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Chapter 33 
Fair Play: Why Reliable Data 
for Low-Tech Construction 
and Non-conventional Materials Are 
Needed 

Redina Mazelli, Martina Bocci, Arthur Bohn, Edwin Zea Escamilla, 
Guillaume Habert, and Andrea Bocco 

Abstract The paper proposes considerations stemming from the analysis of twenty-
two buildings that show different approaches to ‘vegetarian architecture’—a theo-
retical stance based on principles learnt from agriculture and nutrition. The first 
phase consisted in a systematic investigation of the constructional characteristics 
of each building, and the cataloguing of their components. The ‘cradle to gate’ 
embodied energy (EE) and ‘embodied carbon’ (EC) were then calculated, based on 
two open access databases: ICE and Ökobaudat. The applicability of these databases 
was considered, as they do not cover low industrialised bio-based construction mate-
rials. For some materials, data are missing; while in others, EE values are overes-
timated since high energy-intensive manufacturing processes seem to be assumed. 
In a second phase, the uses and production process of some non-conventional mate-
rials was investigated, evidencing their variability. Building technologies that are not 
just aimed at low operational energy but at a more holistic understanding of low
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environmental impact represent a paradigm shift in ‘sustainable’ construction prac-
tices. Despite ongoing actions and policies, as long as these materials and techniques 
are not suitably represented in reliable and accessible databases, it will be difficult 
to make such a shift happen. Manufacturers and contractors who produce and use 
such materials would benefit from the availability of easily applicable, scientific data 
demonstrating environmental advantages offered by non-conventional materials. 

Keywords Environmental impact · Embodied energy · Embodied carbon ·
Non-conventional construction materials · Databases 

33.1 Introduction 

Embodied emissions will likely constitute the majority of emissions generated by 
new buildings built between now and 2050 (Simonen et al. 2017). It is increasingly 
recognised that embodied impacts can constitute more than half of the total life 
cycle impacts from new buildings, and they will grow both proportionally and in real 
terms with the reduction of operational impacts (Rasmussen et al. 2018). ‘Net-zero’ 
or ‘near-zero’ operational greenhouse gases (GHG) emissions mean that the GHG 
emissions budget becomes almost entirely allocated for embodied GHG emissions 
(Röck et al. 2020; Habert et al. 2020; Moncaster et al. 2019). 

Current EU regulations mainly cover the operational energy performance of build-
ings, while the embodied impacts remain largely unregulated, despite the significant 
carbon reduction potential (Toth and Volt 2021). However, since 2017, the Nether-
lands has required all new residential and office buildings larger than 1000 m2 to 
account for embodied impacts based on a simplified LCA. Switzerland has introduced 
LCA requirements for public buildings (Swiss Society of Engineers and Architects 
(SIA) 2017). Denmark’s National Strategy for Sustainable Construction will phase 
a LCA requirement into the building code, enforcing maximum CO2 emissions of 
new buildings larger than 1000 m2 from 2023 and for all new buildings from 2025 
(The Danish Housing and Planning Authority 2021). 

France’s new Réglementation environnementale RE2020 includes carbon thresh-
olds for offices and educational buildings starting 1 July 2022; limits will be progres-
sively lowered. France is the first country to apply a dynamic LCA approach to the 
construction sector (Ministère de la Transition écologique (MTE) 2022a; Ministère 
de la Transition écologique (MTE) 2022b). 

These increasing efforts for setting legally binding limits to the embodied envi-
ronmental impacts highlight the crucial need for developing accurate, equitable, and 
easily accessed data for construction materials and techniques.
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33.2 Data and Methods 

33.2.1 Case Studies 

The reflections proposed in this paper stem from the analysis of twenty-two ecologi-
cally oriented buildings showing different approaches to ‘vegetarian architecture’—a 
theoretical stance based on principles learnt from agriculture and nutrition (Bocco 
Guarneri 2020), which advocates:

• natural, renewable, locally available construction materials, free of toxic chemi-
cals, and as little processed as possible (Wolley 2017, 2016; Berge 2009; Ghavami  
2014; Walker et al.  2009; Harries and Sharma 2016);

• minimization of energy-intensive, high-tech components;
• labour-intensive, small-scale production processes, and simple constructional 

techniques;
• passive solar design. 

The case studies are located in Europe and Japan and cover a variety of func-
tions—residential, commercial, educational, workspace—and different patterns of 
use. Their gross internal areas (GIA) range from 23 to 3 232 m2. Both refurbishment 
of traditional buildings and new constructions are included to exemplify techniques 
that make use of bio-based and other natural materials. 

33.2.2 Data 

The systematic investigation of each building’s technical and constructional features 
allowed to draw inventories and 3D models representing as-built situations. The 
‘cradle to gate’ embodied energy (EE) and ‘embodied carbon’ (EC) were calculated 
by adding up the components manually, using a process-based LCA methodology and 
a purpose-designed spreadsheet. Impact coefficients were retrieved from two open 
access databases—the Inventory of Carbon and Energy (ICE) (Jones and Hammond 
2019; Hammond and Jones 2011) and Ökobaudat (ÖBD) (BMI 2021). 

Later, the most relevant non-conventional materials (NOCMAT) used were iden-
tified. NOCMAT encapsulate sustainable use of novel technologies and innovative 
uses of more established materials; many of them have their roots in traditional 
vernacular construction, including bio-based materials, and other natural materials 
such as stone, earth, lime (Ghavami 2014). For these materials, EE and EC values 
are either unavailable or show inconsistencies in the databases used. The production 
processes and the uses of such materials show a wide variability, which leads to a 
variability of the associated environmental impacts.
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33.2.3 Reference Databases 

ICE and ÖBD were chosen because open access and user friendly. More detailed 
sources are available but are proprietary and/or require a high level of expertise for 
their use. Using ÖBD and ICE to calculate the two basic environmental indicators 
was a sensible compromise between data availability and results uncertainty. Using 
the same set of values for all calculations guaranteed consistency. 

ÖBD is managed by the German Federal Ministry of the Interior, Building, and 
Community; datasets must comply with EN 15,804. Data entries are constantly 
added, and the entire database is updated once a year. Datasets are based on the 
background database GaBi. Additional datasets based on EcoInvent background data 
are provided. In 2020, the new DIN EN 15,804 + A2 was adopted, which includes 
separate reporting of fossil, biogenic, and luluc GWP. 

ICE is managed by Circular Ecology and the University of Bath. Version 2.0 
(2011) was based on ISO 1404 and 14,044; 53% of sources dated before 2005. 
Carbon sequestration was excluded. Version 3.0 (2019) no longer includes energy 
factors. Carbon storage data are available for timber only. The values are the average 
of several sources, usually EPDs complying with EN 15,804. Data are updated for 
some materials. In our study, ICE V2.0 was used for all EE values and some EC 
values. 

33.3 Results 

33.3.1 On Case Studies’ Embodied Energy and Embodied 
Carbon Values 

While a rigorous internal methodology allowed for a detailed comparison between 
case studies (Bocco and Bocci 2022), it was difficult to verify whether these build-
ings have a lower environmental impact than conventional ones (Bocco Guarneri 
2020). Systematic reviews (Simonen et al. 2017; Rasmussen et al. 2018; Birgisdottir 
et al. 2017; Dixit 2017; Hoxha et al. 2017; Röck et al. 2019; Säynäjoki et al. 2017; 
Schwartz et al. 2018) have not yet reached the degree of harmonisation which would 
offer benchmarks. The completeness of the underlying inventories is doubtful; the 
variations are up to two orders of magnitude (Rasmussen et al. 2018). 

The average results of the analysed ‘vegetarian’ buildings do not appear signif-
icantly lower than those found of more conventional buildings. Moncaster et al. 
(Moncaster et al. 2019) found an average of 125 kgCO2eq/m2 for retrofitted build-
ings and of 254 kgCO2eq/m2 for new ones; we obtained 127 and 328, respectively, 
with ICE, and−132 and−74 with ÖBD (Fig. 33.1). The question about the reliability 
of databases, methodologies, and benchmarks stays open.
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Fig. 33.1 GIA, weight, EE, and GWP of each case study, calculated both with ÖBD and ICE 

33.3.2 On Vegetal Materials 

The analysis highlighted a divergence of the profiles for timber and timber-based 
products in the two databases. Data for highly industrialised products such as timber-
based boards and window frames are widely available and cover a good range of 
variations; this comes less for untreated solid wood. ÖBD provides very high values 
for EE, reflecting German processing: kiln drying; industrial debarking and sawing 
machinery; and an average distance between forest and sawmill of 144 km (Fig. 33.2). 
While timber was widely used in most of our case studies, it was often low processed 
and underwent little treatment, if any. In most cases, timber was air-dried, while most 
sources for both databases consider kiln drying at high temperatures—an energy— 
and carbon-intensive process that alters timber’s properties. Where elements were 
hand-sawn (5), debarked and cut on site (21), and untreated (5, 6, 21), the impact 
risked to be overestimated (Fig. 33.3). In case 21, the whole structure—which makes 
a relevant portion of the building’s weight—was manually debarked, and most of 
the lumber came from the site or district forest. In 5, timber was obtained from the 
ecovillage’s forest and transported with horses to the site, where it was assembled with 
hand tools. No data are available for brettstapel (7, 13, 17, 22) as opposed to various 
entries for laminated timber: the lack of glue and nails reduces the environmental 
impacts of the first. Wood chips (21) and loose wood fibre (10) are not covered, as 
opposed to wood fibre boards for which ÖBD includes five entries and ICE two.

Straw was employed in ten case studies in a range of ways: load-bearing bales 
(6, 7, 21), thatch (2), bale infill (12, 20), bale retrofit (3), loose insulation (1, 6, 15, 
21); ropes, mats (1), and chaff (2) are also used. Only values for standard size bales
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Fig. 33.2 Timber dried at low temperatures in a greenhouse at Kitokuras sawmill (Kagawa 
prefecture). Photo Andrea Bocco Guarneri 

Fig. 33.3 Manual debarking of trees at Biotal site. Untreated logs are used as structural columns 
in the building. Photo Christoph Bosch
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with a density of 100 kg/m3 are given in the databases, forcing an approximation 
for products like jumbo and round bales and loose straw. Not only does the crop 
cultivation vary (in 5 and 21 it is harvested from local organic farms), but also the 
baling process is expected to influence the overall impact. In many of these buildings, 
straw represents a large portion of the weight: divergences can therefore influence 
the overall environmental impacts. Reported values for straw bales are disorienting: 
in ÖBD, the EE value for straw (17.13 MJ/kg) is seventy times higher than that found 
in ICE 2.0, and higher than that of structural steel (14.14 MJ/kg) and more than three 
times higher than that of fired, solid bricks (4.85 MJ/kg). The reliability of the EE 
value for straw in ICE may be low, since it is based on four references only, the 
latest dating from 2003; but that in ÖBD (based on an EPD provided by FASBA) 
is high compared to recent studies: e.g., nearly 5 times higher than Upstraw School 
of Natural Building’s 2021 EPD (Up-Straw—School of Natural Building (SnaB) 
2021). 

Databases seem also ill-suited for representing other vegetal materials. No data are 
present in either database for bamboo, not only for whole culms but also for products 
such as mats, panels, and laminated bamboo. In 9, locally harvested bamboo culms 
make up the entire structure (Fig. 33.4). Loose hemp shiv is not covered, which 
makes it difficult to assess, for instance, hemp-lime building components (8, 13). 
Only hemp mats are found in ÖBD (Fig. 33.5): these include 15% polyester fibres 
and are impregnated with soda. 

Fig. 33.4 Structure of the Bamboo Ark consists of radially arranged frames, composed of a base 
truss and arches. The culms were harvested from a nearby grove. Photo Toki Hirokazu
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Fig. 33.5 Bamboo mats in 
Iya Valley, Japan. Photo 
Andrea Bocco Guarneri 

Analogously, there are no data for loose flax fibres (21), just for mats. In ÖBD, 
the same assumptions as for hemp fibre mats are applied. ICE V2.0 reports that most 
of the impacts are due to the polyester binders and fire retardants (Schmidt et al. 
2004). No data are present in either database for reed mats (4, 6) and jute (6), while 
building paper (10, 13) is covered by ÖBD only. 

33.3.3 On Other Natural Materials 

Earth construction techniques are poorly represented: ICE just reports data on earth 
(it is unclear whether this is rammed or bulk earth); ÖBD includes data on rammed 
earth, adobe, plaster, earth panels, and bulk earth. Data sheets do not provide enough 
information on basic features, such as the presence of additives or fibres, or the size 
of the adobes. The entry for earth plaster in ÖBD has an ambiguous description, 
which does not even seem to refer to an earth-based product. ÖBD also assumes 
processes such as the artificial drying of adobes (Fig. 33.6).
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Fig. 33.6 Light-earth external skin applied onto battens in a new house in Darmstadt. Photo Franz 
Volhard 

No data are provided for earth paints, which are usually ready-made products 
(4, 8). 

In many case studies, earth products were made at the construction site (Fig. 33.7): 
adobes in 10 and 12; manually compressed earth blocks in 13; earth plasters in 2, 5, 
6, 10, 12, and 21 made with various mixtures, in some cases including fibres, sand, 
or lime; clay mortar in 4; tamped earth floors in 1, 4, 5, 6, 12, and 14 (coated with 
earth finishing in 6 and 12). Earth was also used with straw for infilling wooden or 
bamboo frames (1,2,4,15,21).
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Fig. 33.7 Construction of the lecture theatre of the WISE at the Centre for Alternative Technology. 
The attractive load-bearing rammed-earth walls, 500 mm thick, are pneumatically tamped and left 
unfinished on both faces. Photo Pat Borer 

Emblematic is the case of stone: while being one of the most common materials 
in vernacular constructions, its use has drastically shifted from massive blocks that 
require minimal (if any) dressing to 1 ~ 3-cm-thick cladding slats. Both databases just 
provide values for thin elements that underwent cutting and finishing processes. In 
ÖBD, entries for 2 ~ 4-cm-thick granite and limestone elements assume processing— 
steel grit, grinding road, saw, and multi-blade saw. ICE V2.0 acknowledges that 
data sources were generally poor, except for stone slates. Quarried stone blocks are 
then associated with a risk of overestimating their embodied impacts if the custom 
values are employed. Even in cases when thin paving stone slabs were used, ecolog-
ical considerations resulted in specifying little-processed elements: in 7, 50 ~ 70-
mm-thick soapstone flooring slabs were obtained on site by cutting conglomerate 
rock boulders; in 21, 9-mm natural stone tiles were hand-cut with pliers and left 
unpolished. 

Animal-origin products are also little represented, if at all: for felt (7), the only 
data available is the EE value in ICE V2.0; for sheep’s wool (8, 18), no values are 
available in either database.
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33.4 Conclusions 

The quality of the environmental assessment of buildings depends heavily on the 
quality of the data used, which remains a major challenge. Most of the processes 
mentioned here could be modelled with tools such as EcoInvent: but doing so requires 
skills and time that are beyond the possibilities of an average designer or contractor. 
ÖBD and ICE, while open source and easy to use, are focused on conventional mate-
rials and do not satisfactorily cover bio-based and little-processed materials. Even 
when they do, the values provided are regional or global averages, not representative 
of specific production patterns in terms of processes or efficiency, electricity mix, 
and transportation distance (Zea Escamilla and Habert 2014). 

A proper assessment requires significant expertise, time, and financial resources, 
which are less likely available for alternative construction materials. Furthermore, 
meeting the impact thresholds set by current and future regulations pushes towards 
using certified conventional construction materials, a tendency that is not consistent 
with decarbonizing the building trade. Data availability is then a key issue in the 
implementation of environmental reduction policies. 

The development of appropriate data for non-conventional construction materials 
should be supported by a bidirectional technological transfer between the research 
and industry sides. Current research efforts should be aligned to make the results reli-
able and widely available. This will rebound on an easier introduction of these mate-
rials in the construction market and help achieve the ambitious emissions reduction 
targets. 
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