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Streaming Algorithms for Subspace Analysis:
Comparative Review and Implementation on IoT

Devices
Alex Marchioni, Student Member, IEEE, Luciano Prono, Student Member, IEEE, Mauro Mangia, Member, IEEE,

Fabio Pareschi, Senior Member, IEEE, Riccardo Rovatti, Fellow, IEEE, and Gianluca Setti, Fellow, IEEE

Abstract—Subspace analysis is a widely used technique for
coping with high-dimensional data and is becoming a funda-
mental step in the early treatment of many signal processing
tasks. However, traditional subspace analysis often requires a
large amount of memory and computational resources, as it is
equivalent to eigenspace determination. To address this issue,
specialized streaming algorithms have been developed, allowing
subspace analysis to be run on low-power devices such as sensors
or edge devices.

Here, we present a classification and a comparison of these
methods by providing a consistent description and highlighting
their features and similarities. We also evaluate their perfor-
mance in the task of subspace identification with a focus on
computational complexity and memory footprint for different
signal dimensions. Additionally, we test the implementation
of these algorithms on common hardware platforms typically
employed for sensors and edge devices.

Index Terms—Principal Components Analysis, Principal Sub-
space, Minor Component Analysis, Minor Subspace, Streaming
Algorithms, Edge computing.

I. INTRODUCTION

THE Internet of Things (IoT) covers the set of technologies
enabling the interconnection between people, devices

and virtual entities to offer a growing plethora of efficient
and reliable services. Among these technologies, Subspace
Analysis (SA) plays a key role in sensing [1]–[4], wireless
communication [5]–[7], data compression [8], data analysis
[9], [10], and anomaly detection [11]–[14].
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Fig. 1. General scheme of a streaming algorithm for on-board subspace
analysis. Input vectors xt are locally processed one at a time to update the
current estimate of the target subspace represented by the span of the columns
in the matrix U t. This matrix U t then feeds the final application.

SA considers the space in which the signal lives and finds
a subspace with some distinctive properties. In general, the
information contained in the signal is assumed to have a
lower dimensionality so that the signal space can be split
into principal and minor/noise subspaces. Principal compo-
nent/subspace analysis (PCA/PSA) deals with the subspace
on which the projection of the signal preserves most of the
original energy, while its orthogonal counterpart is the object
of minor component/subspace analysis (MCA/MSA).

The identification of these subspaces is a building block in
all mentioned application domains. For instance, representing
the signal information in a lower-dimensional space hinges
on the possibility of signal compression [8]. Monitoring how
the signal either distributes its energy over the principal
components or the unexpected presence of energy in the minor
subspace may reveal the presence of anomalies [11]–[14]. In
the case of Code Division Multiple Access systems, it has
been proven that the identification of the principal subspace
of the received signal allows the design of a simpler and better
performing receiver compared to classical detector [5]. In the
field of sensing, in particular, in the estimation of the direction
of arrival, there are two well-known methods, ESPRIT [15]
and MUSIC [16] that are the basis of a variety of innovative
approaches [1]–[4], where the former requires PSA and the
latter MSA.

Subspace analysis generally involves two stages: the iden-
tification of the vectors representing the target subspace, and
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the signal projection over those vectors. While the latter is just
a linear transformation, subspace identification is traditionally
solved through methods requiring the acquisition and storage
of the entire dataset, which is processed all at once. These are
commonly referred to as batch methods and consist of either
the eigenvalue decomposition (EVD) or the singular-value
decomposition (SVD) [17]. Both imply extensive memory
usage and have a complexity in the order of at least O(n2k),
where n is the original dimension of a data example and k is
the dimension of the sought subspace. Hence, in applications
involving devices with limited storage and computational
capabilities, approaches that drastically reduce the demand for
resources are needed.

In this light, several algorithms (e.g. [18]–[20]) have been
presented that treat data as a stream, hence data is processed
as it is available with no need for extensive storage. This
characteristic leads to a drastic reduction of the computational
complexity up to O(nk2) or even O(nk) at the price of
some approximation. These streaming algorithms potentially
allow SA to be run on devices with strict constraints on
computational resources, such as sensors or edge devices.
Fig. 1 depicts a possible scenario in which a stream of
vectors xt is locally processed to update at each iteration the
matrix U t whose columns represent the current estimate of
the vectors spanning the target subspace.

In practical scenarios, the capability of a streaming method
to correctly identify a subspace depends on several aspects
that are generally connected to a mismatch between the signal
model and acquired data. For example, an acquisition system
may incur missing or corrupted data. If these are rare events,
simple solutions are possible, as in the case of corrupted data
for which the addition of a simple preprocessing stage discard-
ing these occurrences may be sufficient. Conversely, specific
strategies must be adopted, as in [18] for the missing data case.
Another example concerns the method’s convergence when
the signal is more complex than a mere expansion of a k-
dimensional source of information. How this deviation of the
signal from the theoretical model affects convergence can be
measured with the eigengap as analyzed in [21], [22].

In this paper, we focus on a scenario where the above
issues are either not present or suitably solved by one of
the above-mentioned techniques. Conversely, we focus on
the aspects related to the implementation of streaming SA
algorithms on devices having constraints in computational
resources typical of sensor or edge devices. With respect to
this, our contribution is three-fold. We compare the selected
methods in a coherent framework in terms of functionality
(accuracy to identify the target subspace) and resource needs.
We discuss the deployment on commercial sensor/edge devices
distinguishing high-end from low-end, e.g., systems equipped
with multi-core ARM Cortex-A family processors and few
GB of memory against microcontrollers featuring Cortex-M
family processors and few MB of memory.

The paper is organized as follows. Section II proposes a
classification for the different streaming methods while their
description is in Section III along with a discussion about their
features and relationship with each other. Section IV reports
the performance of the considered methods and Section V

presents a discussion about the deployment on commercial
sensor/edge devices. In drawing the conclusion, we summarize
the achieved result and present the lesson learnt.

II. METHODS CLASSIFICATION

We model the data stream as a discrete-time stochastic
process that generates occurrences xt ∈ Rn with t = 1, 2, . . . ,
where each xt may contain readings from either a single
physical quantity or a collection of samples coming from
different sensors. The algorithms we describe process vectors
xt sequentially to extract a characterization of the whole data
stream. We assume the statistical characterization of xt to
be constant or slowly variant, such that, x can represent any
possible xt. We also limit the analysis to the case E [x] = 0,
where 0 is the n-dimensional null vector and E [·] indicates
the expectation operator. As a result, the covariance/correlation
matrix is Σ = E

[
xx>

]
, where ·> indicates transposition.

As for any correlation matrix, Σ has an EVD Σ = ΨΛΨ>,
Λ is a diagonal matrix with diagonal entries λ0 ≥ λ1 ≥
· · · ≥ λn−1 ≥ 0, and the columns of Ψ ∈ Rn×n are the
corresponding eigenvectors {ψ0, . . . ,ψn−1} in orthonormal
form.

Streaming algorithms aim to identify a matrix U ∈ Rn×k

that is tied to either the so-called principal subspace, i.e.,
the one spanned by the m < n eigenvectors associated with
the largest eigenvalues, or the so-called minor subspace or
noise subspace, i.e., the one spanned by the remaining n−m
eigenvectors associated with the smallest eigenvalues. Note
that k = m or k = n − m for the principal or the minor
case. To identify the target matrix U , streaming algorithms
follow an iterative procedure that updates an estimation U t

every time a new vector xt is acquired such that U t → U
when t grows.

The considered methods estimate U in different ways. Here
we list some key features that can make distinctions or draw
connections.

1) principal and minor subspaces: Most algorithms target
the principal subspace. Some of them can also target the
minor subspace, and few methods are designed for the minor
subspace only.

2) eigenvectors or subspaces: When the target matrix
U is Ψ|m = [ψ0, . . . ,ψm−1] (principal components) or
Ψm| = [ψn−m, . . . , ψn−1] (minor components), we refer
to eigenvectors estimation. Alternatively, subspace estimation
relates to U spanning the same subspace of the eigenvectors
in either Ψ|m or Ψm|.

3) objective function: As for many iterative methods, some
streaming algorithms for subspace estimation derive from
iterative procedures solving a minimization or maximization
problem. We provide a classification according to the objective
function characterizing the optimization problem.

Identifying the k-dimensional principal (minor) subspace
is equivalent to finding the column-orthonormal matrix U ∈
Rn×k that maximizes (minimizes) the variance of the projec-
tion y = U>x [23], [24]. Hence, some approaches consider
the objective function

JVar(U) = E
[
‖U>x‖2

]
= tr

(
U>ΣU

)
(1)
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where ‖·‖ denotes the l2 norm, tr (·) computes the trace of
its argument, and U is constrained to be column-orthonormal,
i.e., U>U = Ik with Ik standing for the k×k identity matrix.

Maximizing (minimizing) projection variance is equivalent
to minimizing (maximizing) the average norm of residual
vector r = x − UU>x. Hence, some methods [25], [26]
consider the objective function

JMSE(U) = E
[
‖x−UU>x‖2

]
(2)

As a further alternative, it is possible to define an objective
function based on the so-called spiked model [27] whereby the
observable x is assumed as an expansion of an m-dimensional
signal s such that s = Ψ>|mx [28], [29]. Despite their obvious
link, some methods consider x and s separately and minimize

JSM(U) = E
[
‖x−Us‖2

]
(3)

to enforce the relationship among them. As a remark, the
signal model behind (3) makes this objective function effective
only in the case of principal subspace identification, i.e.,
JSM(U) = 0 implies span(U) = span(Ψ|m).

Worth noting that only one of the algorithms we consider
(namely ISVD as described in Section III) does not solve an
optimization problem to identify the subspace.

4) column-orthonormality: Given that the target U is
column-orthonormal, it is possible to distinguish between
two classes of algorithms depending on the properties of
the current estimate U t: (i) every U t is constrained to be
column-orthonormal, (ii) U t is only approximately colum-
n-orthonormal.

In general, algorithms ensuring column-orthonormality have
complexity O(nk2), while algorithms limiting to approximate
column-orthonormality can achieve O(nk).

Those ensuring column-orthonormality can be further dis-
tinguished depending on the used technique. Some apply
a specific orthonormalization procedure (typically a QR-
decomposition) at each step. In this case, if the update pro-
duces a matrix U ′t that is not column-orthonormal, then the
columns of the finalU t span the same subspace as the columns
of U ′t, while being orthonormal.

Some others projects onto the Grassmannian manifold [24],
[30] that contains all possible n × k column-orthonormal
matrices. Using projection implies that the span of the result
of the non-orthonormal update U ′t is not necessarily the
same as that of the final orthonormal U t, and some of the
improvements in selecting U ′t might be lost.

As a third option, orthonormality can be guaranteed by
constraining the updates of U t along Grassmannian geodesics.
In this case, the updated estimation improves over the previous
one without leaving the acceptability region.

Table I classifies the methods, whose description is in the
next Section, following the criteria described above. The table
also reports the computational complexity and the field of
interest in which the methods were initially conceived.

III. METHODS DESCRIPTION

This section describes the methods we then test and im-
plement. For each method, we give the update step, i.e., the

sequence of operations that at each time step t produces the
matrix U t, representing the current estimate of the target
subspace, starting from the current signal occurrence xt and
the previous estimate U t−1.

Most update steps compute intermediate quantities that have
a proper role, namely yt = U>t−1xt that is the vector of
coefficients expressing the projection of xt onto the subspaces
as it is estimated at time t − 1, and rt = xt − U t−1yt

that is the residual of such a projection. Note that if U t−1
is orthonormal, the two vectors yt and rt are orthogonal. For
the sake of brevity, the computation of yt and rt are not
explicitly mentioned in the descriptions of the methods.

A. Oja

Originally proposed in [31] for the principal subspace
estimation with k = m = 1, and then extended to the rank-
k cases in [32], it starts from a random column-orthonormal
U0 ∈ Rn×k. At the t-th sample, the estimate U = Ψ|k is
updated according to the input data xt as

U t = Ω
(
U t−1 + γtxtx

>
t U t−1

)
(4)

where Ω(·) is an operator that orthonormalizes the columns of
its argument, e.g., gives theQ matrix in the QR decomposition
of its argument [33, Chapter 2]. The parameter γt is the step
size or learning rate that may change with time.

Notably, authors of [25], [34], [35] show that Oja is an
extension of the well-known power method [36] that, in turn,
is equivalent to solving a maximization problem where the
objective function is (1) and U t is constrained to be column-
orthonormal. In particular, the gradient of (1) with respect toU
is ΣU such that (4) is equivalent to the update of a stochastic
gradient descent algorithm where Σ is approximated by xtx

>
t ,

γt is the learning rate, and Ω(·) forces the update to yield a
column-orthonormal matrix.

To save some computation, one may think of applying Ω
only after a certain number of updates [25]. Nevertheless,
proper sizing of the number of steps without orthonormal-
ization depends on the application.

Furthermore, when minimization of (1) is considered instead
of maximization, one may aim to identify the minor subspace
U = Ψk| with k = n−m. With respect to (4), here stochastic
gradient descent algorithm performing minimization follows
the opposite of the gradient of (1), i.e.,

U t = Ω
(
U t−1 − γtxtx

>
t U t−1

)
(5)

Lastly, since the convergence of the method depends on the
choice of the initial matrix U0, [22] proposes a procedure of
warm start that avoids random initialization.

B. Krasulina

Originally proposed in [37], [38] and recently revised in
[23] to include the k > 1 case, it also starts from a random
column-orthonormal U0 ∈ Rn×k. The update step is

U t = Ω
(
U t−1 + γtrty

>
t

)
(6)

According to [23], [26], the update in (6) converges to a matrix
that approximates the minimizer of (2).
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TABLE I
CLASSIFICATION OF METHODS FOR SUBSPACE ANALYSIS CONSIDERED IN THIS PAPER.

Method Principal/minor Eigenvectors Objective Column Complexity Original
subspace or subspace function orthonormalization field

Oja [31] [32] [25] both eigenvectors (2) QR nk2
neural

[34] [35] [22] networks

Krasulina [37] [38] [23] both eigenvectors (1) QR nk2

HFRANS [39] [40] [41] minor eigenvectors (1) approximate nk[42]

PAST [26] [43] [44] principal subspace (3) approximate nk
adaptive

[45] [46] filtering

ISVD [47] [48] principal eigenvectors N/A QR nk2

GROUSE [28] [49] [50] principal subspace (3) Grassmannian nk
matrix

completion

As for Oja, a warm start approach has been proposed in [23]
and the minor subspace can be targeted by simply changing
the sign of the last equation in (6) to yield

U t = Ω
(
U t−1 − γtrty>t

)
(7)

In this case, the method converges to U = Ψk| with k =
n−m.

Oja and Krasulina are deeply linked. In fact, [51] proves
that the

Ω
(
U t−1 + γtxtx

>
t U t−1

)
= U t−1 + γtrty

>
t + o(γ2t ) (8)

thus ultimately establishing equivalent convergence properties
for (4) and (6) as γt → 0 for growing t.

C. HFRANS

The analogy of the two previous methods highlighted by
(8) has led to a class of methods that try to provide column-
orthonormality avoiding the Ω operator.

Since U t = U t−1 + γtrty
>
t tends to be column-

orthonormal for t→∞, an extreme option is to consider o(γ2t )
negligible and simply avoid orhonormalization. Such a choice
can be acceptable when targeting U = Ψ|k. Nevertheless,
when aiming at U = Ψk|, the minimal amplitude of the
projection of the signal on the minor subspace makes the
whole procedure extraordinarily error-prone and may spoil
convergence.

To overcome this impasse, [41] first proposed a term to
approximate the o(γ2t ) residue in (8) giving rise to the so-
called OOja (Orthogonal Oja) method that is then extended
[42] with a policy that adapts γt to both U t and xt, leading
to the so-called NOOja (Normalized Orthogonal Oja) method.

OOja and NOOja further evolved [39] into HFRANS
(Householder Fast Rayleigh’s quotient-based Adaptive Noise
Subspace). This method is also an adjustment of FRANS,
a previous Rayleigh quotient-based adaptive noise subspace
method [40]. In HFRANS, Househölder transformations are
introduced to grant the numerical stability needed to cope with
the minor subspace case.

The method starts from a random U0 ∈ Rn×k matrix and
uses the following update rule that depends on a given 0 <
γ < 2,

τt =
1

‖yt‖2

[(
1− (2− γ)γ

‖yt‖2
‖xt‖2

)− 1
2

− 1

]
ût =

(
1 + τt‖yt‖2

)
xt −

τt‖xt‖2
γ

U t−1yt

ut =
ût

‖ût‖
U t = U t−1 − 2utu

>
t U t−1

(9)

D. PAST
PAST (Project Approximation Subspace Tracking) [26],

[43] is an algorithm obtained by minimizing (3) in which the
expectation is unrolled in time as an exponentially weighted
sum, i.e., by setting

U t = arg min
U∈Rn×k

t∑
l=1

βt−l‖xl −Usl‖2 (10)

without the constraint of U t being column-orthonormal and
where β ∈ [0, 1] is the forgetting factor that weights the
prior samples. Equation (10) is based on the fact that signal
observances xl are generated accordingly to a spiked model,
i.e., sl = Ψ>|kx.

Since, at each signal occurrence, only xl is known, sl is
approximated by the projection vector yl = U>l−1xl, i.e., by
adopting the last estimated U . Thanks to this approximation,
the problem has a closed solution, and U t can be retrieved by
mean of recursive least squares (RLS) methods, which allow
for a computational cost as low as O(nk).

Iterations start from a random U0 ∈ Rn×k and P 0 = δIk
for some δ > 0 and the update step is

ht = P t−1yt

gt = ht/
(
β + y>t ht

)
P t = β−1

(
P t−1 − gth>t

)
U t = U t−1 − rtg>t

(11)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3256529

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



Accepted for publication in IEEE INTERNET OF THINGS JOURNAL 5

Though U t is not guaranteed to be column-orthonormal
for any finite t, [26], [46] show that column-orthonormality
is achieved asymptotically as t increases. In applications
where columns-orthonormality is important at each step, PAST
variants can be adopted. For instance, PASTd in [26] is a
version based on the deflation technique that comes at the
cost of an increase in complexity. Otherwise, in [44] nearly-
orthonormality is provided by correction terms applied to each
update of U that keeps complexity at O(nk).

PAST is the base for other approaches such as [45] that deals
with the case in which data is perturbed by colored noise,
[29] that is designed to cope with the missing components
in the vectors xt, and [52], [53] where the Approximated
Power Iteration (API) extends the standard power method by
exploiting the same approximation used in PAST.

E. ISVD

Given any n × t matrix A, Singular Value Decomposition
(SVD) [36, Chapter 2] finds three factors P , D and Q such
that A = PDQ> with P and Q being square orthonormal
matrices of size n×n and t×t respectively, andD is a diagonal
n×t matrix whose diagonal entries are called singular values.
SVD is symbolized as A SVD→ P ,D,Q.

Let also Xt =
[
x1 . . . xt

]
be the matrix containing

samples up to the t-th. Subspace analysis has to do with the
SVD of Xt with a very large t. In fact, if Xt

SVD→ Ū t, S̄t, V̄ t,
then the singular values σj(t) in S̄t are such that σ2

j (t)→ λj
and Ū t → Ψ as t→∞.

Authors in [54] show that the SVD of Xt can be effectively
computed from the SVD of Xt−1. Moreover, it is possible
to only focus on the principal subspace with the so-called
thin SVD (tSVD) [47], which is a decomposition that only
computes the first k singular values and the corrspending
columns of Ū t and V̄ t.

The ISVD (Incremental SVD) relies on the fact that, given
the decomposition Xt−1

tSVD→ U t−1,St−1,V t−1, one may
express the data matrix Xt as

Xt =
[
U t−1

rt

‖rt‖

] [St−1 yt

0>k ‖rt‖

] [
V >t−1 0k

0>k 1

]
(12)

The equality in (12) holds exactly only if the rank of Xt−1
is k, otherwise it is an approximation. The update rule of ISVD
starts with the computation of the SVD of an adjusted version
of the inner matrix in (12)[

βSt−1 yt

0>k ‖rt‖

]
(13)

where the parameter 0 < β < 1 is added to control the
memory of the algorithm. The SVD yields two orthonormal
factors P and Q and a diagonal factor D whose product can
be plugged into (12) to obtain an internal diagonal factor and
thus yield the updated tSVD of Xt. Such a representation
is then shrunk to the minimum by keeping only the first k
columns of the left and right factor and only the first k columns
and rows of the central factor.

Overall, starting from a random orthonormal U0 ∈ Rn×k,
the update step computes[

βSt−1 yt

0>k ‖rt‖

]
SVD→ P ,D,Q

St = (D)pk

U t =
([
U t−1

rt

‖rt‖

]
P
)
|k

(14)

where (·)|k is the same operator used before which selects the
first k columns of its argument, while (·)pk selects the first k
columns and the first k rows of its argument.

Besides, the speed of convergence is highly affected by the
condition number of Xt. To partially overcome this problem
authors in [48] propose the Polar Incremental Matrix Com-
pletion (PIMC) algorithm which adapts the memory factor
to the norm of the observed samples β = at

‖St‖F where
a2t = a2t−1 + ‖xt‖22, a0 = 1 and ‖·‖F denotes the Frobenius
norm of a matrix.

F. GROUSE

GROUSE (Grassmaniann Rank-One Update Subspace Es-
timation) is a streaming algorithm for subspace tracking
proposed in [28]. Although it is designed to deal with the
case in which some components of xt are unknown, we here
consider the version for complete data. The idea consists
in applying the stochastic gradient descent to minimize (3)
while making moves within the set of all possible column-
orthonormal matrices, i.e., the Grassmaniann manifold of the
k-dimensional subspaces of Rn.

Starting from one of such matrices, the update rule is

pt = U t−1yt

θt = arctan

[
(1− αt)

‖rt‖
‖pt‖

]
zt = cos(θt)

pt
‖pt‖

+ sin(θt)
rt
‖rt‖

U t = U t−1 +

(
zt
‖zt‖

− pt
‖pt‖

)
y>t
‖yt‖

(15)

where the expression for θt is derived from [49, eq. (3)–(4)]
and where αt is meant to mitigate the effect of noise.

Convergence of GROUSE is analyzed in [49], [50], and
[55] shows that GROUSE and ISVD are strictly linked. In
particular, the application of the ISVD to the missing data
case is equivalent to GROUSE for a specific choice of its
parameters.

G. Discussion

Before proceeding with the performance analysis of these
methods, we can evidence their main characteristics and
similarities as reported in Table I and Fig. 2. The table shows
that half methods have computational complexity proportional
to nk2, the ones requiring column-orthonormalization, and
half to nk. Among this latter class of methods, HFRANS is
the only one able to produce as output an estimation of the
eigenvectors. In addition, it is possible to identify two families,
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Fig. 2. Classification of the methods and their relationships. It is possible
to define two main families, methods based on the stochastic gradient and
methods properly designed for signals with intrinsic dimensionality equal to k
(spiked model). The connections between methods are also reported according
to their description: a - [51] discusses the relationships between both methods
showing that (8) it is possible to approximate the Oja’s update as the one
proposed by Krasulina without the orthonormalization; b & c - [40]–[42]
present methods derived from (8) that has been further extended in [39] to
HFRANS; d - [55] shows that the application of the ISVD to the missing data
case is equivalent to a suitable configuration of GROUSE.

one including methods based on the stochastic gradient and
another for methods properly designed for signals compliant
with the k-dimensional spiked model. The only method be-
longing to both groups is GROUSE. A visual representation
of these relationships is depicted in Fig. 2, which also shows
the connections between the methods.

As for any iterative algorithm, the problem of the streaming
estimation of a subspace must cope with all the aspects related
to the necessary guarantees for convergence [18], [21] and this
is an aspect that is well investigated in all presented methods.
Nevertheless, convergence guarantees strictly depends on the
signal model and addressed application. Typical assumptions
are: (i) signal stationarity or variation of the statistical prop-
erties slower than the convergence of the method; (ii) signal
as expansion of a k-dimensional information source (spiked
model); (iii) the eigengap, i.e., the difference between the
k-th and (k + 1)-th eigenvalues of Σ, strictly greater than
zero. In addition, methods convergence could also depend
on the occurrence of corrupted or missing data for which a
preprocessing stage may be included in the acquisition system.

IV. METHODS PERFORMANCE

In this section, we test the functional performance of the
methods described in Section III by employing each method
to identify the subspace characterizing a set of signal obser-
vations.

Data samples are generated according to the spiked model
[27] as follows

xt = Φst + νt (16)

where Φ ∈ Rn×m is a given expansion matrix with m < n,
i.e., it is a column-orthonormal matrix that expands instances
st ∈ Rm of a zero-mean random Gaussian source with
covariance Im, while νt ∈ Rn represents realizations of a

zero-mean Gaussian noise term with covariance ρIn such that
0 < ρ < 1 controls the noise level.

With this model we have Σ = E
[
xtx

>
t

]
= ΦΦ> + ρIn,

and since Φ is column-orthonormal and ρ < 1, then Φ
itself spans the m-dimensional principal subspace, while its
orthogonal complement Φ⊥ spans the (n − m)-dimensional
minor subspace. As a result, the target n × k matrix U is Φ
in the case of principal subspace estimation, and it is Φ⊥ for
the minor subspace.

To quantify the effectiveness of subspace analysis, for each
streaming method we monitor the sequence of reconstruction
errors

et = ‖U −U tU
>
t U‖F (17)

where ‖·‖F indicates the Frobenius norm of its argument. In
the case of correct estimation, we have U t = U and thus
et = 0 while the error is maximum when U t is orthogonal to
U , yielding et = k.

Depending on the applications, the dimension of the signal,
i.e., n, may range from a few units to hundreds or even
thousands. According to the model described in Section II,
x may contain one reading from several sensors, a window of
a single sampled signal, or a mix of these two cases in which
windows from several sensors are considered. Considering
this large variety of possible scenarios, simulations focus
on n = 100, m = 10 and noise amplitude ρ = 10−3.
For each task, we run 100 Montecarlo trials in which we
independently draw two random column-orthonormal matrices
Φ and U0, and independently generate 1 000 sample windows
xt following (16).

The parameters controlling each method are set as reported
in Table II: Oja and Krasulina need a learning rate γt, PAST
and ISVD need to set a forgetting factor β, and finally,
GROUSE and HFRANS depend on α (controlling the effect
of noise) and γ (that can be seen as a re-scaled learning rate).
Parameters are tuned to optimize the capability to identify the
target subspace. In detail, we consider learning rates modelled
as γt = c/td with d ∈ [0, 1] and c > 0 selected to increase
convergence speed. In the tested framework, d ∈ {0, 1/2, 1}
provides similar performances, thus we consider a constant
learning rate γt = γ = c, i.e., d = 0. For HFRANS, the
tuning of γ is independent of t and, for GROUSE, α is set
to cope with the noise level. Finally, the forgetting factors β
of ISVD and PAST are selected as the largest possible values
that guarantee convergence.

Results in terms of et are shown in Fig. 3 with Fig. 3a
for PSA and Fig. 3b for MSA. Solid lines represent median
values of the Montecarlo trials while shaded areas indicate the
spread containing 50% of the values. The figure shows that all
methods can deal with the subspace identification task in both
PSA and MSA. In general, the variability of the performances
represented by the shaded areas is almost negligible with the
only exception of a limited increase in correspondence of the
transaction phase, i.e., when a curve passes from high to very
low error values. For PSA, ISVD and PAST are the fastest to
converge while in MSA the speed of convergence is similar
among the methods with HFRANS slightly faster.
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Fig. 3. Performance comparison for subspace identification: (a) principal subspace (PSA); (b) minor subspace (MSA).1

0 200 400 600 800 1000 1200 1400
102

103

104

105

n
(
n
k
= 10

)

u
p
d
a
te

ti
m
e
[µ
s]

Oja Krasulina

PAST ISVD

GROUSE

(a)

1

0 200 400 600 800 1000 1200

103

104

105

106

n
(
n
k
= 10

9

)

u
p
d
a
te

ti
m
e
[µ
s]

Oja

Krasulina

HFRANS

(b)

Fig. 4. Average time for each considered method to run the update step on the high-end device for different input dimension n and fixed ratio n/k. (a)
methods PSA with n/k = 10; (b) methods for MSA with n/k = 10/9;

TABLE II
ALGORITHM PARAMETERS, TUNED VALUE WITH CORRESPONDING

TUNING RANGES, AND UPDATE TIMES FOR THE RPI IMPLEMENTATION.

method parameter value range update time [µs]
ave. ± std

Principal Subspace identification

Oja γ 1 [0.001, 100] 354 ± 10

Krasulina γ 0.1 [0.001, 100] 378 ± 11

PAST β 0.99 [0.7, 0.999] 116 ± 5

ISVD β 0.9 [0.7, 0.999] 585 ± 13

GROUSE α 0.2 [0, 0.5] 304 ± 10

Minor Subspace identification

Oja γ 0.1 [0.001, 100] 3446 ± 60

Krasulina γ 0.1 [0.001, 100] 3472 ± 27

HFRANS γ 1 [0.001, 100] 540 ± 29

V. IMPLEMENTATION ON COMMERCIAL SENSOR/EDGE
DEVICES

Since sensor and edge devices are employed for various ap-
plications and tasks, different solutions are available, ranging

from a single-board system equipped with a microcontroller
to more complex systems composed of different modules. To
cope with both scenarios, two subsections report details about
two reference platforms.

A. High-end devices

Here, we focus on the Raspberry Pi 4 model B, which could
be considered a reference for the high-end devices family. In
details, we refer to the board equipped with 1GB of RAM
and Raspberry Pi OS (32-bit) Lite 5.4.51-v7l+ as an operative
system. Clock frequency ranges from 600 MHz to 800 MHz1.
Methods are implemented in Python (version 3.7.3), employ-
ing the packages Scipy (version 1.1.0) and Numpy (version
1.16.2) for the required algebraic manipulations.

We set n = 100 and m = 10 (as in Section IV) reminding
that the target matrix U has dimensions n×m for PSA and
n×(n−m) for MSA. For each method, update time is reported
in Table II as mean and standard deviation over 1 000 updates.
As expected, updates for MSA methods take longer than PSA.

1The firmware dynamically manages clock frequency depending on the
CPU temperature.
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For PSA, the fastest method is PAST, while the most time-
consuming is ISVD which computes an SVD of an (k+ 1)×
(k+ 1) matrix at each update. In the case of MSA, HFRANS
is the preferred method because it does not require complex
operations like orthonormalization or SVD, similar to PAST.

As anticipated, x may contain samples from different sen-
sors and we cope with this scenario by enlarging the values
for n and k, keeping constant their ratio. Fig. 4 shows how the
average update time increases with n in case of n/k = 100/10
for PSA and n/k = 100/90 for MSA. In both cases, the gap
between the methods imposing the estimate U t to be column-
orthonormal (Oja, Krasulina, and ISVD) and the other ones
(HFRANS, GROUSE, and PAST) increases with n. This trend
confirms the difference in the complexity of the methods.

B. Low-end devices

This subsection discusses the implementation of these meth-
ods on devices that are more suitable for use as sensor
nodes. We developed a C library2 targeting the ARM Cortex
microcontroller (MCU) family of devices. The library back-
end is mainly based on the well-known ARM CMSIS-DSP
library3.

We implement the methods by adopting specific techniques,
described in Appendix A, to minimize memory footprint and
processing time. Both GROUSE and PAST implementations
include these techniques, while Oja, Krasulina, and ISVD
require additional consideration due to the use of QR decom-
position or SVD, as discussed in the following section. Then,
performances in terms of update time, energy consumption
and memory requirements on the MCU are analyzed, along
with an assessment of the error in estimating the target matrix
U for both PSA and MSA.

1) QR decomposition: Oja and Krasulina methods employ
QR decomposition to implement the Ω(·) operator in (4) and
(6) that makes the current estimate U t column-orthonormal.
Here, we consider three common algorithms to implement the
QR decomposition: Householder (Hous-QR) [56], Modified
Gram-Shmidt (MGS-QR) [57], and Cholesky (Chol-QR) [58].
They all are iterative algorithms that differ from addressing
the trade-off between the orthogonality of the output and
computational complexity. Hous-QR offers excellent numer-
ical stability, ensuring that the output is column-orthonormal
even when the matrix is poorly conditioned. However, it is
the most computationally expensive option. Chol-QR, on the
other hand, prioritizes computational efficiency over stability.
MGS-QR is a compromise between the two, offering a middle
ground in terms of both stability and computational complex-
ity. Since Oja and Krasulina methods results to be robust
to estimates U t being only approximately orthonormal, we
select Chol-QR for implementing the Ω(·) operator on MCU
as reported in Algorithm 1. The implementation of Cholesky
decomposition is based on the ARM CMSIS-DSP library. In
addition, we implement the inversion of the upper triangular
matrix R with the backward substitution technique [59]. Since

2online repository https://github.com/SSIGPRO/streaming pca
3online repository https://github.com/ARM-software/CMSIS 5

Algorithm 1 Cholesky-based QR decomposition

1: cholesky(A>A)→ LL> where L is lower triangular
2: R← L>

3: R−1 ← BS(R) (BS: backward substitution)
4: Q← AR−1

TABLE III
PERFORMANCE ON STM32H743ZIT (REV. V) @1.8 V, 480 MHz, CACHE

ON (n = 100,m = 10)

Method Clock cycles
per update

Time per
update

Energy per
update (no

peripherals)

Energy per
update (all

peripherals)

Principal subspace

Oja 109.97 k 229.10 µs 45.36 µJ 90.72 µJ
Krasulina 114.86 k 239.28 µs 47.38 µJ 94.76 µJ
PAST 20.18 k 42.04 µs 8.32 µJ 16.65 µJ
ISVD 136.02 k 283.37 µs 56.11 µJ 112.21 µJ
GROUSE 22.96 k 47.83 µs 9.47 µJ 18.94 µJ

Minor subspace

Oja 8711.27 k 18 148.47 µs 3593.40 µJ 7186.80 µJ
Krasulina 8748.48 k 18 226.01 µs 3608.75 µJ 7217.50 µJ
HFRANS 235.30 k 490.20 µs 97.06 µJ 194.12 µJ

R−1 is a lower triangular matrix, we store R and R−1 as the
two triangular parts of a single square matrix.

2) SVD operation: SVD is used in the ISVD algorithm in
(14). The Golub-Reinsch technique (GR-SVD) [60] is adopted
for this purpose, which has computational complexity similar
to the Chol-QR method. GR-SVD is implemented on the MCU
using the CControl library4. To optimize the use of memory
on the MCU, the CControl library is modified to eliminate
the unnecessary Q matrix in (14) and to overwrite the input
matrix with the P matrix.

All methods are tested on a STM32H743ZIT (rev. V),
an MCU based on ARM Cortex M7 family with a 32-bit
floating-point unit, fCLK = 480 MHz, and both instructions
cache and data cache enabled5. With this setup, the energy
consumption of a single update has been estimated as Eupdate =
VDD × IDD × tupdate, where VDD is the supply voltage, IDD
is the absorbed current and tupdate is number of clock cycles
necessary for a single update divided by the clock frequency.
Values are obtained from datasheet. In particular, we refer to
current values corresponding to VDD = 1.8 V and with either
no peripherals or all the peripherals enabled. Table III reports
time and energy for a single update of each method. Fig. 5
instead shows how the update time scales with n with a fixed
n/k ratio.

For what concerns memory footprint, the contribution of
each method is split into three parts: (i) stack memory, which
is a fixed cost negligible compared to the other contributions
and independent from either the adopted method or the values
of n and m; (ii) input vector x and matrix U t, which are the
same for any method; (iii) buffers of various sizes necessary
for computation. This last contribution is what characterizes

4online repository https://github.com/DanielMartensson/CControl
5The code is compiled with fast target gcc option (-Ofast) in order to

maximize the speed performance.
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TABLE IV
MEMORY REQUIREMENTS FOR EACH METHOD (MEMORY EXAMPLE WITH

n = 100, m = 10, 32 bit SCALARS)

Method Extra buffers Overall memory Memory
example

Principal subspace

Oja k × k n(k + 1) + k2 4.80 kB
Krasulina k × k n(k + 1) + k2 4.80 kB
PAST k × k, n, k n(k + 2) + k(k + 1) 5.24 kB
ISVD k+1 × k+1, k+1, k+1 n(k+1)+k(k+4)+3 4.97 kB
GROUSE n, k n(k + 2) + k 4.84 kB

Minor subspace

Oja k × k n(k + 1) + k2 17.20 kB
Krasulina k × k n(k + 1) + k2 17.20 kB
HFRANS n, k n(k + 2) + k 9.29 kB

the memory footprint of each method. Table IV6 reports the
size of extra buffers, the size of the overall memory, and the
actual memory requirement for n = 100 and m = 10.

Finally, Fig. 6 shows the performance in terms of the
estimation error of each method for subspace identification
implemented on MCU with the same setup reported in Sec-
tion IV. These plots confirm the trends observed in Fig. 3.

VI. LESSON LEARNT AND CONCLUSION

In this work, we select and compare six methods for stream-
ing subspace identification tackling either principal or minor
subspace analysis. These methods are described and compared
within a consistent framework, using an input stream gener-
ated from a stationary spiked model. The implementation of
these methods is also demonstrated on two different hardware
platforms, designed for use with sensor and edge devices, to
evaluate their resource needs and compatibility with current
data collection systems.

Here are some conclusions about the usability of the differ-
ent methods that can be derived from our analysis:

1) Oja’s and Krasulina’s are the only methods addressing
the identification of both principal and minor subspace.
These methods were the first proposed and have received
the most study. Since these methods do not assume that
the signal is an expansion of a lower dimensional source
of information, they have the advantage of being more
generally applicable. However, they perform poorly in
terms of both speed of convergence and computational
costs;

2) ISVD results to be the fastest to converge for PSA. How-
ever, since each iteration requires an SVD, its execution
could be even slower than Oja’s and Krasulina’s;

3) GROUSE takes longer to converge compared to other
methods, but it has a very low computational cost, espe-
cially for high dimensional signals, due to the lack of a
column-orthonormalization step;

6The values in Table IV refer to memory footprint for methods implemented
without the buffered multiplication technique described in Appendix A. When
this technique is applied, the memory requirements for the Oja and Krasulina
methods increase by about 45%, but the computation is about 19% faster.

4) PAST features the lowest estimation error and it is the
most lightweight method. As a drawback, the tuning of
its main parameter may be critical;

5) HFRANS is the most effective method for MSA due to its
rapid convergence and low computational cost. However,
it should be noted that HFRANS cannot be utilized for
PSA.

In terms of memory footprint, all methods have a similar
cost for storage, with a complexity of nk + o(k2) ' nk. The
primary difference between the methods lies in the additional
buffers required, which have sizes ranging from n to k2. When
the target subspace dimension is significantly larger than the
signal dimension, GROUSE and HFRANS may be preferred
due to their smaller buffer sizes. It is also worth noting that on
low-end devices, memory constraints may affect the execution
time of these methods. If the estimate U t does not fit within
the memory cache, the time required for each iteration may be
significantly impacted by memory access. This is particularly
relevant for methods utilizing column-orthonormalization.

As a final remark, we prove that all selected streaming
algorithms are suitable for deployment on a sensor/edge device
and that the selection of the method for a particular application
must consider the characteristics and features of each method.

APPENDIX A
FAST AND MEMORY EFFICIENT ARITHMETIC ON MCU

The implementation of the streaming methods on the se-
lected MCU is based on the ARM CMSIS-DSP library, which
stores any n× k matrix as a linear vector of size nk to maxi-
mize memory contiguity and minimize the number of memory
accesses. Hereafter we overview the techniques employed to
improve the efficacy of vector-matrix multiplications.

1) Loop unroll: Since loops are massively employed, loop-
unrolling significantly increases the performance by reducing
the amount of data transferred and the number of loop index
updates. This technique is automatically adopted at compile
time by using -Ofast gcc option.

2) Register blocking: Matrix-matrix multiplication scales
down to multiple subsequent vector-vector dot products per-
formed through a sequence of multiply-and-accumulate op-
erations whose result is an entry of the output matrix. By
employing multiple accumulators simultaneously, i.e., by in-
terleaving two or more dot products, local registers are utilised
more efficiently, leading to a shorter execution time. Fig. 7(a)
illustrates a graphical representation of this technique.

3) Buffered multiplication: Multiplying a n× k matrix by
a k×k matrix and its transposition (k×k times k×n matrix-
matrix) is common, e.g., in Oja, Krasulina, and ISVD methods.
Classical implementation requires a memory space of (2n +
k)k values, which, however, can be almost halved if n � k
by storing the output matrix in the same memory location of
the first input matrix. This overwriting procedure is possible
if, for each output row, the input row is temporarily copied in
a k-sized buffer, and therefore it comes at the cost of a slight
increase in the computation time. This technique is illustrated
in Fig. 7(b).
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Fig. 5. Maximum time (over 10 trials) for each considered method to run the update step on STM32H743ZIT (rev. V) @ 480 MHz for different input
dimension n and fixed ratio n/k. (a) methods PSA with n/k = 10; (b) methods for MSA with n/k = 10/9;
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Fig. 6. Performance comparison for subspace identification on STM32H743ZIT (rev. V) with n = 100, m = 10, a single random instance of Φ, and noise
ρ = 10−3: (a) PSA (k = 10); (b) MSA (k = 90). Shaded areas indicate the 50% spread of Fig. 3 for comparison purposes.

4) Vector outer product and matrix addition merging:
Some methods (Krasulina, PAST, GROUSE, HFRANS) re-
quire operations of the type A = A+ ab>, where A ∈ Rn×k,
a ∈ Rn and b ∈ Rk. Instead of firstly evaluating the outer
product B = ab> and then performing the sum A = A + B,
one can directly sum each entry of ab> to each entry of A
while performing the outer product, thus reducing memory
requirements and the number of operations. This is shown in
Fig. 7(c).

5) Transposition of square matrices: In general, the trans-
position of a rectangular matrix requires the copy of the entire
matrix in another memory space. In the case of a square
matrix, transposition can overwrite the original matrix by
swapping each value in the two triangular parts.

6) Transposed multiplications: The operations AB> and
A>B can avoid the transpose operation by modifying the
multiplication operation and scanning the transposed matrix
row-first instead of column-first (or vice-versa).

7) Column concatenation: ISVD method requires the con-
catenation of a column vector. Columns are not memory-
contiguous while rows are. Therefore, transposing the whole

A C

B
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A

B

(b)

buffer

b

(c)

a

copy

A

1
Fig. 7. Matrix arithmetic optimization techniques. (a) register blocking:
interleaving multiple dot-products for a more efficient usage of registers, (b)
buffered multiplication: buffering the row of the input matrix so that it can
be overwritten with the output, (c) vector outer product and matrix addition
merging: overwriting each element of the input matrix with the result of the
operation.

method to turn column concatenation into row concatenation
reduces memory space and computation time.
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