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A huge research effort is being spent worldwide by automotive companies and academic institutions for
developing vehicles with high levels of autonomy, ranging from advanced driving-assisted systems to fully
automated vehicles. Nonlinear Model Predictive Control (NMPC) has the potential to become a key tech-
nology in this context, thanks to its capability to deal with linear and nonlinear systems, manage physical
constraints and satisfy multi-objective performance criteria. However, NMPC is based on the on-line so-
lution of a nonconvex optimization problem and this operation may require a high computational cost,
compromising its real-time implementation. In this paper, a “fast” data-aided NMPC approach is devel-
oped, aimed at trajectory planning and control for autonomous vehicles. In particular, a Set Membership
approximation method is used to derive from data tight bounds on the optimal NMPC control law. These
bounds are used to restrict the search domain of the underlying NMPC optimization process, allowing a
significant reduction of the computation time. The proposed NMPC trajectory planning and control ap-
proach is tested in simulation and compared with other state-of-the-art methods, considering different
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1. Introduction

Autonomous driving is considered one of the most ground-
breaking technologies of the near future and is expected to com-
pletely reshape the sector of transportation systems (see, e.g.,
[7,9,13]). In this regard, a huge research effort is being spent world-
wide by automotive companies and academic institutions for de-
veloping vehicles with high levels of autonomy, ranging from ad-
vanced driving-assisted systems to fully automated vehicles (see,
e.g., [29,34]).

Modern control theory offers a multitude of approaches and de-
sign paradigms that can be exploited for these applications. Among
them, Model Predictive Control (MPC) has the potential to be-
come a key technology, thanks to its capability to design con-
trol algorithms for multivariable systems under state, input, and
output constraints (see, e.g., [14,25,31,32]). To cope with nonlin-
ear dynamics and constraints, as well as with nonconvex perfor-
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mance indexes, Nonlinear MPC (NMPC) has been introduced (see,
e.g., [2,10] and references therein).

For both NMPC and MPC, fast and reliable optimization algo-
rithms are needed, able to meet the hard time constraints of real-
time closed-loop control applications. Serious issues may occur
especially in the case of NMPC, where on-line solutions of non-
convex optimizations rely on the use of sophisticated algorithms
with higher computational costs than linear MPC. During the past
decades, significant progress has been carried out in reducing the
computational complexity of NMPC approach. In [23], a method
was developed for linearizing the nonlinear model around a nomi-
nal trajectory and then solving a unique Sequential Quadratic Pro-
gramming (SQP) over the time horizon. In [11], a Real-Time Itera-
tion (RTI) scheme was introduced that performs a single SQP itera-
tion per sampling time. It uses the direct multiple shooting method
of [5] for simultaneous Nonlinear Program (NLP) parametrization,
with full derivatives and condensing. The implementation of the
multi-level version of RTI is described in Bock et al. [4], allowing
for further reduction of the computational load. Moreover, the con-
tinuation/GMRES of Ohtsuka [28] and the advanced-step controller
of Zavala and Biegler [35] can be mentioned. These improvements
have allowed the NMPC implementation also in real-time systems
with high sampling rate requirements, see, e.g., [1,15,16].
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In this paper, a “fast” data-aidled NMPC approach is pro-
posed, called Set Membership Nonlinear Model Predictive
Control (SM-NMPC), aimed at trajectory planning and control
for autonomous vehicles. In particular, a Set Membership (SM)
approximation method is used to derive directly from data tight
bounds on the optimal NMPC control law. Indeed, unlike classical
estimation methods that rely on statistical assumptions, the SM
approach makes use of the so-called interval bounds to compute
the estimate of an unknown function, also ensuring that the true
value is contained inside the resulting uncertainty band [27]. In
the SM-NMPC approach, these bounds are exploited to restrict the
search domain of the optimization process, allowing a significant
reduction of the computation time and enabling, consequently, the
real-time NMPC implementation in many situations where a high
sampling rate is necessary.

More in detail, the method proposed in this paper is based on
the following basic operations:

1) Approximating the NMPC control law, i.e., the nonlinear func-
tion that links the state of the system to the optimal command
and using this approximation for the warm start of the nonlin-
ear optimization algorithm.

2) Deriving tight bounds on the NMPC control law, in order to re-
duce the search domain.

The approximation of the MPC/NMPC control law has been ex-
tensively investigated in the literature. For instance, Parisini and
Zoppoli [30] proposes an off-line computation of the control law
by approximating the receding horizon regulator with a multi-
layer feedforward neural network. Another technique presented in
Canale et al. [8] introduces a “fast” MPC implementation based
on off-line nonlinear function approximation using the Set Mem-
bership approach [27]. However, these methods become inefficient
when the number of system states is large, complex/time-varying
constraints must be satisfied, or time-varying references have to be
tracked.

Building upon these prior approaches, the SM-NMPC approach
proposed in the present paper introduces novel contributions in
two key aspects. Firstly, it approximates the NMPC control law
and uses this approximation as the initial guess for the opti-
mization algorithm. This warm start reduces the computational
time required to converge to a solution. Previous methods have
primarily focused on using off-line approximating functions only
to replicate the MPC/NMPC law, rather than leveraging them as
a warm start for optimization. Secondly, the method uses tight
bounds on the NMPC control law to narrow down the search
domain during on-line optimization. By restricting the range in
which the solver explores for a solution, the computational bur-
den is further reduced. To the best of our knowledge, this as-
pect of the developed approach, employing guaranteed bounds to
reduce the search domain, is novel compared to existing tech-
niques. Furthermore, it must be noted that the SM-NMPC approach
is not restricted to a specific optimization approach. It can be
used in combination with any algorithm to increase its numerical
efficiency.

The developed SM-NMPC trajectory planning and control ap-
proach is tested in simulation considering realistic autonomous
vehicle scenarios, concerned with parallel parking and lane
keeping. Performance comparisons with a standard NMPC ap-
proach are presented, showing significantly better results in
terms of computation time and optimality of the solutions
found.

The paper is organized as follows. Section 2 outlines the inves-
tigated autonomous scenarios. In Section 3, the NMPC mathemati-
cal formulation is introduced. Section 4 describes the Nonlinear Set
Membership Approximation. In Section 5, the developed SM-NMPC
approach is presented in detail. The obtained results and the com-
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Fig. 1. Parallel parking scenario.

parison with respect to a standard NMPC are shown in Section 6.
Finally, the conclusions are drawn in Section 7.

2. Autonomous driving scenario

This section describes the realistic autonomous vehicle scenar-
ios considered in our work, providing also the motivations behind
the choice of these particular maneuvers.

2.1. Parallel parking

While many advanced driver assistance systems (ADAS) are
used in everyday transportation, implementing a fully autonomous
application remains a challenge due to safety and legal concerns.
Autonomous parking may become the first application to achieve
full autonomy in the near future due to well-known environments
and relatively low risks. Additionally, the increasing number of ve-
hicles has created a significant challenge in metropolitan areas,
where finding a suitable location to park is becoming increas-
ingly difficult. This situation is exacerbated by the shrinking size
of available parking spaces, which in turn makes it more challeng-
ing to park manually and contributes to traffic congestion. The au-
tonomous parking technology would simplify as much as possible
the actions required by the driver to complete the parking, reduc-
ing time (to perform all the maneuvers) and spaces. In this regard,
many control algorithms have been developed in recent years (see,
e.g. [17-19]).

In our work, the Parallel Parking scenario is taken into account,
see Fig. 1. Starting from an initial pose, the ego vehicle must first
pull alongside the front vehicle (Target 1) and then perform the
necessary maneuvers for entering the parking lot (Target 2) with-
out colliding with other vehicles.

2.2. Lane keeping

In recent years, with the increasing number of cars, the total
number of traffic accidents has been rising. Driving safety issues
have become a major concern in the social transportation and au-
tomotive sectors. Extensive investigation and analysis of the causes
of these accidents have revealed that unintentional lane departures
are a leading factor in road accidents involving passenger cars (see,
e.g., [12,22]). Advanced driver assistance systems and autonomous
driving functions, such as lane keeping, offer great potential in mit-
igating or even preventing a large number of such accidents [33].
Because of this huge potential with regard to traffic safety, the con-
trol of the lateral dynamics of the vehicle has been extensively re-
searched in the last few years (see, e.g., [3]). In the paper, a si-
nusoidal signal n(£) = As sin(ws&) is considered as road profile for
the lane keeping system, where As and ws are the amplitude and
the wave number of the signal, respectively. An example of the
road profile considered for this case study is shown in Fig. 5.

2.3. Vehicle model and control method

To simulate the real vehicle, the Matlab Dual-Track Vehicle
Body 3DOF block (see MATLAB [24]) is used, which implements
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a rigid two-axle vehicle body model to calculate longitudinal, lat-
eral, and yaw motion. The block accounts for body mass, aerody-
namic drag, and weight distribution between the axles due to ac-
celeration and steering. The NMPC has been used to address the
autonomous trajectory planning and control of the described sce-
narios. This approach is formulated in detail in the following sec-
tion.

3. Nonlinear model predictive control

Consider a Multiple-Input-Multiple-Output (MIMO) nonlinear
dynamic system described by the following state equations:

x=f(x,u)
y=h(xu) (1)

where x € R™ is the state, u € R™ is the command input and y €
R™ is the output; f: R™ x R™ — R™ and h : R™ x R™ — R are
two functions characterizing the system dynamics and output vari-
ables, respectively. Assume that the state is measured in real-time,
with a sampling time T;, according to: x(t), t;, = Tok, k=0,1....If
the state is not measured, an observer or a model of (1) in input-
output form has to be employed.

NMPC is based on two key operations: prediction and optimiza-
tion. At each time ¢ = t;, the system state and output are predicted
over the time interval [t, t 4+ T,], where T, > Ts is called the predic-
tion horizon. The prediction is obtained by integration of (1). For
any T € [t,t + Tp], the predicted output y(t) is a function of the
“initial” state x(t) and the input signal:

y(T) =y(T. x(t), u(t : 7)) (2)

where u(t : T) denotes the input signal in the interval [t, T]. The
basic idea of NMPC (and of the most predictive approaches) is to
look for an input signal u*(t : T) at each time t = t;, such that the
prediction y(t,x(t),u*(t : t)) has a desired behavior in the time
interval [t,t + Tp]. The concept of desired behavior is formalized
by defining the objective function

t+Tp 5 5 9
JQt: € +Ty)) i/t (llep(O113 + (D) 12)de + ey (e + T2
3)

where e,(t) =1(t) —y(7) is the predicted tracking error, r(7) €
Y c R is a reference to track, Y is a bounded set, and ||-||, is
a weighted Euclidean norm. For example, letting Q be a positive
definite weight matrix, the norm of a column vector w is defined
as [[wl|g = w'Qw.

The input signal u*(t : t +Tp) is chosen as one minimizing the
objective function ](u(t : t+Tp)). In particular, at each time t =
ty, for T € [t,t + Tp], the following nonlinear Optimization Control
Problem (OCP) is solved:

ut:t+Ty) = argm(i{l](u(t 1t+Tp))
u(-

subjept to:
(1) = f(R(), u(r)), &) =x(t) (4)
J() =h(x(7), u(r)

X(t)eX, y(r) eY,, u(r) el..

The first two constraints in this problem ensure that the predicted
state and output are consistent with the system equation (1). The
sets X. and Y, account for other constraints that may hold for
the predicted state/output (e.g., obstacles, barriers). The set U. ac-
counts for input constraints (e.g., input saturation).

The optimization problem (4) is generally nonconvex. More-
over, the decision variable u(-) is a signal, and optimizing a
function with respect to a signal is generally a difficult task.
To overcome this problem, the prediction interval [ty, t; 4+ Tp] can
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be divided into ns sub-intervals [ty + Tj, t + T 1] C [, tp + Tpl, i €
{1,2,..., ns}, where the 1;'s are called the nodes, and u and r
can be kept constant on each sub-interval. Hence, u; and ry; de-
note the command and reference values at time k in the ith sub-
interval, respectively. The command and reference sequences in
the prediction interval are indicated with uy, = (U, ..., Uy, ) and
Tk = (Tk1» - - - Tkng ), TESPECtively. In this way, the optimization prob-
lem reduces to a finite-dimensional problem, which can be solved
using an efficient numerical optimization algorithm.

The NMPC closed-loop command is obtained according to a
so-called receding horizon strategy. At time t = t;, the input signal
u*(t: t+Tp) is computed by solving (4). Then, only the first op-
timal input value u(t) = u*(t;) is applied to the plant, keeping it
constant for V7 € [t, t;,1]. The complete procedure is repeated at
the next time steps t = i1, tyya. ...

In the reminder of the paper, it is assumed that, for some
choice of the parameters Ty, Tp, Q. R, P, the NMPC algorithm defined
by (4), applied according to the receding horizon strategy to the
plant (1), provides a bounded tracking error e(t) = r(t) — y(t), for
all t > 0 and for every reference signal r such that r(t) e Y, Vt > 0.

4. Set Membership approximation and tight guaranteed bounds

The optimal NMPC command must be computed in real-time
and this task may require a large computational time, since a non-
trivial optimization problem has to be solved. In order to overcome
this problem, an approximation of the NMPC control law is de-
rived, based on the nonlinear Set Membership (SM) Identification
method. This method is now summarized.

According to the formulation of Section 3, the optimal NMPC
command u, = u*(t;) is a static nonlinear function of the current
state x, = x(t,) and the reference sequence r;. The NMPC com-
mand uy; at time t; in the ith prediction sub-interval is thus given
by

Ui = P (wy) (5)

where wj, = (x;, 1) and ¢ is a static nonlinear function. For sim-
plicity, in this section n, = 1 is assumed. The generalization to the
case ny, > 1 is trivial and can be accomplished by applying the SM
method to each component of uy;. See also Section 5.2. In general,
due to the complexity of the OCP (4), writing the function ¢ in
closed-form is not possible. To overcome this issue, an approxima-
tion of ¢ is derived, based on the off-line computation of its values
at a given number of points, using the nonlinear SM approach of
Milanese and Novara [27].

Let W c R™* be a region where the regressor w; can evolve,
and assume that the function ¢ is Lipschitz continuous on W. Note
that this region is bounded since the NMPC algorithm is assumed
to guarantee a bounded tracking error and the reference is as-
sumed bounded. A number M of values of ¢ is generated by solv-
ing off-line the OCP (4), starting from different initial conditions
Wy € W, so that

G=¢W), I=1,...M (6)

where the tilde is used to indicate the collected data. From these
values of @, and w;, the known properties of ¢, and the input limi-
tations u < i, < U, an approximation of ¢ and tight function bounds
are derived using the nonlinear SM approach. These functions will
be key elements of the NMPC method proposed in Section 5.

The nonlinear SM approach of Milanese and Novara [27] is now
briefly summarized (in particular, its “local” version is presented
here). Let us define the following functions:

b(H, y,w) =min[q, (min (h+yllw =) D]

b(H.y.w) =max[u, max (hy || )|} (7)
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where H = {h,}f‘i], hjeR, y €eR and we W are the independent
variables of the functions. Define now the functions

¢*(w) = (b(Hy, vy W) + b(Hy, vy, w))/2

dW) = ¢5(w) + b(Ha, ¥a, W)
@ (w) = ¢E(W) + b(Ha, ya, W)

¢ (W) = (P(w) + p(w))/2 (8)

where Hy = {t)}} |, Hy = {il; — $8(W))}}1,, v, and y, are the Lips-
chitz constants of ¢ and ¢ — ¢& on W, respectively. These constants
can be systematically estimated using the validation procedure in
Milanese and Novara [27].

The following theoretical properties are proven in Milanese and
Novara [27]:

« The functions ¢ and ¢ are optimal bounds of ¢: they are the
tightest upper and lower bounds that can be derived from the
available prior information on the function and the data.

« The function ¢¢ is an optimal approximation of ¢: it minimizes
the so-called worst-case identification error, defined as the max-
imum error given by all possible approximations that are com-
patible with the prior information and the data.

5. Set Membership nonlinear model predictive control

This section describes how the nonlinear SM identification
method is exploited to improve the computational performance of
an NMPC algorithm. In the first subsection, the off-line SM-NMPC
design procedure is described. In the second one, the on-line algo-
rithm is presented. A preliminary version of this approach, called
Reduced Domain NMPC, can be found in Boggio et al. [6].

5.1. SM-NMPC off-line design procedure

Data collection. To describe the evolution of the system, several
off-line simulations are performed. In particular, a set of state data
%, and reference signals r;, with [=1..., M, are generated, col-
lecting the regressor w; = (%, ;). Starting from each w;, the cor-
responding optimal control command is computed, on the basis of
(4), giving rise to a set of control data #;. The resulting dataset is
thus given by {w;. &} ,.

Clustering. Since, in general, the number M of collected data can
be very large, firstly a clustering process is performed using the K-
Medoids approach [21]. This method uses the medoids to represent
the clusters. A medoid is an element of the dataset whose sum of
dissimilarities to all the elements in the cluster is minimal. Among
many algorithms for K-medoids clustering, due to the large dataset,
CLustering LARge Applications (CLARA) [20] is used.

At the end of the clustering process, the size of the dataset
must be reduced by at least 10 times. This means that K < %,
where K is the number of clusters and then the number of data
used to identify the function ¢. The resulting dataset, that best
characterizes the overall system, is {Wm,,ﬁm,};;], composed of K
regressors Wy, and commands i,;;. The subscript m is used to in-
dicate that the data are the medoids of the clusters found in this
step.

Set Membership approximation. On the basis of the dataset
{Wpy. )X, the optimal bounds ¢ and ¢, and approximated con-
trol law ¢° are computed by means of the SM approach [27]. If
the command u is multi-dimensional, and u and r are not constant
(over the prediction horizon), the SM approach is applied to each
component of ii,,; and for each sub-interval of the entire prediction
time interval.

Summary of the off-line procedure. The off-line steps of the SM-
NMPC design procedure are summarized in Algorithm 1.

European Journal of Control 74 (2023) 100857

Algorithm 1 SM-NMPC off-line algorithm.
Input: Model of the plant (1); NMPC parameters T, Q, R, P.
Output: ¢, ¢ and ¢°.

1: Several off-line simulations are carried out to generate the
dataset {w; = (%, r)}M,.

2: For each w,, the optimal control command i, is computed by
solving the NMPC optimization problem (4) off-line, thus ob-
taining the design dataset {w;, ;}}1 .

3: K-Medoids clustering is applied to reduce the size of the design
dataset from M to K < .

4: On the basis of the reduced dataset, ¢, ¢ and ¢¢ are derived
according to (8). o

5.2. SM-NMPC on-line algorithm

As discussed in Section 3, in order to make the optimization
problem numerically tractable, the prediction interval [ty, t; + Tp]
is divided into ng sub-intervals [t + T;, ty + Tiy1] C [t G+ Tpl, i €
{1,2,...,ns}, where the ;s are called the nodes. Then, u and r
are assumed constant on each sub-interval. In particular, uy; and
r; denote their values at time k in the ith sub-interval. Simi-
larly, ¢f, ¢; and Qi denote the SM optimal approximation and
bounds of the optimal command in the ith sub-interval. If the com-
mand is of dimension n, > 1, then d)l?, Ei and @, are vectors with

components ¢J‘.i, @i and jS' j=1,...,ny,. Each of these compo-
nents is obtained using the SM approximation method described
in Section 4. The SM-NMPC on-line algorithm is formally presented

below (Algorithm 2).

Algorithm 2 SM-NMPC on-line algorithm, applied at each time ¢;.
Input: X, 1, = (Mg, - - - s Thng )
Output: u(7), T € [y, tyyq]
1: Fori=1,....,nsand j=1,...,ny, define the interval
Ui = (w0, 6wy
where wy = (X, 1) € RMHyhs,
2: Solve the OCP (4) with:

Lu(m)=uy telte+T g+t i=1,..., Ns.

2. Warm start command sequence:
o = ¢ (Wy) = (5 (W)...... B, (W)).

3. Reduced search domain: U = [];; Uj;, where []j; denotes the
Cartesian product.

3: Set the optimal command as u(t) =uj,, T € [, t 1], where

uz, is the first sample of the OCP solution uj.

The main features of the on-line algorithm are now discussed.

5.2.1. Search domain reduction

Each input constraint set Uj; is defined by the optimal bounds
#;;(wy) and @ ji(wy), that shrink the initial search domain Ue. This
leads to a reduction of the number of cost function evaluations and
consequently to a shortening of the computation time needed to
find uy. Such a search domain reduction is not operated in stan-
dard NMPC algorithms.

5.2.2. Warm start

The optimization algorithm is warm-started using the optimal
initial condition ¢¢(w;), computed through the SM approximated
control law. On the other hand, many standard NMPC algorithms
use the so-called shift initialization strategy, where the starting val-
ues of the decision variables are taken equal to the solution ob-
tained in the previous time step. This latter strategy works well
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if the new optimal solution is not far from the previous one, but
may lead to non-satisfactory local solutions if this condition does
not hold.

5.3. General considerations on the SM-NMPC approach

5.3.1. Presence of disturbances/uncertainties

On one hand, the computation of the optimal SM approxima-
tion and bounds is not affected by any kind of disturbance or
uncertainty. Indeed, they are computed from a set of data gener-
ated solving the NMPC optimization problem off-line. This data-
generation mechanism is fully deterministic and not affected by
disturbances/uncertainties. On the other hand, the effects of dis-
turbances or uncertainties may show up when NMPC is used to
control in closed-loop some plant, but this effect is exactly the
same using an NMPC algorithm with the SM domain reduction or
a pure NMPC algorithm without the reduction. The SM domain re-
duction can be used in combination with any NMPC algorithm to
increase the performance in terms of computational speed but it
leaves unchanged all the control performance of the original NMPC
algorithm.

5.3.2. Data used for SM-NMPC design

The SM bounds are defined on the whole domain of the NMPC
algorithm and thus they hold true in all possible working condi-
tions of the plant. However, the amplitude of the command range
defined by the bounds depends on how the collected data are dis-
tributed in the NMPC domain: the amplitude is smaller in regions
where the data are more “densely” distributed, larger in regions
not “densely” explored by the data. Hence, in order to obtain a
significant shrink of the range, and a subsequent reduction of the
NMPC computation time for all the driving conditions of interest,
it is necessary to collect data that explore the regions correspond-
ing to these conditions. A “learning” version of the SM-NMPC al-
gorithm could also be developed, where the data are collected on-
line and the SM bounds and approximation are improved at each
time step.

6. Autonomous driving simulation results

In this section, the presented approach is validated and com-
pared with a standard NMPC implementation considering the road
scenarios described in Section 2.

6.1. Parallel parking

To show the effectiveness of the proposed method, the SM-
NMPC algorithm has been tested in simulation on a real road sce-
nario regarding a Parallel Parking maneuver.

The models used to describe the ego vehicle are first intro-
duced. When using the NMPC approach, it is necessary to distin-
guish between two models: a “high-fidelity” plant model, used to
simulate the real vehicle, and a prediction model, used within the
NMPC optimization algorithm to predict the future behavior of the
system (this latter model is typically simpler than the former).

As mentioned in Section 2, to simulate the real vehicle, the
Matlab Dual-Track Vehicle Body 3DOF block is used. Regarding
the NMPC prediction model, the classical kinematic bicycle equa-
tions are considered. Since the vehicle travels at low speed, these
equations provide a sufficiently accurate description of the vehicle
motion. The kinematic bicycle model is the following:

& =vecosy
0=V siny
= "/’Titan(af) 9)
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Table 1
NMPC design parameters.
Parameter Value
T 0.1s
T, 15s
Q diag(0.25,0.25,0.5)
R diag(0.5,0.5)
P diag(2, 10, 20)

Upper bounds
Lower bounds

[2m/s, /4,2 m[s, T /4]
[-2m/s, —m /4, -2 m[s, —1 /4]

where £ and 7, denote the position of the vehicle, i its yaw angle,
and the parameter wj, = 2.8 m represents the wheelbase of the ve-
hicle. The longitudinal speed v¢ and the steering angle §; are the
control variables. The output of the system is (£, 7, ¥). Concern-
ing the state constraint, safety ellipses were designed around the
parking vehicles in order to avoid possible collisions.

Below are reported the steps, described in Section 5, for this
case study.

6.1.1. Data collection

A starting set of initial state conditions Xg,, p=1,...,1000 of
the vehicle was obtained through the Latin Hypercube Sampling
(LHS) technique (see McKay et al. [26]). Starting from these ini-
tial conditions, a Monte Carlo (MC) campaign was carried out us-
ing the NMPC algorithm (4) without domain reduction (the de-
sign parameters are listed in Table 1). The optimization prob-
lem was solved using the Matlab function fmincon with the Se-
quential Quadratic Programming (SQP) algorithm. In the following,
this algorithm without domain reduction will be called "Standard
NMPC”. Note that the NMPC command is parametrized considering
two nodes, i.e., ng = 2. This means that there are a total of 4 com-
mands: 2 for the speed v; and 2 for the steering angle . At the
end of this campaign, a dataset of about M = 3e5 samples (W, ii;)
was obtained.

6.1.2. Clustering

A clustering procedure was carried out to reduce the size of the
dataset generated in the previous step. In particular, the K-medoids
clustering method with the CLARA algorithm was used. After sev-
eral trials, a reduced set of 1e4 data was found as an “optimal”
compromise between quantity of data (and then memory occupa-
tion) and exploration of the control law domain. As mentioned in
Section 5.1, the benefit of using K-medoids is that the center point
of each cluster, i.e., the medoid, is an actual element of the dataset.
This allows to always associate a sample of the regressor with the
corresponding optimal command.

6.1.3. Set Membership approximation
After the clustering process, the dataset was reduced from 3e5
to le4 samples {Wyp. il }/¢1. On the basis of them, the approx-

imated control law ¢¢, and the corresponding bounds ¢ and ¢
were computed by means of the SM approach shown in Section 4.
Figure 2 shows the approximation and the relative bounds of the
velocity control command. As it can be seen, the bounds were re-
duced by about 10 times with respect to the original ones.

6.1.4. Comparison between SM-NMPC and standard NMPC

Once the approximate Set Membership model was created, it
is used in combination with the NMPC for reducing the computa-
tional time of the optimization algorithm. In order to test the ef-
fectiveness of this technique and the robustness of the obtained
model, different initial state conditions of the ego vehicle, from
those considered previously, were taken into account. Then, a MC
campaign of 100 simulations was carried out.
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Table 2
Comparison between standard NMPC and SM-NMPC for a MC campaign of 100 simulations.
Standard NMPC SM-NMPC
Mean value  Maximum value  Mean value  Maximum value
Eval. Cost. Funct. 94.4 106.1 5.46 12.16
Comp. Time [s] 0.0313 0.0365 0.0057 0.0059
Pos. T.E. [m] 0.1237 0.7 0.1106 0.1388
Orient. T.E. [rad] 0.0241 0.29 0.0213 0.029
e B e —— Optimal Command Trajectory
- - - - Approximate Optimal Command 6 Target1
15+ SM Upper Bound ar Target2
—— SM Lower Bound (@) 2t @ :
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Fig. 2. Set Membership approximation of v;.

The standard NMPC and the developed SM-NMPC were simu-
lated on a Dell Precision 5820 (Processor: Intel(R) Xeon(R) W-2123
CPU @ 3.60 GHz). The optimization problem was solved using the
Matlab function fmincon with the Sequential Quadratic Program-
ming (SQP) algorithm. It is important to emphasize that the pro-
posed approach is not limited to a particular optimization algo-
rithm. Instead, it can be employed in combination with any algo-
rithm to enhance its computational efficiency.

The metrics used for comparing the performance of the two al-
gorithms are:

1. Number of evaluated cost functions (Eval. Cost. Funct.) for find-
ing the minimum;

2. Computational time (Comp. Time);

3. Accuracy in reaching the final target.

In Table 2, the mean and maximum values of the above perfor-
mance indexes are shown for the two NMPC algorithms. Note that
the term Mean Value refers to the average number of evaluated
cost functions, computational times, and tracking errors through-
out the simulation. For example, mean number of evaluated cost
functions (M,y) means:

ZZ; €ka

Mecf = n

(10)
where ecf, is the number of evaluated functions for the kth iter-
ation and n; is the number of iterations required to complete the
simulation. The term Maximum Value refers to the highest value
during the 100 simulations.

Regarding the number of evaluated cost functions, with the SM-
NMPC a reduction of about 17 times, on average, is obtained. Note
that, since in this nonlinear optimization problem there are 4 vari-
ables to be optimized, at least 5 evaluations of the cost function
are required to obtain a numerical estimate of the gradient. Thus,
in the case of SM-NMPC, results very close to this minimum num-
ber are obtained. For the computational time, the use of SM-NMPC

Fig. 3. Example of autonomous parallel parking performed by SM-NMPC.

leads to an improvement in the performance of about 6 times, on
average. The discrepancy between the enhancement found for the
cost functions and this one is due to the fact that the SM-NMPC
algorithm requires, before the optimization, the evaluation of the
SM approximated control law. This operation, not present in the
standard NMPC, implies additional computation time. Note that the
code for accomplishing this operation is at a preliminary stage and
further improvements are expected. The same considerations also
apply to the maximum values of both metrics. With regard to the
tracking error, since the values of the position (§,n) are gener-
ally larger than those of the orientation v, it is split into: Posi-
tion Tracking Error (Pos. T.E.) and Orientation Tracking Error (Ori-
ent. T.E.). For the computation of the Position Tracking Error, the
Euclidean distance between Target 2 in Fig. 3 and the final pose
of the vehicle is considered. Regarding the Mean Value, the ob-
tained results are quite similar. Instead for the Maximum Value,
there is a considerable difference. Indeed, in the case of standard
NMPC, the very high value reported in Table 2 is due to the fact
that out of 100 simulations the parking maneuver fails four times.
The SM-NMPC, instead, always succeeds in completing it. Thus, be-
sides being more efficient from a computational point of view, this
approach is also more robust. An example of a complete maneuver
performed by the SM-NMPC is shown in Fig. 3.

6.2. Lane keeping

As road profile, the sinusoidal signal defined in Section 2 was
used. For the plant, the same model of the previous example was
considered. Regarding the one for the NMPC prediction, the kine-
matic model is no longer used. Indeed, it becomes inadapted when
the velocity is high and then the vehicle is brought to its limit of
adherence and tires start to lose grip on the road (this is referred
as drifting). For this reason, a standard model of the lateral and
longitudinal dynamics of a vehicle is considered, called the Dy-
namic Single-Track (DST) Model. Although simple, this model cap-
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Table 3
NMPC design parameters.
Parameter Value
T 0.1s
T, 3s
Q diag(1,1)
R diag(0.01,1)
Upper bounds  [3 m/sz, /4,3 m/sz, 7 /4]
Lower bounds  [-3m/s?, -7 /4, —3m/s, - /4]

tures the main aspects of the vehicle dynamics and, for this reason,
it is suitable for the design and preliminary test of vehicle control
systems. The state equations of the DST model are:

& =v:cosy — vy, siny
0 =V siny + vy, cosyr
V=0

i)g =Vpw + ag

. 2

Uy = Ve + E(F”f +Fyr)

.2

@ = E(lfF,,f_lr r) (11)

where £ and 7 denote the position of the vehicle, ¥ the yaw
angle, w the yaw rate, vg, v, the longitudinal and lateral speeds,

m = 1575kg and I, = 4000 kg m? the mass and yaw polar inertia,
and lf =1.2m and I = 1.6 m the distance CoG - front/rear wheel
center. ¢ and Fyr are the lateral forces between the wheels and
the vehicle:

Fyp = —csBy. Fyr = =Gy (12)

where ;=27 x10*Nfrad and ¢ =2x10*Njrad are the
front/rear cornering stiffnesses. The tire slip angles By and B
are defined as:

_ vy + o _ vy — Lo
B = atan(vS ) -, Br= atan(vé . (13)

The longitudinal acceleration a; and the steering angle §; are the
control variables. The output of the system is (£, ).

The same steps were performed as in the previous ex-
ample. Note that for the data collection, 1000 different sinu-
soidal references were considered, with 5 < A;[m] < 10 and 0.01 <
ws [rad/m] < 0.04. For the generation of the values in these inter-
vals, the LHS technique was used. Then, a MC campaign was car-
ried out using the standard NMPC (Table 3 lists the design param-
eters). Even in this case, the command u was parametrized con-
sidering two nodes, and so there are a total of 4 commands. At
the end of the MC campaign, a dataset of about M = 5e5 sam-
ples was obtained. Afterward, the clustering was performed using
K-medoids, with K = 2e4. Then the approximating control law ¢¢,
and the corresponding bounds ¢ and ¢ were computed by means
of Set Membership approach. Figure 4 shows the approximation
and the relative bounds of one of the steering angle command.
Once the SM model was created, it is used in combination with

Table 4
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Fig. 4. Set Membership approximation of §;.
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Fig. 5. Example of SM-NMPC lane keeping with lateral and orientation errors.

the NMPC. In order to test the SM-NMPC and compare it with the
standard NMPC implementation, different values of A; and ws, from
those considered previously, were considered. Then, a MC cam-
paign of 100 simulations was carried out on the Dell Precision
5820. Table 4 reports the results considering the same metrics as
the previous example. Even in this case, the SM-NMPC outperforms

Comparison between standard NMPC and SM-NMPC.

Standard NMPC

SM-NMPC

Mean value  Maximum value Mean value Maximum value

Eval. Cost Funct. 107.36 109.35
Comp. Time [s] 0.041 0.043

RMS Lat. E. [m] 0.0254 0.0785
RMS Orient. E. [rad]  0.00049 0.0011

7 7.74

0.0088 0.0089
0.0208 0.0454
0.00048 0.0007




M. Boggio, C. Novara and M. Taragna

the standard implementation. Note that for the accuracy, the Root-
Mean-Square (RMS) error is used for evaluating the Lateral Error
(Lat. E.) and the Orientation Error (Orient. E.). An example of a si-
nusoidal road profile and the corresponding trajectory, lateral and
orientation errors obtained with the SM-NMPC is shown in Fig. 5.

7. Conclusions

The last decades have seen increasingly rapid progress in driver-
less vehicle technology. In this context, the paper proposes a “fast”
data-aided NMPC approach, called Set Membership based Non-
linear Model Predictive Control (SM-NMPC), aimed at trajectory
planning and control for autonomous vehicles. In particular, a Set
Membership approximation method is applied to derive from data
tight bounds on the optimal NMPC control law. This results in a
significant reduction of the computation time, thus enabling the
real-time NMPC implementation even in systems with high sam-
pling rate. Realistic autonomous vehicle scenarios, concerned with
parallel parking and lane keeping, are taken into account for test-
ing in simulation the developed SM-NMPC approach. The obtained
performances are compared with a standard NMPC implementa-
tion, demonstrating the effectiveness of the proposed method.
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