
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Development of a Deep Learning–Based System for Optic Nerve Characterization in Transorbital Ultrasound Images on
a Multicenter Data Set / Marzola, Francesco; Lochner, Piergiorgio; Naldi, Andrea; Lemor, Robert; Stögbauer, Jakob;
Meiburger, Kristen M.. - In: ULTRASOUND IN MEDICINE AND BIOLOGY. - ISSN 0301-5629. - STAMPA. - 49:9(2023),
pp. 2060-2071. [10.1016/j.ultrasmedbio.2023.05.011]

Original

Development of a Deep Learning–Based System for Optic Nerve Characterization in Transorbital
Ultrasound Images on a Multicenter Data Set

Publisher:

Published
DOI:10.1016/j.ultrasmedbio.2023.05.011

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2980124 since: 2023-07-20T07:47:04Z

Elsevier



Ultrasound in Medicine& Biology 49 (2023) 2060−2071

Contents lists available at ScienceDirect

Ultrasound in Medicine& Biology

journal homepage: www.elsevier.com/locate/ultrasmedbio
Original Contribution
Development of a Deep Learning−Based System for Optic Nerve
Characterization in Transorbital Ultrasound Images on a Multicenter
Data Set

Francesco Marzola a,*, Piergiorgio Lochnerb, Andrea Naldi c, Robert Lemord, Jakob St€ogbauerb,
Kristen M. Meiburger a

a Biolab, Department of Electronics and Communications, Politecnico di Torino, Torino, Italy
b Saarland University Medical Center, Homburg, Germany
cNeurology Unit, San Giovanni Bosco Hospital, Turin, Italy
d Department of Biomedical Engineering, Saarland University of Applied Sciences, Saarbr€ucken, Germany
A R T I C L E I N F O
* Corresponding author. Department of Electron
E-mail address: francesco.marzola@polito.it (F. M

https://doi.org/10.1016/j.ultrasmedbio.2023.05.01
Received 10 December 2022; Revised 16 May 2023;

0301-5629/© 2023 The Author(s). Published by Else
the CC BY license (http://creativecommons.org/licen
Objective: Characterization of the optic nerve through measurement of optic nerve diameter (OND) and optic
nerve sheath diameter (ONSD) using transorbital sonography (TOS) has proven to be a useful tool
for the evaluation of intracranial pressure (ICP) and multiple neurological conditions. We describe a deep
learning−based system for automatic characterization of the optic nerve from B-mode TOS images by auto-
matic measurement of the OND and ONSD. In addition, we determine how the signal-to-noise ratio in two
different areas of the image influences system performance.
Methods: A UNet was trained as the segmentation model. The training was performed on a multidevice, multicen-
ter data set of 464 TOS images from 110 subjects. Fivefold cross-validation was performed, and the training pro-
cess was repeated eight times. The final prediction was made as an ensemble of the predictions of the eight single
models. Automatic OND and ONSD measurements were compared with the manual measurements taken by an
expert with a graphical user interface that mimics a clinical setting.
Results: A Dice score of 0.719 ± 0.139 was obtained on the whole data set merging the test folds. Pearson’s correla-
tion was 0.69 for both OND and ONSD parameters. The signal-to-noise ratio was found to influence segmentation
performance, but no clear correlation with diameter measurement performance was determined.
Conclusion: The developed system has a good correlation with manual measurements, proving that it is feasible to
create a model capable of automatically analyzing TOS images from multiple devices. The promising results
encourage further definition of a standard protocol for the automatization of the OND and ONSD measurement
process using deep learning−based methods. The image data and the manual measurements used in this work
will be available at 10.17632/kw8gvp8m8x.1.
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Introduction

Measurement of the optic nerve diameter (OND) and optic nerve
sheath diameter (ONSD) using transorbital sonography (TOS) is an effec-
tive non-invasive technique for monitoring and identifying several neu-
rologic disorders through the estimation of intracranial pressure (ICP)
[1]. The reference tool for ICP monitoring is the invasive ICP evaluation,
but this is not a viable technique in emergency settings or for centers
without access to neurosurgical tools.

The optic nerve (ON) is enveloped by a meningeal sheath, including
the subarachnoid space containing cerebrospinal fluid (CSF). It has been
proven that the optic nerve sheath (ONS), because of its elastic properties,
can expand in response to progressive increases in ICP. In fact, ONSD has
been found to increase simultaneously with increases in ICP [2,3]. Sev-
eral studies have determined the validity of ONSD assessment in
detecting intracranial hypertension (ICH) as compared with invasive ICP
measurement [4−6], and recent meta-analyses have confirmed the find-
ings [7]. However, despite the numerous studies conducted in this field, a
unique cut-off value for the determination of ICH has not yet been identi-
fied. On the other hand, TOS presents several advantages, including the
possibility of performing repeated and non-invasive bedside examina-
tions in both regular and intensive care settings [1,8]. Potential clinical
applications are numerous and include evaluation of the conditions able
tomodify the ICP for the ONSDmeasurement (i.e., traumatic brain injury,
cerebral vascular diseases, brain infections, idiopathic intracranial hyper-
tension) [9−11] and the evaluation of multiple sclerosis, optic neuritis
and other demyelinating diseases for the OND measurement
[8,10,12,13]. Moreover, ONSD and OND can also be measured using
pocket-sized devices, expanding the potential field of application of this
technique to point-of-care solutions [14].
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Manual measurements of OND and ONSD achieve relatively good
scan−rescan reproducibility and inter- and intra-observer reliability
[15]. Still, the acquisition and interpretation of the ultrasound image
need to be carried out by an expert operator [16,17]. The standardiza-
tion of the acquisition and the analysis of TOS images could provide ben-
efits in multiple aspects of the examination. Fixing a range for machine
settings (gain, dynamic range, enhancement filters) and probe position-
ing would cut acquisition time. The acquired images could then be proc-
essed automatically to reduce processing time, operator dependency
and error. This would enable a more reliable cutoff threshold definition
for ONSD to identify increased intracranial pressure. Moreover, more
robust studies could be performed to assess interactions between the
optic bulb diameter and ONSD and to evaluate the effect of measuring
ONSD at different depths.

In recent literature, several methods for the automatic or semi-auto-
matic segmentation of TOS images for OND and ONSD measurement
have been presented. Gerber et al. [18] reported a two-step approach to
automatically measure the ONS on a 3-D-printed phantom using a porta-
ble US probe. First, they located the optic bulb fitting an ellipse in the
largest dark area in the image. Then they constructed two boundaries on
the walls of the optic nerve acoustic shadow. They measured a correla-
tion >0.8 with novice and expert operators on the measurements from
23 images. In 2019, Soroushmehr et al. [19] proposed a superpixel-
based segmentation method to measure the ONSD. They developed their
method on 50 videos of 25 patients, with an intra-class correlation coef-
ficient (ICC) of 0.70 with an average of two experts. In 2020, Meiburger
et al. [20] developed AUTONoMA on a data set of 75 images, with a cor-
relation >0.6 for ONSD measurement compared with two expert opera-
tors. Their method was based on the coarse localization of the ocular
bulb through a column-wise search on the output of a Gaussian deriva-
tive filter. Then, a similar method was used to locate the ON centerline.
Finally, the precise segmentation of the ONS was obtained using a dou-
ble snake model. In 2021, Stevens et al. [21] described a method based
on active contours. They detected the borders of the retrobulbar fat
using a signed asymmetry map and used the detected profile as the ini-
tialization for the active contour method. They tested this method on 42
images, and comparing the automatic ONSD measurements with two
operators, they achieved an R2 of 0.31 with the first operator and 0.46
with the second operator (first operator vs. second operator R2 = 0.63).

Our group developed the first deep learning (DL)−based approach
for this task in 2021 when we proved the advantages of a DL approach
with respect to the previously published methods, obtaining a mean
absolute error of 0.48 ± 0.48 mm on ONSD measurements [22].
Although the ONSD measurement error was relatively high because of
the high variability in the images, it was the first attempt to use a single
model to segment images from a multicentric data set. This work also
underlined how rule-based methods can tend to fail when applied to het-
erogenous data sets.

The choice of using a DL-based approach arises from the limitations
of rule-based methods that lack generalization capabilities. The TOS
acquisition is dependent on the operator, who might select different
acquisition parameters to better visualize the ON. The image interpreta-
tion system must be robust over these variations; thus, the DL systems
have a clear advantage over the rule-based systems for this application.
At the same time, to achieve good generalization performance, it is
important to train the DL system on a diverse and representative data set
similar to the one used in this study that is openly available for further
studies.

In this work, we aim to expand our earlier analysis proving the
robustness of a DL approach across a challenging data set that includes
images from four different machines. We validate our results across mul-
tiple runs and hold-out test sets from external machines. In our previous
study [22], the reference OND and ONSD were extracted solely from the
manual segmentation masks. In this study, the automatic measurements
were compared against those from manual segmentation masks and
against manual diameter measurements using an ad hoc graphical user
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interface (GUI), representing a more realistic clinical setting. Lastly, we
investigate how the signal-to-noise ratio (SNR) influences segmentation
and diameter measurement performance. The aim is to guide the defini-
tion of a standard acquisition protocol for the creation of a data set for
the training of a baseline model for the segmentation of ON structures.

Methods

Database description

A private data set of 464 TOS ultrasound images in .bmp format
acquired with four different machines from 110 different subjects was
used for this study. A smaller version of this data set was used in our pre-
vious study [22] where the DL approach was compared with traditional
heuristic-based methods. Two hundred and seven images were acquired
using Esaote MyLab Gold 30 and MyLab Seven in Homburg, 113 using
Esaote MyLab in Turin, 93 using Toshiba Medical Systems Aplio 300
and AplioXG and 51 using the GE-Vivid7 sonography system. The
images were acquired by expert sonographers using linear transducers
with frequency ranges of 3−11 and 7.2−14 MHz. The lateral resolution
was 0.47 and 0.40 mm at 10 and 15 MHz, respectively, for the Esaote
Turin and Homburg devices. This information was not available for the
Toshiba Aplio 300, AplioXG and GE-Vivid7 systems. The median conver-
sion factor was 0.1061 mm/pixel, ranging from 0.0527 to
0.1210 mm/pixel. Examples of images from the different data sets are
available in Figure 1, and device characteristics are summarized in
Table 1. This is a retrospective study; all the image data were acquired
during regular clinical practice and de-identified. No further approval
was requested by the local institutional review board of the four centers.

Manual and automated OND and ONSD measurement

Data pre-processing and manual segmentation and diameter measurement
Before the manual and automated measurement of OND and ONSD,

all the images were automatically cropped. A window of 256 × 256 pixels
was automatically centered on the Optic Nerve. The window centering
operation was briefly described in [22]. The image was cropped exploit-
ing the intensity values of the pixels and the calibration factor (CF). The
row indexes for the first crop were defined at fixed positions correspond-
ing to 15% and 90% of the height of the image to eliminate the auxiliary
information on the US acquisitions. Then, the row having the maximum
mean intensity value was searched inside this range. The column indexes
for the first crop were found as the indexes of the columns delimiting the
largest sequence of non-zero pixels in the previously defined row. Results
of this step are illustrated in Figure 2a (green box). After the first crop, the
image was thresholded at a pixel value of 20 (range: 0−255), and the cir-
cumference of the optic bulb was detected from the binary map searching
for circumferences with a radius in the range of 80 to 120 pixels using the
circular Hough transform (CHT) [23]. The lowest point of the detected
circumference is the center of the cropping window. The optic bulb detec-
tion and square window crop are depicted in Figure 2a.

To obtain the targets of the segmentation network, all the cropped
images were manually segmented using the MATLAB ImageLabeler tool.
Three labels were assigned: 0 for the background, 1 for the optic nerve
sheaths and 2 for the optic nerve. The manual segmentation process
included the tracing of the contours of the ONS. Contours were traced
only where the sheaths were distinguishable (i.e., there was a good
visual SNR between ON and ONS). The ON label was defined as the area
between the two ONS labels. It was obtained by creating a mask using
the convex hull of the ONS labels. The ONS labels were subtracted from
this mask, and the remaining object was labeled as the optic nerve. A
screenshot from the segmentation GUI is available in Figure 3. The step
is also depicted in the pipeline visualization in Figure 2.

As a means to have a ground truth (GT) for diameter measurement, a
simple GUI was developed to measure the OND and ONSD in the 3 mm
zone, which resembles customary practice in a clinical setting [24]. To



Figure 1. Examples of images available in our data set from different centers and machines. (a) Homburg, Germany (MyLab Gold 30). (b) Turin, Italy (Esaote MyLab).
(c) Novara, Italy (Toshiba Medical System Aplio 300). (d) GE-Vivid7.

Table 1
Characteristics of devices

Device Linear probe frequency (MHz) Lateral resolution Conversion factor (mm/pixel) Numerosity

MyLab Esaote, Homburg 10 0.6 mm (6.6 MHz)
0.47 mm (10 MHz)

0.1029 ± 0.0124 207

MyLab Esaote, Turin 10 0.6 mm (6.6 MHz)
0.47 mm (10 MHz)

0.0848 ± 0.0120 113

Toshiba Aplio300 and
AplioXG, Novara

7.2−14 N/A 0.1020 ± 0.0108 93

GE-Vivid7 7−11 N/A 0.1124 ± 0.0097 51

N/A, not available.
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Figure 3. (a) Custom user interface for diameter measurement. Left: The operator can measure OND and ONSD by tracking two lines. Right: There is a guide that high-
lights the 3 mm zone. (b) ImageLabeler User Interface for ONS segmentation. OND, optic nerve diameter; ONSD, optic nerve sheath diameter; ROI, region of interest.

Figure 2. (a) Image cropping process. The first crop is based on pixel intensity, then the optic bulb is detected using the Hough transform and the 256 × 256 is centered
on the lowest point of the bulb. (b) Use of two MATLAB-based GUIs to extract manual masks and manual OND and ONSD measurements. (c) Image−mask pairs used to
train the UNet and the inference process followed by the post-processing of the eight predictions and the automated diameter measurements. GUI, graphical user inter-
face; OND, optic nerve diameter; ONSD, optic nerve sheath diameter.
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Figure 4. (a) Depiction of the optic nerve and its meningeal sheath as visualized by transorbital sonography. (b) OND (blue arrow) and ONSD (red arrow) measured
3 mm behind the papilla. (c) Measurements of the OND and ONSD in a healthy participant. (d) Measurements of the OND and ONSD in a patient with idiopathic intra-
cranial hypertension. OND, optic nerve diameter; ONSD, optic nerve sheath diameter.
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define the 3 mm zone, a line standing for the axis of the optic nerve was
extracted from the ON label. To calculate the ON axis, the ON label was
morphologically thinned up to a line 1 pixel wide (i.e., the “skeleton” of
the ON label). The ON axis was then calculated as the linear interpola-
tion of the skeleton of the ON label. Using the conversion factor of each
image, 3 mm was measured from the point at which the ON axis inter-
sects the circumference of the optic bulb. When using the GUI, the oper-
ator is prompted with an image and the annotation of the 3 mm zone;
then the operator tracks two straight lines perpendicularly to the ON
axis, one to measure the OND and one to measure the ONSD. ONSD was
defined as the outer borders of the hyperechogenic area surrounding the
ON, corresponding to the subarachnoid space; OND was defined as the
distance between the inner borders of the hyperechogenic area sur-
rounding the ON. An example of the standard used for ON and ONSD
2064
measurement for healthy and pathological images is available in
Figure 4. Measurements were then saved in a text file. The manual mea-
surement of the two diameters was performed by A1 (A.N. with 10+ y
of experience in clinical practice of TOS), considered as the ground
truth, and by A2 (F.M. with 5 y of experience in ultrasound image analy-
sis, who trained on 25 independent examinations and performed the
ONSD measurement in a standardized view of the ONSD) considered as
the human control. Each operator was blinded to the other operator’s
measurements. Two manual diameter measurements were obtained to
have an estimate of inter-rater variability.

Manual segmentation of the ON sheaths to create the ground truth
for the segmentation network is a time-consuming operation and, thus,
was performed only by A2. To assess that manual segmentations by A2
were performed correctly, the OND and ONSD values were extracted
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from the manual masks and compared with the diameters measured by
A1. No outliers were detected (ONSD max absolute error <1.5 mm), so
the manual segmentations were considered usable as ground truth for
the segmentation network.

The same geometric approach applied to define the 3 mm zone
was used for the automatic measurement of OND and ONSD. At the
3 mm mark, a line was traced orthogonal to the ON axis, and the
intersections with the ONS mask were marked on the ONS contours,
for a total of four points. The two medial marks defined the OND,
while the two outer marks defined the ONSD, thus including in the
measured diameter also the subarachnoid space. Examples of user
interfaces for segmentation and diameter measurement are displayed
in Figure 3.

The image data and the manual measurements used in this work will
be available at 10.17632/kw8gvp8m8x.1.
Model training and inference
A UNet with five down sampling steps and a Resnet50 encoder pre-

trained on ImageNet was used as the segmentation model. The Dice loss
was used as the objective function, with Adam optimization (initial
learning rate = 0.0002) and a batch size of 32 images. During training,
the Dice loss was tracked on the validation set to guide the selection of
the best model. The learning rate was halved after 20 and 40 epochs.
The training was stopped after 10 epochs without an improvement of at
least 1% in the Validation loss with respect to the best epoch. To regular-
ize model training, data augmentation was applied to the input images
and masks. Each transformation had a probability (p) of being applied to
each batch that was collected from the data set. The transforms were
applied as a random permutation of horizontal flipping (p = 0.5), scal-
ing and rotation (scale = ±10%, rotate = ±10°, p = 1), Gaussian noise
addition (p = 0.3), contrast-limited adaptive histogram equalization
(CLAHE) (p = 0.3), multiplicative noise addition (p = 0.2), optical dis-
tortion (p = 0.2), sharpening (p = 0.25) and blurring (p = 0.5). More
details can be found in the shared code. Our approach was developed
using Pytorch and with the libraries Albumentations and Segmentation
Models [25−27].

The low numerosity of our data set is a limitation when applying
a DL model. Hence, a fivefold cross-validation (CV) was applied to
have a robust estimate of network performance and generalization.
The comparisons to the ground truth were performed merging the
five folds selected for testing, thus standing for the full data set. At
each run, three subsets were used for training and one each for vali-
dation and testing. To improve the segmentation of the ON and
ONSD, the fivefold CV was repeated eight times and the SoftMax
outputs of the models were averaged to obtain a more precise final
Ensemble prediction. This was possible given the fast training time
of the models: each run was completed in under 20 min using an
RTX 3060. The total training process took 12 h.
Figure 5. (a) Binarized SoftMax outputs from eight separately trained models. (b) Pos
(d) Post-processing of the probability map (thresholding at 0.6 and morphological ope
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To obtain the Ensemble prediction, each SoftMax output was
binarized with a threshold set at 0.5 creating segmentation masks.
Morphological operations were applied to each mask to fill holes,
smooth boundaries (i.e., opening with a disk structural element of
radius 3 pixels, followed by a closing with a disk structural element
of radius 5 pixels) and retain only the two largest connected objects
in the mask.

The eight post-processed masks were averaged, resulting in a
probability map. The probability map was binarized with the thresh-
old set at 0.6 (0−1 range), and the same morphological operations
applied on the single segmentation masks were used to smooth the
predicted area. Sizes of thresholds and structural elements were cho-
sen empirically. All details of the post-processing operations can be
found in the shared repository. A detailed illustration of the mor-
phological operations on the SoftMax and their average is provided
in Figure 5.

As an added check of the generalization performance of our
approach, the training of the UNet model was also performed on the
images from three machines using the images from the fourth machine
as an external test set. A fivefold CV strategy was used as in the earlier
example, but with no repetition; four folds were used for training and
one for validation. The test set was defined by the images of the left-out
machine. Hence, for each test set, five different predictions were avail-
able. The SoftMax predictions from the 5 folds were averaged as previ-
ously described.
Model validation
To validate the performance of our model, the Dice score and the

Hausdorff distance were calculated between the manual masks and the
automatic ONS masks. These comparisons were done only in the image
section where the manual masks were defined. This was done because
the automatic network segmented the ONS also in the areas with a low
SNR while the manual segmentation was limited to areas with a high
SNR. Moreover, a paired Wilcoxon test was performed to verify that the
distributions of these two metrics in each single run were significantly
different from those of the ensemble prediction.

The main goal of this approach was to obtain correct measurements
of the OND and ONSD. The automatically obtained diameter measure-
ments were compared with our ground truth (i.e.,manual measurements
by A1). The comparisons included three different methods: the first com-
pared the diameters measured by another operator (A2) that used the
same GUI as the ground truth, the second extracted the diameters from
the manual masks (A2mask) and the third measured the diameters from
the masks obtained using the network (UNet). The three methods were
compared by computing the absolute error defined as

Absolute errorDiameter �
�
�
�
�
DiameterMethod � DiameterAN

�
�
�
�

�1�
t-processed SoftMax. (c) Averaging of the 8 SoftMax results in a probability map.
rations).

https://doi.org/10.17632/kw8gvp8m8x.1


Figure 6. Areas considered during signal and noise power
calculation for signal-to-noise ratio evaluation. (a) Signal
power (green label) is calculated in the optic nerve sheath
area, while noise power (red label) in the optic nerve area.
(b) Signal power is calculated in the optic nerve sheath
area, and noise power in the retrobulbar fat area.
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the intra-class correlation (ICC2,1), Bland−Altman plots and correlation
plots. One of the aims of this work was to give some guidance on the
acquisition of TOS images to reach human-level performance by an auto-
mated system. To do so, segmentation and diameter measurement per-
formance was compared at different SNR levels. SNR was defined as
SNR = 20 × log(Ps/Pn), where Ps is signal power and Pn is noise power.
The SNR was computed in two distinct positions using the labels defined
manually by A2. In the first, the signal power was computed inside the
ONS labels and the noise power inside the ON label. In the second, the
signal power was computed inside the ONS labels, and the noise power
Figure 7. (a) Boxplots of the Dice scores for the eight runs and those resulting from
between the optic nerve sheath contours of the ground truth and the automated masks
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was computed in the retrobulbar fat area surrounding the ONS labels.
The two different measurements are described in Figure 6. Three catego-
ries were established:

� Low SNR: SNRi <SNR � σSNR� Average SNR: SNR � σSNR > SNRi <SNR � σSNR� High SNR: SNRi >SNR � σSNR

Where SNRi is the SNR measured in the i-th image. SNR and σSNR are
respectively the average SNR and the standard deviation of the SNR in
the ensemble of the SoftMax. (b) Boxplots of the Hausdorff distances in pixels
for the eight runs and the ensemble mask.
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the dataset. SNR impact on segmentation performances was studied by
comparing the Dice scores at different SNR levels. To study SNR impact
on diameter measurement, the distribution of SNR values was investi-
gated depending on the correctness of the OND and ONSD measure-
ments. Measures within 0.2 mm from GT were labeled as “correct,”
whereas outside this range measures were labeled as “over” or “under”
estimated. The distribution on SNR values for each category was then
evaluated.

Results

The average Dice score for each repetition ranged from 0.695 to
0.713, and the standard deviation ranged from 0.141 to 0.147, while
the average Dice score for the ensemble of the prediction was 0.719 ±
0.139. Each Wilcoxon test resulted in a significant difference (p < 0.01)
between the Dice scores from the single run and those of the ensemble
predictions. Similarly, the average HD ranged from 8.9 to 9.3 pixels
with a standard deviation from 4.0 to 4.4 pixels for each run, while the
ensemble prediction produced an HD of 8.2 ± 0.5 pixels, being signifi-
cantly lower than all the single-run distributions (p < 0.01). Boxplots for
the Dice score and HD for each run and the ensemble prediction are pro-
vided in Figure 7.

Regarding the generalization performance of the network on a differ-
ent device considered as the test set, the Dice score was 0.658 ± 0.156
Figure 8. (a) Boxplots of the Dice scores for the subsets when the images from that m
runs. (b) Same plot revealing the Hausdorff distances. Mach 1 (MyLab Esaote, Hom
Novara), Mach 4 (GE-Vivid7). Mach, machine.
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for machine 1 (MyLab Esaote Homburg, N = 207), 0.726 ± 0.121
for machine 2 (MyLab Esaote Turin, N = 113), 0.612 ± 0.157 for
machine 3 (Toshiba Aplio 300, N = 93) and 0.689 ± 0.112 for machine
4 (GE-Vivid7, N = 51). Boxplots for the Dice score and HD for this anal-
ysis are provided in Figure 8.

During the manual diameter measurement process, 45 images were
defined by A1 as not usable for measuring the OND and ONSD because
of their poor SNR. The numerosity of the excluded images for each
device is given in Table 1. All analyses concerning the OND and ONSD
measurements are made excluding those images, while they were not
excluded in the segmentation performance assessment, as A2 manually
annotated all the images. The results for the comparisons of diameter
measurements with the ground truth are summarized in Table 2.

OND is slightly underestimated by the automatic measure with a
mean error of −0.253 mm (mean absolute error [MAE] = 0.323 ±
0.246 mm, mean square error [MSE] = 0.165 ± 0.273 mm) and a Pear-
son’s correlation of 0.69. The correlation between A2 and A1 was equal
to 0.85, whereas the correlation between the A1 measures and the diam-
eters extracted from the manual masks (A2mask) was equal to 0.84. The
ONSD measure has a much lower mean bias with a mean error of
0.027 mm (MAE= 0.394 ± 0.320 mm, MSE = 0.257 ± 0.426 mm), and
its correlation is at the same level as OND with correlations of 0.69
between A1 and UNet, 0.86 between A1 and A2mask and 0.89 between
A1 and A2. The Bland−Altman plots do not reveal any clear trend in
achine were used as the external test set. The first column is the union of the four
burg), Mach 2 (MyLab Esaote, Turin), Mach 3 (Toshiba Aplio300 and AplioXG,



Table 2
Evaluation of measurement errors with respect to the ground truth of the compared methods

Pool Name OND error (mm) ONSD error (mm) OND absolute error (mm) ONSD absolute error (mm) iccOND iccONSD Low quality

Full A2mask −0.193 ± 0.244 0.068 ± 0.368 0.244 ± 0.194 0.288 ± 0.238 0.752 0.861 45
UNet −0.253 ± 0.318 0.027 ± 0.507 0.323 ± 0.246 0.394 ± 0.319 0.518 0.661
A2 0.051 ± 0.226 0.166 ± 0.337 0.180 ± 0.146 0.293 ± 0.234 0.845 0.860

Machine 1 A2mask −0.211 ± 0.249 0.091 ± 0.411 0.260 ± 0.197 0.321 ± 0.272 0.631 0.810 20
UNet −0.261 ± 0.291 0.026 ± 0.510 0.324 ± 0.218 0.410 ± 0.303 0.402 0.610
A2 0.046 ± 0.226 0.226 ± 0.297 0.178 ± 0.147 0.295 ± 0.229 0.770 0.844

Machine 2 A2mask −0.158 ± 0.196 0.117 ± 0.315 0.196 ± 0.157 0.268 ± 0.201 0.840 0.873 8
UNet −0.229 ± 0.267 0.083 ± 0.440 0.281 ± 0.212 0.332 ± 0.298 0.618 0.710
A2 0.030 ± 0.219 0.161 ± 0.411 0.167 ± 0.144 0.345 ± 0.273 0.877 0.794

Machine 3 A2mask −0.196 ± 0.281 −0.023 ± 0.359 0.249 ± 0.234 0.281 ± 0.222 0.752 0.885 15
UNet −0.257 ± 0.467 −0.022 ± 0.644 0.413 ± 0.335 0.479 ± 0.428 0.334 0.559
A2 0.079 ± 0.275 0.117 ± 0.363 0.225 ± 0.176 0.303 ± 0.229 0.818 0.876

Machine 4 A2mask −0.195 ± 0.256 0.033 ± 0.290 0.275 ± 0.166 0.220 ± 0.189 0.653 0.913 2
UNet −0.260 ± 0.229 0.026 ± 0.436 0.274 ± 0.211 0.350 ± 0.257 0.503 0.714
A2 0.087 ± 0.170 0.047 ± 0.218 0.156 ± 0.110 0.178 ± 0.132 0.856 0.947

A2, manual diameter measurement from the second operator; A2mask, measurements made on the manual masks. UNet, measurements made on the pre-
dicted masks. OND, optic nerve diameter; ONSD, optic nerve sheath diameter; icc, intraclass correlation coefficient; machine 1, MyLab Esaote, Homburg;
Machine 2, MyLab Esaote, Turin; Machine 3, Toshiba Aplio300 and AplioXG, Novara; Machine 4, GE-Vivid7.
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error distribution for OND measurements. The ONSD measures exhibit a
slight overestimation by the automatic method when the manual ONSD
increases. Also, the correlation plots do not give rise to doubts about the
homoscedasticity of the error deviation for OND and ONSD. These plots
are available in Figure 9 for OND and ONSD.

In Figure 10a are boxplots visualizing the Dice score for the left and
right ON sheaths and for the total image. Measurements are grouped by
SNR category, and the Dice score is shown on the y-axis. In these graphs,
we can appreciate how the Dice distribution is influenced by the SNR
level, but outliers and errors are still possible in images with high SNR.

Figure 10b compares SNR levels with the correctness of OND meas-
urements. Measurements are grouped by measurement correctness cate-
gory, and the SNR level is shown on the y-axis. We can see that SNR is
distributed similarly for each of the three categories. We can appreciate
a slightly higher distribution of SNR values only for correct OND values.
Similar considerations arise from Figure 10c, in which the SNR level is
compared against the ONSD measurement.

Discussion

The DL-based segmentation method described in this article achieves
promising results in the identification of the optic nerve and the optic
nerve sheaths in TOS images. From a technical perspective, we intro-
duced a refining operation based on the averaging of the predictions
from multiple models and light morphological operations. This opera-
tion improves the ability of the system to avoid coarse segmentation
errors that are typical when segmenting ultrasound images given their
low SNR. This behavior can be visualized as seen in Figure 5, where the
outputs from the single networks (Fig. 5a, 5b) can portray non-physio-
logical shapes, blobs and vacancies in the segmented sheaths (i.e., coarse
segmentation errors). The averaging step and the final prediction are
displayed in panels C and D where the physiological shape of the sheaths
is restored, and the segmentation quality is hence improved. This step,
along with a fivefold CV, introduces a multiplicative factor in training
time but provides beneficial robustness to the segmentation and valida-
tion process. Both the CV and the prediction refinement through averag-
ing of multiple outputs could in theory be avoided if the considered data
set is large enough, but they were considered necessary given the sample
size for this specific study. The OND and ONSD measurements exhibited
robust inter-observer agreement in previous literature, and this result
was confirmed by our analysis comparing diameters from manual masks
with the ground truth measurements. The DL system needs to be
improved to reach an accuracy that would bring its performance inside
the inter-rater variability range. This achievement has already been
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described in literature in other clinical applications, where DL-based
segmentation networks applied to ultrasound images reach Dice scores
>0.8 and have an agreement with the ground truth comparable to intra-
operator variability [28−31]. The lower performance compared with lit-
erature is explained by the small number of training images and the
high difficulty of our data set. It includes data from multiple centers and
devices and presents images with ONSD diameters ranging widely from
3.62 to 8.40 mm. So, performance is in line with expectations and can
scale accordingly with an augmentation of training data or a decrease in
data set variability.

The generalization ability of the network was tested both in cross-
validation folds and by leaving one machine out of the training process.
The first gave stable results on all folds across multiple repetitions, so
we can say that the network can robustly segment images from the same
distribution of training data. The second task of generalization across
ultrasound devices was the most challenging, producing reduced perfor-
mance especially for machine 3. This result illustrates how this method
can generalize over different machines, but it needs to be tuned on a sin-
gle machine to reach a robust agreement with an expert operator. This is
owing to the different settings and image enhancement algorithms that
are present in machines from different vendors that affect the general
appearance and texture of the US image.

The correlation and Bland−Altman plots reveal a good correlation
between the automatic OND and ONSD measurements and the ground
truth. Still, the correlation coefficients are lower than those between
ground truth and manual measurements from another operator and the
ones obtained from the manual masks. This result is in line with the seg-
mentation performance analysis and highlights the limitations of this
approach. This limitation is confirmed also by the ICC values in Table 2
that indicate how the automated measurements still have a lower consis-
tency with ground truth with respect to another manual operator.

Reaching consistency in diameter measurement is especially chal-
lenging because of the millimeter/pixel conversion factor and lateral res-
olution in US images. In our data set, the median conversion factor is
0.1061 mm/pixel, and the absolute error standard deviation for ONSD
for UNet measurements is 0.507 mm. Hence, an error of a few pixels can
hinder the possibility of obtaining an accurate measurement. The lateral
resolution of the ultrasound acquisitions ranged between 0.47 and 0.60
mm; thus, the ONSD absolute error standard deviation lies in this range.
The uncertainty level of this approach is thus approaching the physical
limitations of US. To reach better accuracy levels, improvements in both
the ultrasound signal and image processing are required. For the signal
processing and image reconstruction step, new DL-based methods are
being explored [32], as are super-resolution ultrasound techniques [33].



Figure 9. (a) Bland−Altman and correlation plots comparing OND measurements between ground truth and those made using the automated method. (b) Same graphs
for ONSD. On the Bland−Altmann plot, the red dashed lines are at 1.96 SD from the mean value. In the correlation plots, rho is calculated using Pearson’s correlation.
A1, manual measurements obtained by the most experienced operator; OND, optic nerve diameter; ONSD, optic nerve sheath diameter.
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Figure 10. (a) Boxplots visualizing Dice score and Hausdorff distance distributions for distinct categories of SNR. (b) These boxplots visualize SNR distribution
depending on the correctness of the OND measurement (GT ± 0.2 mm). SNR is calculated first from the ON sheaths to the ON (left), then from the ON sheaths to their
peripheral area (right). (c) SNR distribution depending on the correctness of ONSD measurement. ON, optic nerve; OND, optic nerve diameter; ONSD, optic nerve
sheath diameter; SNR, signal-to-noise ratio.
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From the image processing standpoint, a possible solution for this prob-
lem and future development could include artificially augmenting the
resolution of the images using a super-resolution algorithm based on
GANs or diffusion models.

The obtained Dice score and OND/ONSD correlation analysis gave
rise to similar conclusions. It is important to highlight how both these
aspects need to be separately evaluated when assessing an automated
system for ON and ONS analysis. The Dice score is better suited when
comparing different segmentation approaches on the same data set. Con-
versely, to assess the effectiveness of the system in performing the clini-
cal task, the correlation analysis with one or more manual operators is
to be preferred. The SNR analysis reveals a correlation between SNR
level and segmentation performances, but not with diameter measure-
ment accuracy. This is explainable by considering that segmentation
accounts for a wider area and ON sheaths are less and less distinguish-
able at higher acquisition depths. So, a high SNR helps in the detection
of the sheaths, especially in the most challenging areas. Instead, the
3 mm zone lies in an area with relatively high SNR, so its effect is less
prominent for automatic diameter accuracy. Moreover, it is important to
have a high SNR between the ONS and the ON, but this is not true when
studying the SNR between the ONS and its peripheral structures (i.e.,
retro-orbital fat). This is so because of the appearance of these structures
in a TOS image where ON and ONS have a higher contrast compared
with ONS and retro-orbital fat, which have a similar echogenicity. Thus,
to maximize the performance of an automated algorithm, the operators
that perform the acquisition should focus on the ON being less echogenic
than the ONS, and the ONS having a clear boundary with its peripheral
structures. Developing a system that accurately segments the optic nerve
sheaths in all their length might also make it possible to study the vari-
ability of the diameter of the ON and ONS width depending on the mea-
surement depth.
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As a final remark, having a larger or less variable data set should
improve both segmentation and diameter measurement accuracy. A
larger number of samples would improve the generalization capabilities
of this method, enhancing the development of an accurate baseline
model that could be transferable across multiple devices and acquisition
protocols. Then, tuning the model to a less variable data set, obtained
with a standardization of the acquisition process, should additionally
improve the system’s accuracy. The combination of these two improve-
ments would help to create a system that reliably performs the segmen-
tation of the ONS and the measurement of the OND and ONSD.

Conclusions

We have described a DL approach to the automatic segmentation of
ON structures in TOS images with a novel refinement step that involves
multiple predictions to avoid coarse segmentation errors. Our approach
was validated in two highly challenging scenarios using hold-out test
sets on external machines, proving the robustness of our approach.
Moreover, the measurements extracted using our method correlate both
with those measured by an expert operator and with the measurements
extracted from the manual masks.

Focusing on the relationship between SNR and segmentation per-
formances, a first step was made in the direction of setting up a protocol
for the acquisition of TOS images that can be easily interpreted by a DL
system. With these guidelines, an operator could focus on the correct
acquisition of the US image without having to perform an error-prone
task such as diameter measurement.

Future work will be in the direction of increasing data set size to
develop a robust baseline model that can be fine-tuned on a single
machine to achieve human-level precision in ON segmentation. With a
larger data set, a statistical analysis to see how each machine setting
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influences the segmentation capabilities of the DL system would be pos-
sible, thus improving the explainability of the DL model.

Overall, this work is a firm statement of the possibility of investigat-
ing TOS images with a DL system and should encourage further research
toward the creation of a model that can be exploited by practitioners to
improve and standardize ON analysis.
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