbitals over the elements
MagpieData avg_dev MeltingT Average absolute deviation of melting 𝑇 over

the elements

To this end, the matrix 𝐦 ∈ R𝑙×𝑁 , where 𝑙 = (3𝑠+𝑠2)∕2 was defined.
The first 𝑠 rows of 𝐦 represent the binning of those 𝑠 descriptors. The
remaining 𝑙 − 𝑠 rows represent the covariance matrix entries of those
𝑠 descriptors; namely, given the integers 𝑖, 𝑗 ∈ [1, 𝑠], with 𝑖 ≥ 𝑗, the
generic row of 𝐦 among the last 𝑙− 𝑠 rows is the result of the element-
wise product (𝐦𝑖 − 𝜇𝑖)(𝐦𝑗 − 𝜇𝑗 ), where 𝜇𝑖, 𝜇𝑗 are the means of the 𝑖th
and 𝑗th descriptor respectively, while 𝐦𝑖,𝐦𝑗 are the 𝑖th and 𝑗th rows
of 𝐦 respectively. Furthermore, the matrix 𝐄 = (𝐦, 𝟏)⊤ was defined,
where 𝟏 = (1,… , 1) ∈ R𝑁 represents the normalization condition for
probability. Let denote the null space of 𝟏 with 𝝆 ∈ R𝑁×(𝑁−1) and the
null space of 𝐄 with 𝐭 ∈ R𝑁×(𝑁−𝑙−1). A square matrix 𝐀 ∈ R(𝑁−1)×(𝑁−1)

and a vector 𝐛 ∈ R𝑁−1 were constructed. For the first 𝑁 − 𝑙 − 1 rows,
the generic elements correspond to

𝐴𝑖𝑗 =
⟨

𝐭𝑖, ⟨diag(−1∕𝐩),𝝆𝑗⟩
⟩

𝑏𝑖 = ⟨(1 + ln(𝐩)) , 𝐭𝑖⟩
(6)

while for the remaining 𝑙 rows they are

𝐴𝑖𝑗 =
⟨

𝝆𝑗 ,𝐦𝑖
⟩

𝑏𝑖 = 0
(7)

where 𝐭𝑖, 𝝆𝑗 and 𝐦𝑖 are the 𝑖th column of 𝐭, the 𝑗th column of 𝝆 and
the 𝑖th row of 𝐦 respectively, 𝐩 represents the flattened probability
distribution at the current iteration step, ⟨⋅, ⋅⟩ denotes the dot product.

The correction procedure for the 𝑖th bound is carried out as follows:
(i) the starting point is computed as ⟨𝐦𝑖,𝐩⟩, (ii) the desired value is
computed as ⟨𝐦𝑖, �̃�⟩, where the 𝑗th entry of �̃� is the number of items
belonging to the 𝑗th 𝑠-dimensional bin over the total number of items
(namely, the frequency), (iii) the resulting residual is filled by solving
the system 𝐀𝑘𝐩𝑘+1 = 𝐛𝑘 iteratively, by replacing time by time 𝑏𝑁−𝑙−1+𝑖
with a correction step 𝜀, where 𝐩𝑘+1 = 𝐩𝑘 + 𝛿𝐩𝑘 and 𝛿𝐩𝑘 represents
the correction resulting from the 𝑘th iteration, (iv) when the correction
over the 𝑖th bound is complete, the correction over the 𝑖 + 1th bound
can start, by imposing 𝑏 = 0 and 𝑏 = 𝜀.
4

𝑁−𝑙−1+𝑖 𝑁−𝑙−1+𝑖+1
3. Results and discussion

As mentioned above, and in line with others in the literature
[13–17], a convenient source of data was adopted, namely the Super-
Con database [18] which collects the values of critical temperatures
𝑇c for superconducting materials known from literature. To the best of
the available knowledge, SuperCon turns out to be the largest database
of its kind, from which a list of ∼16,000 materials was extracted.
Beyond the 𝑇c values, the SuperCon database provides only the chem-
ical composition of a compound. The latter info was thus converted
into meaningful features by means of Matminer [20], allowing to
associate the normalized brute formula of each compound with 145
composition-based descriptors (see Methods for further details).

Armed with such features, one can compare the performance of
several classifiers aiming at predicting the probability for a compound
to be a superconductor candidate. In this study, known classifiers
are employed. In addition, a Bayesian type classifier based on the
concept of Quasi-Equilibrium Manifold [29,30,33] is also investigated,
as detailed above.

3.1. Models for predicting the critical temperature value

First, an Extra Trees Regressor (ETR)-based pipeline was trained
and validated, with hyperparameter tuning in 5-fold cross-validation
(see Supplementary Notes 4 and 7 for details). By means of the Tree
SHAP algorithm [21,22], the input features were sorted in terms of
their relevance with respect to the prediction of the 𝑇c. Model perfor-
mances with the corresponding cumulative importance curves of the
ruling descriptors are reported in Fig. 2. During the data preprocessing
routines, the trained pipeline (i.e., feature reduction by means of linear
correlation analysis, descriptors variance analysis, correlation analysis
with the 𝑇c and ML with hyperparameter tuning, see Supplementary
Note 4 for details) already drops a significant number of the 145
features, thus confirming that many of the initially selected descriptors
do not significantly affect the chosen target property. In particular, the
final model only includes 81 descriptors.

Importantly, Fig. 3 shows the SHAP rankings of the five most mean-
ingful descriptors for the aforementioned model. Table 1 summarizes
the physicochemical meaning of the identified descriptors, based on the
complete list by Ward et al. [27]. The entire list of variables, together
with their cumulative importance, the trained models, and the datasets
on which they have been trained are publicly available online (see Data
availability and Code availability).
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Fig. 3. The five most important features according to SHAP ranking for 𝑇c. For each feature (i.e., each line), 1084 dots are shown, representing the entire testing sets used for
computing the related SHAP values (impacts on the model output, horizontal axes); the color represents the corresponding feature value, the features are sorted according to the
mean over the absolute SHAP values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Results of the DNN regression model. a Predictions over the testing set and b corresponding loss curves for the DNN regression model. Model performances are shown
in terms of coefficient of determination 𝑅2, mean absolute error (MAE), and root mean squared error (RMSE), with the sizes of the training, the validation and the testing sets,
𝑁train, 𝑁val, 𝑁test respectively.
3.2. Invariant groups

In a first attempt of reducing the number of input features within
the above models, the possible existence of symmetries of the obtained
regression models was investigated. In particular, the focus has primar-
ily been directed towards investigating the potential invariance of the
target property (here the critical temperature) with respect to binary
groups of the form: 𝑥𝑎𝑖 𝑥

𝑏
𝑗 . This study is restricted to binary groups,

although there is confidence about the generalization of the approach
to groups concurrently involving a larger number of features. To this
end, as discussed in the Methods section below, it is necessary to
get access to the gradient of the critical temperature with respect to
the input features, namely ∇𝑇c(𝑥1,… , 𝑥𝑛). The function 𝑇c(𝑥1,… , 𝑥𝑛)
was thus approximated with a Deep Neural Network (DNN), which is
a convenient model allowing to compute that gradient by means of
automatic differentiation.

As input features of the DNN, the same 81 relevant descriptors of the
above ETR-based pipeline were employed. The dataset was thus split
into three parts: (i) a training set, (ii) a validation set to get insight
of possible overfitting, (iii) a testing set to effectively evaluate the
model performances. Fig. 4 shows the predictions over the testing set,
together with the model performances and the corresponding loss with
respect to the number of epochs. Specifically, no overfitting is found.
5

More details about the DNN structure are shown in the Supplementary
Note 3. Existence of possible invariant groups in the form 𝑥𝑎𝑖 𝑥

𝑏
𝑗 was

looked for among the 45 different combinations of the most relevant
10 features according to the SHAP-based ranking above. On the basis
of such investigations, it can be concluded that the critical temperature
of the examined materials presents no invariance with respect to the
tested binary groups.

3.3. Entropy-based binary classifiers

In this section, a special Bayesian type classifier is introduced
and tested, as detailed below. The first two features of the SHAP
ranking were considered for constructing a Shannon Entropy-based
probabilistic classifier according to the Quasi Equilibrium Grid (QEG)-
based procedure reported above in the Methods. In particular, those
two features were binned separately for superconductors with both
𝑇c < 15K (class 0) and 𝑇c ≥ 15K (class 1) among the 85% of
the materials – namely, the training set – thus obtaining the pair of
2 dimensional binnings in Fig. 5a. For each of those binnings, the
five needed constraints were computed, namely the means of those
two features and their three variance terms (see Methods). A surface
of maximum Shannon entropy was thus constructed for each of the
two classes by means of the QEG algorithm, as depicted in Fig. 5b.
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Fig. 5. Probabilistic classifier. a 2-dimensional binning, with 10 bins for the first variable and 5 bins for the second, of the two most relevant features 𝑥1 , 𝑥2 according to the
SHAP ranking for superconductors showing 𝑇c < 15K and 𝑇c ≥ 15K respectively among the training set (namely, 85% of materials); b QEG solution of corresponding maximum
Shannon entropy probability distribution; c QEG solution of corresponding maximum Shannon entropy probability distribution, bagged case.
Finally, probability distribution was computed by subtracting the QEG
solution for class 0 from the QEG solution for class 1 – both multiplied
by the cardinality of the corresponding class in the training set –
and up-shifting the result by the minimum, in such a way to have
probabilities ≥ 0. The latter distribution represents the 2 dimensional
QEG probabilistic classifier. Moreover, having in mind the idea of
Random Forests, which employ bagging (creation of more decision trees
and aggregation of the results by taking the mean) [35], 100 QEG 2D
distributions per class were produced, each based on a different random
subset of training set. A mean distribution per class was taken; Fig. 5c
shows that the bagged results are in accordance with the non-bagged
case of Fig. 5b.

The same procedure was repeated taking into account the first three
features according to the SHAP-based ranking above — namely, the
range of the melting temperature, the number of different chemical
species, the mode of 𝑑 unfilled orbitals. A 3-dimensional binning of
dimensions 10 × 6 × 10 can be represented as an ensemble of ten 2-
dimensional binnings, each of dimensions 6 × 10. Fig. 6a shows such
discretization of the data, where ten matrices of axes 𝑥2, 𝑥3 act for the
ten bins of feature 𝑥1, from bin 𝑥(1)1 to 𝑥(10)1 for each of the two classes.
Fig. 6b shows the corresponding the QEG solutions for classes 0 and 1
separately.

3.4. Other standard binary classifiers

Furthermore, two Extra Trees Classifier (ETC) models were trained
and validated with default hyperparameters over the same training set
accounting for the 85% of materials, including only the first two and
the first three features by the aforementioned SHAP ranking respec-
tively. Moreover, the entire dataset was used – with all the features
– to train and validate two further ETC-based pipelines, both with
pre-processing and hyperparameter tuning in stratified 5-fold cross
validation (see Supplementary Note 4 for details). Specifically, since
the cardinalities of two classes are unbalanced, the Synthetic Minority
Over-Sampling TEchnique (SMOTE) algorithm was employed in one of
6

the two pipelines, which, through interpolation, produces samples in
the underrepresented class [36].

In particular, the Scikit-learn Python package [37] offers the possi-
bility of predicting not only the class, but also the class probabilities;
the predicted class is automatically chosen to be the one accounting for
the highest probability. Hence, by considering only the probabilities
of the class 1, i.e., the material is predicted to be superconductive,
the discriminating threshold was moved from 0 (all the materials are
predicted in class 1) to 1 (all the materials are predicted in class 0).
For each threshold, a different confusion matrix, with different number
of true positives (TP), false negatives (FN), false positives (FP), true
negatives (TN), was constructed. For each confusion matrix, the true
positive rate (TPR) and the false positive rate (FPR) were computed,
where TPR = TP∕(TP+FN) and FPR = FP∕(FP+TN). The same procedure
was repeated for the QEG based probabilistic classifiers, where the
order of magnitude of the thresholds is lower, since the probability does
not sum up to 1 over two classes but over 60 (QEG 2D) or 600 bins
(QEG 3D).

Supplementary Note 8 reports a comprehensive comparison of the
Receiver Operating Characteristic (ROC) curves for the all the classi-
fiers.

The performance of a classifier can be measured by means of the
Area Under Curve (AUC) of the ROC: the larger the AUC, the better
the classifier. Furthermore, given a ROC curve, its best discriminating
threshold 𝜉 - above which a sample is classified as 1 and below which
is classified as 0 - can be identified by means of the Youden’s statistics,
maximizing the quantity 𝐽 = TPR − FPR [38]. Another metric for
choosing the best threshold is the maximization of the 𝐹1 score, by
definition 𝐹1 = 2TP∕(2TP + FP + FN) [39–41].

Performances computed over the same testing set of 1084 materials
are shown in Table 2. The comparison encompasses QEGs with two and
three features (QEG 2D and QEG 3D respectively), ETCs with the top
two and three features of the SHAP ranking (ETC 2D-high and ETC 3D-
high respectively), ETCs with the two (33rd, 34th) and three (33rd,
34th, 35th) features of the SHAP ranking (ETC 2D-middle and ETC
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Fig. 6. Probabilistic classifier. a 3-dimensional binning, with 10 bins for the first variable, 5 for the second, 10 for the third, of the two most relevant features 𝑥1 , 𝑥2 , 𝑥3 according
to the SHAP ranking for superconductors showing 𝑇c < 15K and 𝑇c ≥ 15K respectively; b QEG solution of corresponding maximum Shannon entropy probability distribution.
Table 2
Performances of the trained classifiers.

AUC 𝜉𝐽 ,max 𝐽max 𝜉𝐹1 ,max 𝐹1,max

No skill 0.50 – – – –
QEG 2D 0.71 0.004 0.40 0.017 0.23
QEG 2D bagged 0.71 0.004 0.40 0.017 0.23
QEG 3D 0.60 0.002 0.29 0.002 0.22
ETC 2D-high 0.96 0.120 0.90 0.313 0.73
ETC 3D-high 0.96 0.125 0.89 0.333 0.73
ETC 2D-middle 0.86 0.028 0.63 0.317 0.38
ETC 3D-middle 0.82 0.167 0.62 0.167 0.52
ETC 2D-low 0.54 0.072 0.08 0.072 0.14
ETC 3D-low 0.54 0.073 0.08 0.073 0.14
ETC-vanilla 0.99 0.110 0.91 0.560 0.85
ETC-SMOTE 0.98 0.216 0.92 0.780 0.83
ETC-vanilla-81 0.98 0.040 0.91 0.630 0.84
ETC-SMOTE-81 0.99 0.140 0.91 0.732 0.84
Naive 2D 0.85 0.071 0.73 0.134 0.37

3D-middle respectively), with the least two and three features of the
SHAP ranking (ETC 2D-low and ETC 3D-low respectively), ETC with all
the database (ETC-vanilla), ETC with the additional SMOTE algorithm
(ETC-SMOTE), ETC with all the database and all the 81 features (ETC-
vanilla-81), ETC with the additional SMOTE algorithm and all the 81
features (ETC-SMOTE-81), Gaussian Naive Bayesian classifier (Naive
2D, see Supplementary Note 10 and Ref. [42] for details), together with
a No skill classifier, in which TPR and FPR are always equal. ETC models
always outperform QEG-based classifiers both in terms of 𝐽max and in
terms of 𝐹1,max; in particular, the ETC-vanilla and ETC-SMOTE turn out
to be the best classifiers in terms of 𝐹 and 𝐽 respectively.
7

1,max max
The probability of classes 0 and 1 was thus predicted with ETC-
vanilla and ETC-SMOTE for all the ∼40,000 materials in Materials
Project without Ni, Fe, Cu, O and not in the SuperCon database. Those
predictions are publicly available on GitHub repository related to this
work (see Code availability).

3.5. Optimal reduction of the composition-based material descriptors

Although the above SHAP analysis can be conveniently adopted
while ranking and reducing the number of material descriptors for both
regressors and classifiers, the following aspects have to be stressed. On
one hand, as visible on the right-hand side of Fig. 2, for achieving
a sufficiently high (i.e. in the order of 70% or higher) cumulative
importance over 30 features are needed. On the other hand, the larger
the number of feature the higher the over-fitting possibility. Therefore,
this work attempts the following possible reduction of the material de-
scriptors. Given the original set of 𝑛 features (𝑥1,… , 𝑥𝑛), let (�̃�1,… , �̃�𝑛)
be the corresponding dimensionless quantities:

�̃�𝑖 =
𝑥𝑖 − 𝑥𝑖,min

𝑥𝑖,max − 𝑥𝑖,min
+ 1 (8)

where 𝑥𝑖,min and 𝑥𝑖,max represent the minimum and maximum observed
values for the 𝑖th feature over the training set, respectively. All di-
mensionless quantities were thus normalized by construction to a value
range within the interval [1−2] to avoid singularities in the expressions
below.

The following new set of 𝑚 ≪ 𝑛 mixed features (𝑦1,… , 𝑦𝑚) is
defined, as follows:

𝑦𝑗 =
𝑛
∏

�̃�
𝛼𝑖𝑗
𝑖 (9)
𝑖=1
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Fig. 7. One-dimensional example. a: PDFs over binned data of the training set for the two classes (𝑇c < 35K and 𝑇c ≥ 35K) reported against the normalized first most important
feature according to the SHAP ranking. b: PDFs over binned data of the training set for the two classes reported against the mixed feature 𝑥pow,least,35, constructed according to
Eq. (9) and choosing the point of the Pareto front with the least overlapping of the two classes according to the Battacharyya distance, together with a GEV analytical fitting of
those two binnings (see text for details). c: PDFs over binned data of the testing set for the two classes reported against the same mixed feature 𝑥pow,least,35 together with the same
GEV fittings of the b subfigure.
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where {𝛼𝑖𝑗} represents an 𝑛×𝑚 matrix optimally estimated as reported
elow. Alternatively, the new set of 𝑚 reduced mixed features can also
e defined by the following linear transformation:

𝑗 =
𝑛
∑

𝑖=1
𝛼𝑖𝑗 �̃�𝑖 (10)

inally, the new variables 𝑦𝑗 can be conveniently normalized within the
nterval [0 − 1] as follows:

�̃�𝑗 =
𝑦𝑗 − 𝑦𝑗,min

𝑦𝑗,max − 𝑦𝑗,min
(11)

With the basic idea of Bayesian classification in mind, the following
multi-objective optimization criterion can be defined. The matrix {𝛼𝑖𝑗}
in Eq. (9) and/or Eq. (10) lies on the Pareto front while concurrently
attempting: (i) maximization of a properly chosen distance between the
two classes; (ii) minimization of a norm of the covariance matrix of the
first class distribution; (iii) minimization of a norm of the covariance
matrix of the second class distribution.

In this study, genetic algorithms were used for optimization. More-
over, for the evaluation of the distance between the two classes, a
number of approaches have been tested including:

• Data in the two classes are equally binned and histograms used
to evaluated the Bhattacharyya distance [43,44] between the
two classes to be maximized during the above multi-objective
optimization;

• Data in the two classes are equally binned and histograms used to
evaluate the Earth mover distance [45] between the two classes
to be maximized during the above multi-objective optimization;

• The average number of neighbors within a fixed radius of non
superconducting materials to each sample of the superconducting
material class in the reduced space to be minimized during the
above multi-objective optimization

Finally, for the remaining two objective functions, while for one-
dimensional cases a numerical estimate of the standard deviation of
the binned data in the two classes is computed, in the two (or higher)
dimensional cases the determinant of the covariance matrix can be
adopted. More details about Pareto front calculations can be found in
Supplementary Note 9.

3.5.1. Application to one- and two-dimensional cases
As an example, Fig. 7 shows the Probability Density Functions

(PDFs) of the two material classes 𝑇c < 35K and 𝑇c ≥ 35K. Specifically,
ig. 7a reports the PDF binning of the training set data over the two
lasses, against the normalized most important feature according to the
HAP ranking. Fig. 7b shows the same PDFs against the mixed feature
pow,least,35
8

, constructed according to Eq. (9) by power combination of
the 30 most important features of the SHAP ranking and choosing the
point of the Pareto front with the least distributions overlap according
to the Bhattacharyya distance.

Interestingly, when plotted against the new mixed feature, the two
classes appear well separated, whereas it is worth observing that the
same two classes show a higher degree of overlapping when reported
against the first SHAP feature. As a result, it appears particularly
convenient to attempt an analytical bet-fitting of the two functions
reported Fig. 7b, approximated by a Generalized Extreme Value (GEV)
distribution, whose density has equation

𝑔
(

𝑥pow,least,35
)

= 1
𝜎

(

1 + 𝜁
𝑥pow,least,35 − 𝛾

𝜎

)− 𝜁+1
𝜁

× exp

(

−
(

1 + 𝜁
𝑥pow,least,35 − 𝛾

𝜎

)−1∕𝜁)

. (12)

n this specific case, the GEV distribution for materials with 𝑇c < 35K
urns out to have factors 𝛾 = 0.228, 𝜎 = 0.119, 𝜁 = −0.033. Analogously
he GEV distribution for materials with 𝑇c ≥ 35K turns out to have
actors 𝛾 = 0.847, 𝜎 = 0.046, 𝜁 = −0.539. Such fittings were performed
y means of the SciPy Python package [46]. Fig. 7c shows the PDFs
ver the binned data of the testing set reported against the same mixed
eature, together with the GEV fittings computed on the training set. It
s worth noticing that the classes are still well separated, with a good
greement between the GEV distributions and the testing set densities.
he number of bins has been chosen separately for the two classes,
ccording to the Sturges rule [47].

Furthermore, Fig. 8 shows the PDFs of the same two material classes
𝑇c < 35K and 𝑇c ≥ 35K) in a two dimensional case. Specifically,
ig. 8a reports the PDF two dimensional binning of the training set
ata over the two classes, against the normalized two most important
eatures according to the SHAP ranking. Fig. 8b shows the same PDFs
gainst the mixed features 𝑥pow,uto,351 , 𝑥pow,uto,352 , constructed according
o Eq. (9) by power combination of the 52 most important features
f the SHAP ranking and choosing the Utopia point of the Pareto
ront. As in the one dimensional case, the two classes, when plotted
gainst the new mixed features, appear well separated. Fig. 8c shows
he PDFs over the binned data of the testing set reported against the
ame mixed features; the two classes are still well separated. Each plot
f Fig. 8 accounts for 400 two dimensional bins, on a grid 20 × 20.
oreover, Supplementary Note 11 shows a sharp improvement of a
aive Gaussian Bayesian classifier trained with the mixed features
pow,uto,35
1 , 𝑥pow,uto,352 with respect to an analogous model trained with
he two most relevant features according to the SHAP ranking.

All the relevant data of the Pareto fronts used for constructing those
ixed features, together with the coefficients 𝛼𝑖𝑗 of each case, are
ublicly available on the GitHub repository related to this work (see
ode availability).
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Fig. 8. Two dimensional example. a: PDFs over binned data of the training set for the two classes (𝑇c < 35K and 𝑇c ≥ 35K) reported against the normalized first most important
feature according to the SHAP ranking. b: PDFs over binned data of the training set for the two classes reported against the two mixed features 𝑥pow,uto,351 and 𝑥pow,uto,352 , constructed
according to Eq. (9) from mixing the 52 most important features according the SHAP ranking and choosing the Utopia point of the Pareto front. c: PDFs over binned data of the
testing set for the two classes reported against the same mixed features 𝑥pow,uto,351 and 𝑥pow,uto,352 .
3.6. Possible generalizations

The authors are conscious that the mixed features found in this
work might be still sub-optimal, as herein there is not the ambition
of comprehensively exploring all possible cases. Clearly, several gener-
alizations and variations can be studied while performing the material
descriptor reduction as discussed above. Obvious generalizations might
adopt different functions for reducing variables as compared to Eqs. (9)
and (10), as well as different distance functions between the classes.
Alternatively, other strategies for constructing optimal mixed features
might also focus on distances only between classes thus neglecting
minimization of variance terms, with the primary aim being the best
9

separation between classes. In this respect, the following examples are
reported:

• The training dataset is split in two classes (i.e. materials with a
critical temperature above or below a certain threshold value)
and a single objective optimization is performed only aiming at
maximizing the distance between two classes (see Fig. 9a);

• The training dataset is split in multiple classes (i.e. > 2) and
a multi-objective optimization is performed aiming at concur-
rently maximizing the pairwise distances between the classes (see
Fig. 9b).

For further details, please refer to Supplementary Note 9.
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Fig. 9. Projections of training and testing sets into the reduced feature space with colors indicating the critical temperature classes. a Projection over the two mixed features 𝑥lin,251 ,
𝑥lin,252 , constructed according to Eq. (10) and obtained by single objective optimization, where the Bhattacharyya distance between the two classes 𝑇c < 25K and 𝑇c ≥ 25K has been
maximized. b Projection over the two mixed features 𝑥pow,3class1 , 𝑥pow,3class2 , constructed according to Eq. (9) and obtained by multi-objective optimization where the Bhattacharyya
pairwise distances between the three classes 𝑇c < 13K, 13K ≤ 𝑇c < 26K, 𝑇c ≥ 26K have been concurrently maximized. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
3.7. Entropy-, tree-, and Bayes-based binary classifiers on the new mixed
features

The results are reported for the QEG-based probabilistic classifiers
and ETCs by employing the new mixed features, always constructed
by aggregating the top 30 features of the SHAP ranking, in both the
cases of power (Eq. (9)) and linear (Eq. (10)) transformations. In these
examples, for the purposes of optimization and class separation, only
the Utopia point of the Pareto front and the Bhattacharyya distance are
considered respectively.

Specifically, Fig. 10a and b show the binnings of the two classes
(𝑇c < 15K and 𝑇c ≥ 15K) against the two power mixed features
𝑥pow,uto,151 , 𝑥pow,uto,152 and the corresponding QEG solution respectively.
Analogously, Fig. 11a and b show the binnings of the two classes (𝑇c <
15K and 𝑇c ≥ 15K) against the two linear mixed features 𝑥lin,uto,151 ,
𝑥lin,uto,152 and the corresponding QEG solution respectively. Table 3
reports the performances of such classifiers, ending up with a consistent
improvement of both the 𝐽max and the 𝐹1,max score with respect to
the case of the QEG 2D trained with the top SHAP descriptors (see
QEG 2D in Table 2); specifically, the linear transformation improves
also the AUC. The same mixed features were employed to train and
10
Table 3
Performances of the classifiers trained with mixed features.

AUC 𝜉𝐽 ,max 𝐽max 𝜉𝐹1 ,max 𝐹1,max

No skill 0.50 – – – –
QEG 2D-mixed pow 0.69 0.007 0.52 0.007 0.29
QEG 2D-mixed lin 0.79 0.008 0.61 0.011 0.37
ETC 2D-mixed pow 0.95 0.104 0.82 0.480 0.72
ETC 2D-mixed lin 0.93 0.092 0.77 0.574 0.70
Naive 2D-mixed pow 0.94 0.506 0.76 0.504 0.67
Naive 2D-mixed lin 0.90 0.502 0.78 0.505 0.50

validate two ETCs, ending up with similar metrics – AUC, 𝐽max and
𝐹1,max – score with respect to the case ETC 2D-high, trained with the
two most relevant features according to the SHAP ranking. The same
features were finally employed to re-train also the Gaussian Bayesian
Classifier, getting an improvement + for all the metrics (namely, AUC,
𝐽max and 𝐹1,max) with respect to the same classifier trained with the
top two features according to the SHAP ranking, both for the power
transformation and for the linear transformation.

The corresponding ROC curves are reported in Supplementary Note
8.
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Fig. 10. Probabilistic classifier. a 2-dimensional binning, with 10 bins for each variable, of the two mixed features 𝑥pow,uto,151 , 𝑥pow,uto,152 constructed according to Eq. (9), by selecting
the utopia point of the Pareto front, for superconductors showing 𝑇c < 15K, and 𝑇c ≥ 15K respectively; b QEG solution of corresponding maximum Shannon entropy probability
distribution.
Fig. 11. Probabilistic classifier. a 2-dimensional binning, with 10 bins for each variable, of the two mixed features 𝑥lin,uto,151 , 𝑥lin,uto,152 constructed according to Eq. (10), by selecting
the utopia point of the Pareto front, for superconductors showing 𝑇c < 15K and 𝑇c ≥ 15K respectively; b QEG solution of corresponding maximum Shannon entropy probability
distribution.
4. Conclusions

In this work several ML tools have been developed for studying the
critical temperature of superconductors. From the SuperCon database,
only the inorganic compounds without Fe, Ni, Cu, O were considered,
thus excluding oxides that belong to low temperature classic super-
conductors. By means of Matminer and on the basis of the SuperCon
database, 145 composition-based features were generated for each
compound. A tree-based regression model was trained and validated
for the prediction of the 𝑇c, allowing us to identify the most relevant
descriptors by means of the Tree SHAP routine. Then, several differ-
ent classifiers were produced, based on different sets of features and
considering materials with 𝑇c ≥ 15K in class 1 and materials with
𝑇c < 15K in class 0. In particular, with the idea of Bayesian classifiers
in mind, a new Entropy-based classifier (here referred to as QEG) was
tested, approximating the multidimensional binning of the data over
the chosen set of descriptors with the surface of maximum Shannon
Entropy. Other employed models include tree-based classifiers (namely
ETCs) and Naive Bayesian classifiers. In particular, by comparing ETCs
using only two or three of the original extracted features, the SHAP
ranking – identified for regression – turns out to be consistently used
for classification. Since ETCs with few features performed better than
both QEGs and Naive Bayesian classifiers, two more comprehensive
models - ETC-vanilla, ETC-SMOTE - were trained, both based on a
number of features selected during the pre-processing routines of the
respective ML pipelines. The latter uses also the SMOTE algorithm to
sample, through interpolation, materials in the under-represented class
of superconductors. Additionally, two further models were trained -
ETC-vanilla-81 and ETC-SMOTE-81, with the same ensemble of 81 fea-
tures effectively used by the regression model ETR. The best-performing
models, namely ETC-vanilla and ETC-SMOTE, were employed to rank
∼40,000 compounds in MaterialsProject and not occurring in the Su-
percon, in terms of the probability of showing 𝑇c ≥ 15K. For instance,
ETC-vanilla predicts 41 of those formulae to show 𝑇c ≥ 15K with prob-
ability not lower than 0.6. Furthermore, by means of multi-objective
optimization, optimized mixed features have been found, proving to
be particularly suitable for class separation. To this end, by means of
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power or linear combination, the top 30 features of the SHAP ranking
were mixed. With such new features, the performances of both QEGs
and Naive Bayesian classifiers improve, while the ETCs performances
are in line with the corresponding models trained over the original
features. Remarkably, in general there is no need to have access to the
SHAP ranking for achieving such optimization, and, in principle, all the
input features can be imported for mixing.

Additionally, further examples have been produced, differing with
the previous ones in terms of threshold 𝑇c and/or optimization routines.
Among those, an optimal single feature was found to separate classes
𝑇c < 35K and 𝑇c ≥ 35K. Interestingly, in this case it was possible
to give the equation of an analytical classifier fitted on the materials
binned over new mixed feature. Both the best QEG model — QEG 2D-
mixed lin classifier (for 𝑇c ≥ 15K), and the analytical classifier (for
𝑇c ≥ 35K) were employed to rank the same ∼40,000 materials of Mate-
rialsProject not occurring in the SuperCon database. Such predictions
are publicly available on the GitHub repository related to this work (see
Code availability).

Another aim of this work was to test the possible invariance of the
critical temperature with respect to binary groups of features in the
form of 𝑥𝑎𝑖 𝑥

𝑏
𝑗 . To this end, a second regression model – i.e., a DNN

– was trained and validated for the prediction of the 𝑇c, allowing
to compute the gradient of the critical temperature with respect to
the input features, namely ∇𝑇c(𝑥1,… , 𝑥𝑛). Finally, it is important to
stress that the suggested methods in this papers, namely the search for
invariant groups of regression models, the optimization of mixed com-
position based feature and the maximum entropy based classifiers are
general and not restricted to the selected case study. Hence, potential
future applications of these methods can be envisioned for other energy
materials such as thermal energy storage [48] and electrochemical
energy storage [49] applications.
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