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Towards Autonomous Computer Networks in
Support of Critical Systems

Alessio Sacco ∗ Guido Marchetto ∗
∗ Department of Control and Computer Engineering, Politecnico di Torino, Italy

Abstract—A recent trend dictating evolution of management
and orchestration of computer networks is constituted by the
softwarization and virtualization of them, which have drastically
simplified the deployment and real-time reconfiguration of net-
work functions, allowing them to continuously adapt and to deal
with dynamic demands in an automated way. Alongside, recent
management and orchestration approaches for softwarized net-
works employ Artificial Intelligence (AI) and Machine Learning
(ML) to further reduce reaction time and improve the accuracy
of decisions, where the network operations can be automated to
the point of realizing autonomous driving networks. However,
while automating operations can improve the overall system
(it is acknowledged that 70% of network faults are caused
by manual errors), AI/ML methods are not the panaceas, and
we are still far from having a fully operating and efficient
automated architecture. In this dissertation, we present a novel
class of software network solutions that share the goal of enabling
intelligent and autonomous computer networks, exploring how
to exploit the power of AI/ML to handle the growing complexity
of critical systems. We start with a new network management
scheme for adaptive routing and autonomous scaling of virtual
network resources. Then, acting on the hosts, we propose to
adjust the TCP congestion control with a ML-based solution,
whose goal is to select the proper congestion window learning
from end-to-end features and (when available) network signals.
We believe that the proposed solutions, and their combination,
can lay the foundation for automated systems that better suit
modern edge environments and cellular networks by providing
unprecedented flexibility and adaptation to even unseen and
unknown network conditions.

Index Terms—machine learning, computer networks, conges-
tion control

I. INTRODUCTION

In recent years, communication networks have undergone
a radical evolution towards more programmability and flexi-
bility, mainly due to the so-called “network softwarization”.
The combination of such network softwarization and new
architectures opened up new opportunities. For example, edge
computing, a novel paradigm in which resources, instead of
residing in the cloud, are moved closer to the sender (i.e., at the
edge of the network) can facilitate the rise of new interactive
systems, promising simultaneously (ultra) low-latency, high-
bandwidth, and reliable telecommunications. Together, the
edge computing paradigm and the programmability of the data
plane with novel network programming languages such as
P4 [1] or the Deep Programmable Data Plane Kit (DPDK) [2]
are showing promising business use cases, supporting several
applications [3], [4]. Among all examples of these networked
systems and applications, in this dissertation the focus is on
the so-called “critical systems”, deployed for life improvement

and sometimes even life-saving services. Consider, e.g., a
remote surgery operation, where the system should lead to an
improvement in the accuracy and dexterity of a surgeon while
minimizing trauma to the patient [5]. Similarly, a telepathology
session, in which histological imagery is transmitted over
delay and bandwidth-sensitive path to be processed and shared
with a remote medical doctor for real-time diagnosis or pre-
computation of digital pathology [6]. On the one hand, these
novel paradigms are opening new applications and business
opportunities. On the other hand, however, they are opening
new network and application management problems.

It thus appears how there is a need for new effective and
efficient management of softwarized networks and services to
cope with the unfolding plethora of opportunities provided by
softwarization. Such flexibility does not necessarily have to be
addressed by selecting a configuration once, but systems can
be adapted continuously and be able to deal with dynamic
demands in an automated way [7]. In this perspective, we
argue that Artificial Intelligence (AI) and Machine Learning
(ML) can play a central role in managing and orchestrating
softwarized networks for the following reasons.

First, the tools that network operators use to gather data
from the network have not changed appreciably in decades,
even as both demands on the network and traffic volumes
have increased. The network data collection, the analysis of
such data, and the decision of whether and how to adapt
the network’s configuration in response to changing network
conditions (e.g., a shift in traffic demand, an attack), still
remain three decoupled steps. Operators perform network
management and network optimization tasks on several
timescales, often relying on operators’ experience and
cumbersome adjustments.

Second, new security and performance requirements create
a growing need for new approaches to real-time network man-
agement that exploit the growing capabilities in programmable
networks and systems to support the analysis of real-time
streaming data. Despite recent advances in algorithmic and
system aspects of streaming applications, the set of queries that
network management requires is significantly more extensive
than current methods can handle.

Third and lastly, due to the increasing popularity of Internet-
connected devices and the various applications that run over
the network, the expectations for network reliability and per-
formance are greater than ever. To achieve these goals, network
operators must continuously collect and analyze the various
data streams from the network, possibly with lightweight yet



accurate methods.
Therefore, we believe that networks can be equipped with

AI/ML to achieve autonomous decision-making capabilities
at run-time, as also suggested by recent trends [8]–[10].
Considering that it is nearly impossible for human operators
to render network management in real-time, it is likely that
future networks will apply AI/ML to autonomously identify
and locate congestion or malfunctions in the network, and
opportunely react. For example, to accurately configure and
manage itself, the network needs to pinpoint the malfunction,
collect and analyze measurements in a stream way. Once met-
rics are collected, the network reacts to address the sub-optimal
behavior via network programmability. These mechanisms can
help solve the challenges introduced by interactive, reliable,
and low-latency communication of critical systems [5]. A
proper network infrastructure handling the traffic of appli-
cations with strict requirements cannot be an afterthought in
network management.

In this dissertation, we present a novel class of software
network solutions that share the goal of enabling intelligent
and autonomous networks in order to facilitate the deployment
of such interactive systems. The research question driving
the work can be summarized as: how these new algorithms
(such as machine learning) and the new technologies (such
as edge computing and SDN) can be used to effectively
solve (traditional and not) network management problems.
In particular, our research contribution covers solutions that
exploit the power of AI/ML to handle the growing complex-
ity of communication networks in the context of resource-
constrained, dynamic, and mission-critical environments of
modern networks. In this dissertation we focus on the design
and deployment of learning algorithms for some specific
network operations, ranging from the the management of virtu-
alized and softwarized network resources and their allocation,
to the end-host modification with the similar aim of mitigating
network congestion.

II. NETWORK MANAGEMENT OPERATIONS

As users and traffic demands grow, the need to optimize our
communication networks magnifies, denoting the evidence that
networks dictate our technological world. Recent advantages
in artificial intelligence (AI) and machine learning (ML)
are paving the path to autonomous networks: networks that
measure, analyze and control themselves autonomously. Such
a network automation brings enormous benefits since it is
almost impossible for human operators to render real-time
network management [11]–[13].

A. Auto-Scaling Networks

A particular problem in network management is network
reliability and elasticity, i.e., the subproblem of autonomous
networks that deals with the ability to auto-scale resources up
and down, in harmony with changes in the environment, e.g.,
traffic demand. The advantages brought by the auto-scaling
techniques are multiple. They reduce the cost of resource
management, by deactivating resources that may increase

Fig. 1: System overview. The Software-Defined Network con-
troller receives as input traffic statistics and outputs new flow
routes and power on/off commands.

unnecessary (energy) costs. At the same time, the network can
provide redundant facilities to reroute traffic when workload
peaks to unexpected levels.

Traditional threshold-based and recent ML-based auto-
scaling policies are often unable to address the high complex-
ity of networks and consequently to satisfy the carrier-grade
requirements of reliability and stability. Furthermore, state-of-
the-art solutions hardly combine these features altogether, such
as [14] whose primary goal is the energy efficiency, or [15],
which automatically scales Virtual Network Function instances
via an ML classifier. Although reinforcement learning is
emerging as a valuable technique to solve many networking
problems, as in [16], there is no solution incorporating net-
work information to automatically and efficiently orchestrate
network resources in a decentralized manner.

To this end, we propose Mystique, a network manage-
ment schema that, using Multi-Agent Reinforcement Learning
(MARL), auto-scales to accommodate the traffic demand and
reacts to possible failures [17]. On the one hand, Mystique
unburdens network nodes that are over-congested with traffic,
to preserve the high bandwidth and high availability of the
applications. On the other hand, it leverages healing strategies
to repair failing nodes and links. Each MARL agent, a process
running within an SDN controller, can learn an auto-scaling
policy from experience, without any a priori knowledge or
human intervention. By continuously monitoring the state of
the network, the agent can make sharp decisions on how to
optimize network performance and users’ experience, exploit-
ing SDN to promptly change the configuration. Moreover,
the distributed nature of MARL makes it possible to exploit
a (possibly) large number of SDN switches spread across
the topology as probes. The system automatically re-balances
both existing and new flows across nodes, while the agents
communicate among them to obtain information about the
other sub-network. The decisions taken by Mystique aim to
maximize overall Quality of Experience (QoE) across multiple
users and achieve a desired level of QoE fairness, while
reducing the energy costs for active links and nodes.

Results validate our decentralized control plane, showing
how Mystique can promptly adapt and modify its behavior to
handle variations in workloads. Compared to other benchmark



solutions, our algorithm can jointly improve the user satisfac-
tion and more wisely utilize the network resources.

The main functions of Mystique are to auto-scale according
to the traffic demand and react to failures when they occur. We
developed and implemented these features in a system depicted
in Fig. 1. In this context, the controller monitors the state of
each switch in its sub-network to detect if one of the following
events occurs: the switch is overloaded (congestion), the
switch in under-utilized and can be deleted (cost-saving), the
switch fails and the connectivity can be no longer guaranteed
(failure). However, the control plane is distributed to several
controllers. Each of them controls a subset of switches and
communicates with the other controllers, via the Info exchange
process, to obtain a consistent network view. For any change
in the controlled network region, e.g., new link, the controller
notifies its peers. They also exchange the information required
for computing the QoE for connected users. The reinforcement
learning (RL) module selects the best action, i.e., active
network resources, but interacts with other processes to collect
the information required for the decision and to notify about
the outcome. In fact, we avail multiple processes to better
separate concerns, but they cooperate to achieve our stated
goal by implementing the following functionalities.
Routing. Each agent dynamically creates and destroys virtual
switches and virtual links in response to network fault or
substantial network traffic changes. This means that, in these
events, the agent is also responsible for re-steering the traffic
and deciding what flows to move in response to these actions.
At the beginning, the route for each flow is selected by the
controller based on the shortest path algorithm. In the case of
multiple available paths between source and destination, a load
balancing strategy is applied, i.e., flows are equally distributed
among the multiple paths. In the following, we separate the
events to face during the execution with the aim of a more
clear presentation.

In the case of a link or node failure, the same resource is
re-created. For a link failure, a new edge is created connecting
the same source node and destination node. The neighbor of
the switch modifies the forwarding rules reflecting the new
port ids. For a switch failure, a new one is generated with the
same links that the faulty switch had. This implies that all the
flows previously installed on the old switch are moved to the
new one, and the neighbor nodes that were connected need to
be re-instructed with the new ports.

When a new link or switch is created, the topology is
analyzed, and the flows that can take advantage of the new
path(s) are identified. Among them, a subset of flows, i.e., in
order to select half of the identified traffic, is transferred to the
new alternative path. However, we remark that the number of
flows to move is a consequence of a load balancing strategy
that attempts to equally redistribute flows.

Finally, when a link or switch is deactivated due to energy
saving considerations, all the flows traversing the deactivated
item are considered, and a new path for each of them is set
via the shortest path strategy.
Failure Reaction. We desire to react accordingly to the

degree of the issue and take a proportional action. For this
reason, while the utilization of the switch (and connected
links) is handled by the RL model, a separate module
manages the failure detection and reaction. Inspired by
previous work [18], we consider 5 possible faults that can
take place in our scenario: (1) communication with the
controller ended, (2) timeout of the response expired, (3) port
fault, (4) flows of a particular host have blocked unexpectedly
by the switch, (5) unexpected behavior of the switch. As the
controller continuously monitors the state of the switches, it
can replace the switch in case of (1)-(2) (three consecutive
timeout expirations)-(5). Instead, in case of (3)-(4), the link
originating from the fault port is re-created.

The mechanism of fault reaction is in addition to the
fast failover provided by new versions of OpenFlow. In this
procedure, it is possible to install rules whose forwarding
behavior depends on the local state of the switch. Hence, it
allows fast failure recovery, as long as the SDN controller
is able to anticipate every possible failure and precompute
appropriate backup paths. However, OpenFlow fast failover is
just to react to link failures, and no other events are taken
into account, for example, switch failure. Even though this
is equivalent to a failure of all the adjacent links, we argue
that the controller can benefit from our model and adapt the
routing and the application logic dynamically, as the network
evolves. The fast failover is orthogonal to a reactive solution,
as our model is. For this reason, both strategies are utilized
for an improved fault reaction.
RL Optimizer. The optimizer’s role is to find the network
subset that satisfies current traffic conditions while avoiding
the waste of resources. In our solution, this decision is taken
by theh reinforcement learning agent using the one-step Q-
learning algorithm. As input, it receives the topology, the
power model of switches, and the current traffic conditions.
These measurements are collected by the switches and re-
ported periodically to the network controller, where resides
the metric collector component. The collected data then feed
the model on the agent, that outputs the best decision for
the network itself, exploiting historical data to learn the
goodness of a particular action upon the occurrence of similar
conditions. The decisions regard activation of links in the sub-
network. When the decision is made, the actuator receives the
output consisting of the set of active components and performs
the appropriate commands. Moreover, the actuator also pushes
the new routes into the network.

In Fig. 2 we evaluate our solution against three state-
of-the-art solutions adequately adapted to our use case: an
ML classifier-based method to perform auto-scaling, [15],
SRSA [19], and ElasticTree [14]. SRSA is a reinforcement
learning approach to auto-scaling VMs in a telco cloud
platform [19], while ElasticTree attempts to solve a power
optimization problem using a greedy bin-packing heuristic. In
particular, we report in the (a) energy efficiency, (b) application
throughput, and (c) QoE fairness for the considered methods.
By considering the plots, we can notice how our system
outperforms the related algorithms in all the examined metrics.
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Fig. 2: Performance comparison with other benchmark algorithms in terms of (a) energy saved with respect to original setting,
(b) mean application throughput achieved, (c) fairness index for the flows.

In particular, fairness is distinctly one of the most improved
quantities in Mystique, as one of the desiderata. Furthermore,
none of the other algorithms can efficiently optimize more
metrics simultaneously, but they can successfully improve only
some of them. Conversely, Mystique stably outperforms other
solutions, demonstrating its ability to optimize management
costs and QoS parameters altogether in multiple network
scenarios.

III. HOST-BASED OPERATIONS

A performing congestion control protocol is fundamental
for proper network operation as it ensures telecommunication
stability, fairness in computer network resource utilization,
high throughput, and a low switch queuing delay. This is
especially important in new throughput and/or delay-sensitive
applications [20]. Although many solutions have been pro-
posed in the last decade, Transport Control Protocol (TCP)
still constitutes the overwhelming majority of current Internet
and Long Term Evolution (LTE) communications, and the vast
majority of congestion control mechanisms are implemented
on TCP. In the following we present Owl, a new approach to
control the congestion on hosts [21].

A. High-Performance Transport Pdrotocol

Various studies have shown how TCP performs poorly in
scenarios that require adaptability or that departs from the
original network conditions on which it was designed in the
’70s [22]–[24]. In particular, problems may occur in cellular
and wireless networks, where TCP misinterprets the stochastic
packet losses as congestion, hence leading to performance
degradation [24]. This issue has motivated many authors to
propose innovative congestion control approaches that follow a
domain-specific design philosophy, in which the design is lim-
ited to a specific network scenario and it leverages its specific
characteristics to boost the performance. Examples are in data
centers [25], [26] and edge networks [24]. Several TCP vari-
ations (e.g., PCC [27] and Copa [28], to mention a few) have
been recently proposed to overcome these shortcomings. Nev-
ertheless, the fixed rule strategies used by these solutions are
often inadequate to adapt to the rapidly changing environment.

To solve the problem of an adequate congestion window
update strategy, we have developed Owl, a novel transport
protocol based on reinforcement learning (RL). Although

TCP module

State s:
RTT
Thr
Loss
…

Observe state s

Deep Neural Network

SENDER Reward r

Take action 
a = new cwnd

RECEIVER

Partial Network
Knowledge

Network
Measurements

Agent

Fig. 3: Owl Overview: reinforcement learning sender’s agent
interaction with the network.

many transport protocols have been designed, with [29], [30]
or without learning algorithms [25], [31], the most recent
solutions using RL do not exploit network intelligence fully.

Our transport protocol Owl is able to increase the throughput
and fairness while reducing the number of packets lost and
delay by learning from several end-to-end and in-network met-
rics. In particular, our contributions are summarized as follows.
We designed and implemented as a kernel module Owl1, a
new congestion control protocol that leverages partial network
knowledge to train a reinforcement learning model based on
Deep Q-Learning [32], improving the network performance
with respect to recent work [33]. The outcome of Owl model
is the next congestion window value, a crucial and volatile
parameter for any reliable telecommunication.

Recently, RL has permeated many congestion control mech-
anisms, such as Orca [34] and Aurora [33], where in Aurora,
the previous Performance-oriented Congestion Control (PCC)
protocol was extended with a Deep-RL approach. Our RL
approach differs from others for the agent state: we effectively
combine features from both the transport and the network
layers, without significant burdens to the Linux kernel module.

In Figure 3, we detail the main actions performed by the
sender. The collected metrics are fed to the neural network of
the model and the protocol starts. The host runs a RL model
to decide the next congestion window (cwnd). The congestion
window is one of the per-connection state variables that is
used by TCP to limit the amount of data a sender can transmit

1As owls that (are wise and) can see with poor light conditions, our protocol
operates with partially visible networks.
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Fig. 4: (a) GENI testbed evaluation. Throughput-loss rate trade-off for kernel-level solutions over real networks. Owl optimizes
the two quantities simultaneously. (b)-(c) Network Knowledge Impact on Performance. Throughput and RTT of Owl
protocol for increasing percentage of known network. Somehow surprisingly, the highest performance gaps with respect to
other algorithms are obtained when the percentage of network knowledge is either low or very high.

before receiving an ACK. Since TCP was designed based on
specific network conditions and handles all packet losses as
network congestion, in wireless lossy links it unnecessarily
lowers its rate by reducing the cwnd at each packet loss,
negatively affecting the end-to-end performance. We, instead,
want to encourage the RL agent to explore diverse ways to
influence the connection by assigning different magnitudes to
the performed change. Indeed, not only the learning agent
should predict when increasing or decreasing the cwnd, but
also to what extent. For example, our algorithm must learn
when the network state suggests that a large part of the
bandwidth is unused to aggressively increment the window
size, while it must only slightly increase it when the network
approaches any congestion. Our network module starts with
an initial cwnd of 10. Due to the opted approach, the protocol
learns how to make control decisions from experience and,
thus, eliminates the need for necessary pre-coded rules to adapt
to the variety of network environments.

To establish the practicality of our approach and understand
how Owl performs over wide-area Internet paths with real
cross-traffic and real packet schedulers, we deploy our solution
on the GENI testbed. In these experiments, we evaluate how
congestion control schemes behave across two federated GENI
aggregates and three senders transmit simultaneously. We
measure the performance of each schema when competing
with another flow to accentuate the possible congestion oc-
currences. To evaluate our protocol in these realistic settings,
we average the throughput and delay over 60-second flows,
while the senders share a bottleneck link with 3ms RTT and
a bandwidth of 100 Mbps. We summarize in Figure 4a the
performance of our protocol when compared to other protocols
available on Linux, as Cubic [35], Vegas [36], BBR [37],
and an online learning protocol as PCC [27]. Our prototype
evaluation deployed in real settings demonstrated that our
implementation can jointly achieve high throughput and a low
loss rate when compared to other solutions, balancing the two
components effectively.

Next, we discuss our experiments regarding the impact of
the required network state knowledge that Owl needs to train
the RL system effectively. Figure 4b display the throughput

and Figure 4c the RTT, when different transport protocols
run over a network composed of 20 nodes emulated on our
local Mininet virtual network testbed. Specifically, we compare
against Cubic as a reference end-to-end congestion control,
Aurora [33], as a reference RL-based congestion control, and
ABC [31], as a reference of in-network congestion control.
The performance of Cubic and Aurora are not affected by
the lack of in-network knowledge since they are both end-
to-end congestion control algorithms. On the other hand,
ABC performs worse than Owl when the number of ABC-
compliant routers is relatively low. This result is important
for two aspects: our protocol works even as a pure end-
to-end strategy, it can handle a partial network information
and not all intermediate routers necessarily have to be Owl-
compatible Our measurements reveal also that our solution
outperforms both end-to-end approaches (such as Cubic) and
novel in-network protocols (such as ABC), even when less
than 50% of switches are utilized to collect statistics. On
the other hand, if a partial network knowledge (more than
50%) is available, Owl drastically speeds up the transmission
in terms of throughput and reduces latency. The worst result
occurs approximately when half of the devices are controlled,
as the agent cannot assign the proper importance to the com-
ing information, resulting in occasionally misleading values.
Nonetheless, even though in this scenario the information does
not help improve the overall performance, Owl has higher
throughput and reduced delay than other protocols.

IV. CONCLUSION AND FUTURE WORK

This dissertation, whose extended version is publicly avail-
able at [38], exposed a new direction for managing critical sys-
tems. We explored novel methodologies aimed to solve some
typical networking management problems with the inclusion
of reactive mechanisms based on Machine Learning methods.
In particular, we demonstrated how ML-based algorithms
can be effectively used in optimizing network operations,
ranging from the management of virtualized and softwarized
networks to the congestion mitigation at the end-hosts. As we
deepened only a subset of the existing problems, we hope
that future research will cover the remaining challenges that,
if solved, could lead to the definition of a fully autonomous



and functional network that can enable a better machine-
human hybrid architecture. Among the future challenges, we
can cite, for example, the need to cope with a few or partial
data, which can hinder an accurate learning process. Taking
network management decisions when the telemetry is limited
may move current solutions towards production.
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