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ARTICLE INFO ABSTRACT

Keywords: Network slicing is a promising technique that has vastly increased the manifoldness of network services
Virtual RAN to be supported through isolated slices in a shared radio access network (RAN). Due to resource isolation,
5G

effective resource allocation for coexisting multiple network slices is essential to maximize network resource
efficiency. However, the increased network flexibility and programmability offered by virtualized radio access
networks (VRANs) come at the expense of a higher consumption of computing resources at the network edge.
Additionally, the relationship between resource efficiency and computing cost minimization is still fuzzy.
In this paper, we first perform extensive experiments using the VRAN testbed we developed and assess the
VRAN resource consumption under different settings and a varying number of users. Then, leveraging our
experimental findings, we formulate the problem of cost-efficient network slice dimensioning, named cost-
efficient slicing (CES), which maximizes the difference between total utility and CPU cost of network slices.
Numerical results confirm that our solution leads to a cost-efficient resource slicing, while also accomplishing
performance isolation and guaranteeing the target data rate and delay specified in the service level agreements.

Network slicing

Resource allocation
Experimental measurements
Optimization

1. Introduction

The future of next-generation cellular networks (5G/B5G) heavily
relies on virtualization of network functions and on the slicing of
resources for the support of a wide range of services. In-fact, the
economic benefits of virtualizing the network infrastructure can be
significant, with the RAN representing an important transformation
opportunity. This has resulted in virtualized radio access networks
(VRANS) turning into a de-facto sought-after technology for the realiza-
tion of the emerging open radio access network paradigm [1]. Indeed,
the level of virtualization and flexibility that characterize a vRAN make
it a perfect fit for the openness and intelligence concepts that are
at the basis of the O-RAN architecture [2]. It is therefore expected
that open standard radio frequency interfaces, combined with VRAN
technologies, will further increase operational savings and increase
the scalability of RANs. However, the increased network flexibility
and programmability allowed by vVRANs come at the cost of a higher
consumption of computing resources at the network edge by the vRAN
itself [3]. This is a critical aspect that has scarcely been addressed so
far: most of the implementations do not account for the demand for
computational resources imposed by the radio allocation and, hence,
computing resources are typically pooled inefficiently [4,5]. It follows
that the gains currently attainable by a vRAN are far from optimal,
preventing its deployment at scale.

Resource allocation at the vRAN is naturally and strictly linked
with the concept of network slicing [6] — a key paradigm to guarantee
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differentiated quality of service (QoS) and service level agreements
(SLAs). Network slicing indeed enables multiple logical networks cor-
responding to different network services running on top of a common
physical network infrastructure, with the possibility to customize slices
to satisfy various SLAs through isolation techniques [7]. Although
network slicing is well researched, slicing the RAN resources is still
challenging and requires further study [8]. On one hand, inherent radio
spectrum scarcity promotes that all slices share a limited amount of
radio resources on demand to ensure efficient utilization. On the other
hand, as computing resources in the edge are limited, a cost-efficient
resource allocation among the slices is crucial. Towards this latter goal,
a slicing strategy is required, by which the operational cost (in terms
of, e.g., CPU usage) can be minimized when availability of computing
resources is sufficient, and the SLAs are fulfilled when there is a deficit
of computing capacity.

In fact, if the service in a slice has elasticity [9], then the resource
demand of the slice can change depending upon the operational cost, in
order to maximize the slice profit. This inspires us to deeply explore the
relationship between computing resource cost and slice dimensioning.
While the state-of-the-art [10,11] on network slicing mainly focuses
on offering a satisfying level of QoS or QOE, flow routing and VNF
placement, as well as inter-slice radio resource allocation, none of the
existing works designs a cost-efficient slicing strategy accounting for
the real-world dependency between the cost of computing resources
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at the network edge and the ability of the VRAN to support different
network slices.

To effectively tackle the above issues, it is essential to dynamically
adapt the resource allocation to the various service slices, and the
temporal variations of their traffic demand, across virtual Radio Points
of Access (RPAs) [12]. Towards this goal, a first, fundamental step is
to gain a better hands-on understanding of the behavior of vRPAs and
the relation between radio and computing resource dynamics, as well
as their dependency upon such factors as radio channel conditions and
user’s traffic demand. The second required step is to develop a radio
slicing strategy that efficiently supports different slices, fulfilling their
performance requirements while accounting for the use of computing
resources at the network edge. In this work, we address the above
challenges, aiming at answering the following research questions:

1. What are the computing requirements of a VRAN, as different set-
tings in terms of number of occupied resource blocks (RBs) and type of
modulation and coding scheme (MCS) are adopted?

2. How do the computing requirements of a VRAN change as the number
of connected users varies?

3. How can radio resources be sliced to support traffic flows with
different characteristics and QoS/SLA requirements?

We address the first two questions by investigating the behavior of
a vRPA using a test-bed implementation and conducting a thorough
measurement campaign. In particular, we leverage a srsRAN [13]
implementation of an eNB and investigate its CPU consumption under
different experimental settings. It is worth noting that CPU utilization
is a key metric used to track the system performance behavior, how-
ever modern processor technology is much more complex, as a single
processor package may encompass multiple cores with dynamically
changing frequencies. These technological advances can thus change
the behavior of CPU utilization reporting mechanisms. Nevertheless,
our analysis is carried out in the same environment, which will not
only provide qualitative insights but quantitative predictions as well.

We then address the third question by developing a model that
captures the main aspects of a 5G vRAN, and incorporates the rela-
tion that we were able to derive from our experiments between CPU
utilization and number of users and of radio resources allocated to the
deployed slices. By leveraging such model, we formulate and solve an
optimization problem for resource usage reduction, while providing
each slice with the requested QoS (namely, data rate and delay) in
an isolated fashion. Specifically, our problem dynamically allocates
resources to slices so as to maximize the profit of each slice, i.e., the
difference between a slice utility (depending on its turn on the slice
QoS requirements) and the CPU consumption due to the deployment of
the slice itself on the VRAN. To formulate CES, we leverage our experi-
mental findings and use our CPU cost function which is dependent upon
the number of occupied RBs and number of connected user equipments
(UEs).

To summarize our contributions are as follows.

» We develop an srsRAN-based experimental test-bed and perform
extensive experiments, in order to profile the performance limits
of the eNB in terms of processing and throughput. We show that
the CPU utilization of the eNB increases with the MCS index,
number of occupied RBs, and importantly, with the number of
connected users.

Using empirical data, we define regression models to predict the
percentage of CPU utilization of the virtual eNB, as the number
of connected users and of allocated RBs varies. In so doing, we
obtain a prediction accuracy of 99% for CPU utilization.
Leveraging our experimental findings and the aforementioned
approximated models, we formulate the CES problem, which aims
at maximizing the slice profit. Importantly, the CES solution turns
out to be able to guarantee a high level of isolation among the
deployed slices.
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The rest of the paper is organized as follows. Section 2 provides an
overview of the existing literature, while highlighting the novelty of
our work. Section 3 introduces the design and implementation of the
VvRAN test-bed that we used to derive our results and the experimental
findings presented in Section 4. Section 5 describes the VRAN slicing
model and optimization, while Section 6 compares the performance of
CES to that of static resource slicing (SRS) under different scenarios.
Finally, Section 7 draws our conclusions and presents directions for
future research.

2. Related work

Our work relates to two main research directions: modeling and
assessment of VRAN performance, and network slicing.

VRAN performance. Owing to the intricate relationship between
radio and computing resource dynamics, and the advantages offered
by VRANS, several works have aimed at investigating and optimizing
such a virtual system. While the studies in [12,14-18] focus on eval-
uating the performance of a VRAN through experiments, the works in
[4,19-21,3,22] provide an insight onto the theoretical framework.

More specifically, [12] is one of the first experimental studies
that characterize the potential savings in compute resources when
exploiting the variations in the processing load across base stations.
Interestingly, [14] presents a linear model to calculate the uplink
processing time for a single user in terms of the sub-carrier load,
MCS index, and number of antennas. The linear model is then used to
develop RT-OPEX, a C-RAN scheduling algorithm. The impact of MCS
and SNR on real-time C-RAN processing (i.e., CPU) is studied in [15],
along with a mathematical model for predicting the decoding time. The
work in [16] profiles instead the performance of a C-RAN in terms of
CPU and memory usage, as the iperf transmission bandwidth increases.
In [17], the authors investigated the CPU consumption of the baseband
unit (BBU) under various conditions for the C-RANSs, and characterized
the computational demand in terms of throughput. Instead, the work
in [18] introduces a processing time model considering the MCS, the
number of RBs, and the CPU frequency. However, no such work has
investigated and characterized the performance of a vRAN in terms of
CPU and memory usage as the number of connected users increases and
under diverse settings.

As far as analytical models and algorithmic solutions for the opti-
mization of a VRAN are concerned, [4,23] set a theoretical basis for
CPU-aware radio resource control. In particular, [4] aims at reducing
the level of variability of the computational load, by jointly optimizing
the selection of the MCS index and the allocation of the physical
resource blocks (PRBs). [19,24] investigate instead the trade-off be-
tween the consumption of data processing resources and achievable
data rates, taking into account specifically the processing requirements
of forward error correction (FEC) on the uplink. A computationally
aware MCS selection policy is proposed that reduces the computational
complexity requirements, at the cost of slightly decreased spectral
efficiency in [19]. The above works rely on the same model relating
computational requirements and SNR, and they neglect variations on
the arrival bit-rate load. This issue is addressed instead in [25], which
combines real-time traffic classification and CPU scheduling in a mobile
edge computing setup. However, [25] relies on a simplistic base-band
processing model and does not include an experimental validation. An
analytical framework, FuidRAN, is presented in [20], which jointly
selects the function split and routing policy, tailored to the available
network and computing resources. However, the model is provided for
one user only. In [21], a novel reinforcement learning framework is
presented, which efficiently allocates radio resources to multiple users
in terms of link, MCS index, RBs and airtime for packet transmissions
in heterogeneous VRANSs. A related relevant contribution is also given
in [3] where the vrAIn solution that dynamically learns the optimal
allocation of computing and radio resources in order to meet the target
level of QoS. A novel pipeline architecture for 5G distributed units
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(DUs) is presented in [22] to guarantee a minimum set of signals
that preserve synchronization between the DU and its users, during
computing capacity shortages. This study relies on techniques that
require predictable computing to provide carrier-grade reliability.

In conclusion, no previous work characterizes the computing re-
quirements of vVRANs with respect to complete contextual dynamics
(namely, traffic load and number of users). Importantly, designing
resource allocation schemes ignoring such requirements may severely
hamper the system performance in terms of throughput.

Network slicing. Owing to its perennial relevance in the future of
mobile communication standards, network slicing has received a great
deal of attention. Several studies have tackled core networks slicing,
and many have focused on placement and management of virtual net-
work functions (VNFs) [26,27]. Significant challenges instead still exist
in the design and management of RAN slicing. Such challenges include
how to avoid potential radio resource sharing conflicts, and how to
efficiently use radio resources while accounting for the dynamics of
service traffic flows as well as the performance isolation among slices.

A survey of solutions for radio resource slicing can be found in
[28,29]. Various resource allocation schemes have been designed to
achieve resource isolation among slices, so that the QoS of a slice is
not affected by others. Radio resource sharing among multiple tenants
is addressed in [30], with the aim to achieve fairness and maximize
network utility. Rost et al. [31] deal with the architectural princi-
ple of allocating dedicated and shared network functions to slices in
both core and access networks. The deployment of service function
chains for services, and the related resource allocation, are instead
intensively discussed in [10,11,32,33]. To jointly optimize resource
allocation in terms of flow routing and VNF placement for multiple co-
existing slices, [32] proposes a slice dimensioning scheme, and solves
the dimensioning problem with resource pricing mechanism where the
pricing functions are the node and link cost. The study in [34] considers
the network slicing problem by maximizing the minimum expected rate
(spectral efficiency) of eMBB users over time, while guaranteeing the
provisions of uRLLC traffic.

A network slicing framework, named New Radio flexibility (NRflex),
is presented in [35], which enables users to benefit from multi-service
applications and leverages 5G new radio (NR) numerology to achieve
uRLLC services latency while meeting the throughput requirements of
eMBB services. A joint eMBB/URLLC scheduling problem is considered
in [34] for various eMBB rate loss models, while the uRLLC and the
eMBB traffic are dynamically multiplexed through punctured schedul-
ing. The work in [36] proposes a dynamic joint functional split and
RAN slicing algorithm with the aim to maximize the throughput by
jointly selecting the optimal functional split and routing path from
an end user to the central unit. A new slicing scheme aimed at slice
performance isolation, as well as efficient capacity utilization and fair
resource allocation among users, can instead be found in [37].

We remark that in the majority of the existing works on RAN
slicing, radio resources are shared based on a fixed assignment scheme.
Arguably, this static resource slicing paradigm can avoid the potential
radio resource sharing conflicts among the co-existing RAN slices and
thus achieve perfect performance isolation among different slices. How-
ever, it is critical to design a cost-efficient RAN slicing control strategy
in which the radio resources can be dynamically shared among network
slices.

Finally, we mention that a preliminary version of our study has
appeared in our conference paper [38] where we have investigated the
CPU and memory requirements of VRANs through our srsRAN-based
test-bed. In this work, instead, by drawing on our experimental results
we characterize the CPU consumption of VRANs, and we develop a
cost-efficient radio slicing strategy.

3. VRAN test-bed

We now introduce our VRAN test-bed using srsRAN, detailing the
test-bed architecture and configuration, and the adopted experimental
methods.

Computer Communications 209 (2023) 349-358

3.1. Test-bed architecture

Fig. 1(a) provides a snapshot of the test-bed we developed, while
Fig. 1(b) represents its architecture. We leverage software defined ra-
dio (SDR) interfaces enabling point-to-point communications between
VvRPA and UE. An vRPA implements the necessary processing stack to
transfer data to/from UEs. In our case, the vRPA acts as a virtual eNB
implemented at the edge of the network. The connectivity between
the VRPA and UEs are supported by means of an LTE radio link
implemented using the srsRAN [13], an open-source SDR LTE stack
implementation offering Evolved Packet Core (EPC), eNB, and UE appli-
cations. It is compliant with LTE Release 9 and supports up to 20 MHz
bandwidth channels as well as transmission modes from 1 to 4, all using
the frequency division duplexing (FDD) configuration. As RF front-
end, Ettus Universal Software Radio Peripheral (USRP) B210 devices
are used to perform up/down-conversion, filtering, amplification and
AD/DA conversion of the UE and eNB LTE signals. All the RF front-ends
are connected to the VRPA and the UEs via USB 3.0. Then, physical
layer is implemented through a set of OFDMA-modulated channels,
using RB filling across ten 1-ms subframes forming a frame.

The edge host and the mobile terminals are each installed in Ubuntu
18.04 systems. The edge host is equipped with an Intel i7-7700HQ 4-
cores CPU and 8 GB of DDR4 RAM, while the UEs feature an Intel
i7-8550U 4-cores CPU and 16 GB of DDR4 RAM. Each Ubuntu system
is connected to USRP B210 boards using USRP Hardware Driver v3.15.
In order to faciltate the experiments, all performance management
features in the BIOS (e.g., Intel@TurboBoost, Hyper-thread control,
Intel SpeedStep) are enabled and C-states have been turned off. The
CPU governor of the edge host and the UEs are set to performance mode
to allow for maximum computing power and throughput. Moreover,
real-time thread priorities are enabled in the srsSRAN as the applications
(srsENB and srsUE) are executed with root privileges. A set of threads
are created in srsRAN for performance and priority management rea-
sons. Also, we monitor the level of CPU consumption and ensure that,
during our experiments, the allocated CPU is sufficient to keep up with
the required data rate so as to avoid severe system failures during the
radio data transfer. Finally, in order to establish a stable connection,
we set the transmit gain (tx_gain) at the eNB to its maximum value.

3.2. Monitoring the srsSRAN eNB and UEs

To monitor the behavior and track the performance of the vVRAN
entities, we leverage some of the useful features of srsRAN (e.g., de-
tailed log system with per-layer log levels, MAC layer Wireshark packet
capture, command-line trace metrics, detailed input configuration file).
The eNB is configured in band 7 (FDD) and the transmission bandwidth
has been set to 10 MHz, corresponding to 50 RBs. In order to determine
the successful connection between eNB and UE, the RRC states are
observed. Specifically, when the UEs are successfully paired to the eNB,
the RRC connection setup message is seen. As experimental set-up, we
connected 30 dB attenuators to the antennas of each network node;
furthermore, the UEs were placed close enough to the eNB so as to
ensure high values of SINR (> 25 dB). Finally, we focus on downlink
(DL) data transfer and used iperf for data packet generation.

4. Experimental evaluation and analysis

In this section, first we present the performance of the vVRPA, i.e., the
srsSRAN eNB, in terms of CPU utilization as the number of occupied
RBs and the MCS index vary, when a single UE or multiple UEs are
connected. A similar evaluation for the memory utilization can be
found in our conference paper [38]. The results have been obtained
by averaging over 10 experiments; in every plot, both the average
value of the presented performance metric and the corresponding 95%
confidence interval are shown.
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Fig. 1. VRAN test-bed implementation using srsRAN: (a) snapshot of our test-bed highlighting the edge node hosting the virtual eNB and EPC, and four UEs; (b) test-bed architecture
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Fig. 2. CPU utilization and UDP downlink throughput of the virtual eNB, for different values of the MCS index (a) and occupied RBs (b), and a single connected UE.

4.1. CPU utilization

The CPU usage is analyzed using an Intel Core i7-7700HQ 2.80 GHz
CPU. It is calculated using the top process in Linux, which provides a
dynamic real-time view of a running system managed by the kernel.
Specifically, the percentage of consumed CPU is collected by sampling
the top reports every second, over a period of 200 s.

Fig. 2(a) shows the average CPU utilization (left-hand side y-axis)
and the throughput (right-hand side y-axis) obtained over 10 iterations
of the virtual eNB, as the MCS varies and for a single connected UE.
For this experiment, UDP DL traffic is generated at the eNB at 30 Mbps,
setting the number of allocated RBs to 50. Also, we set the transmission
gain to its maximum value, thus ensuring that the SNR does not drop
below 32 dB. From the plot, we can observe that, as also shown in [3],
the CPU utilization of the virtual eNB increases as the MCS index grows
from 0 to 27. Further, the consumption of computing resources, which
is mainly due to the modulation, demodulation, coding and decoding
operations, is quite significant in absolute terms: as an example, for
MCS = 27, a single user consumes around 51% of a single CPU of the
edge node. Using empirical data, we found that the CPU utilization of
the virtual eNB can be well approximated as a linear increasing function
of the MCS, i.e., CPU[%] = 0.429 - MCS + 39.58.

Fig. 2(b) shows the CPU utilization (left-hand side y-axis) of the
virtual eNB as the number of allocated RBs varies from 12 to 50, for
a single UE and MCS = 27. The DL traffic load is set to 9 (for 12 RBs),
15 (for 24 RBs), 21 (for 36 RBs), and 30 (for 50 RBs) Mbps, respectively.
We notice that the CPU utilization increases as the number of occupied
RBs increases, with a maximum of 51% for a single UE. A higher
number of occupied RBs leads to the user transmitting at a higher rate,
which results in a higher computational resource consumption. From
the experimental data, we found that the CPU utilization of the eNB
can be well approximated as a linear increasing function of the number
of allocated RBs, a, i.e., CPU[%] = 0.2892 - a + 37.02.

We remark that the provided approximation functions can help
interpolate the average CPU utilization with different radio configura-
tions.

We are now interested in how the computing resource consumption
varies as the number of users connected to the eNB changes. It is
indeed a fact that the number of served UEs is rapidly increasing, and
that cellular networks will have to support a massive number of users.
Fig. 3(a) presents the CPU utilization of the virtual eNB as the MCS
index varies, for different numbers of users. For this experiment, the
overall maximum number of RBs that can be used is set to 36, downlink
traffic is generated at 21 Mbps, and the tx_gain is set to its maximum
value, so that the SNR is always above 28 dB for all the UEs. In this
scenario, an interesting behavior emerges: for a fixed value of the MCS
index, the average CPU consumption of the eNB increases significantly
as the number of users increases, although the traffic load is kept
constant. As an example, for MCS = 27, the average CPU consumption
with four UEs is 62% of a single CPU, i.e., about 30% more than with
one UE.

In addition, Fig. 3(b) shows the CPU consumption of the virtual eNB
as the number of allocated RBs varies from 24 to 36, for a different
number of connected UEs, MCS = 27, and maximum tx_gain. The DL
traffic load for 24 RBs is set to 15 Mbps, while it is 21 Mbps for 36 RBs,
so that all the allocated RBs are always occupied. Interestingly, as the
number of connected users grows, the CPU consumption of the virtual
eNB increases linearly.

Since the MCS index and number of occupied RBs are always finite
values that vary over a very specific range, we are mainly interested in
understanding the CPU requirements of the virtual eNB as the number
of UEs increases. Then, using the empirical data, we build a regression
model that predicts the CPU utilization of the eNB as the number, n, of
connected UEs varies. For 36 occupied RBs and MCS = 27, we obtain:

CPU[%] = 4.099 - n + 44.935 . )

We remark that similar models can be built for different values of MCS
index and number of occupied RBs.

Fig. 4(a) shows the CPU utilization under the above settings, along
with the curve obtained using the regression model in (1). The Signif-
icance F for our model is 0.004, which, being well below 0.05, shows
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Fig. 4. (a) Regression plot as the number of UEs varies, for 36 occupied RBs and MCS = 27, (b) Residual plot for the regression model in (1), with 36 occupied RBs and MCS

=27.

that the model can predict correctly the behavior under study. Further,
the regression output (R-squared) indicates that 99% of the variation
in CPU consumption is due to the number of UEs. Specifically, every
additional UE is expected to entail about 4.1% of increase in CPU usage
at the eNB; it follows that 15 users will easily consume up to 100% of
a CPU.

Again for 36 occupied RBs and MCS 27, Fig. 4(b) plots the
residuals, i.e., the difference in percentage between the actual value of
CPU utilization and the one predicted by the regression model, obtained
when the number of UEs varies between 0 and 4. We observe that such
residuals are always within —0.5% to 1% of CPU usage, which confirms
the very good accuracy of the model.

Next, it is important to show that a linear regression model (as
in (1)), obtained from experimental data, correctly characterizes the
computing requirements of a VRAN as the number of users increases. To
this end, we use all the experimental data obtained for a number of UEs
up to 3 (i.e., for a varying number of occupied RBs and MCS indices),
and we predict the CPU consumption when four UEs are connected.
The corresponding regression model is given by:

CPU[%] =3.9-n+0.369 - MCS + 35.658 (2)

where n is the number of connected UEs and MCS is the adopted MCS
index. Similarly, the CPU consumption as a function of the number of
connected UEs (n) and number of allocated RBs (a) can be written as:

CPU[%]=39-n+044-a+30. 3

Tables 1 and 2 report the actual CPU utilization when 4 UEs are
connected, and the corresponding value predicted through (2) and
(3). Furthermore, Fig. 5(a) plots the residuals obtained for the model
in (2) and Fig. 5(b) those obtained for the model in (3): again, all
residual values are within —1% and 1%. These results, along with an
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Table 1

Actual vs. predicted CPU usage with 4 UEs, a varying number of
occupied RBs, and MCS = 27.

No. allocated RBs Actual CPU [%]

Predicted CPU [%]

24 56.36 55.51
36 61 60.759
Table 2

Actual vs. predicted CPU usage with 4 UEs, different MCS indices, and
36 occupied RBs.

MCS index Actual CPU [%] Predicted CPU [%]
12 54.31 55.55
18 58.76 57.71
27 61 61.19

F-statistic value of 0.0023, indicates that the linear regression model
well describes the behavior of CPU utilization.

The experiments are performed with at least one connected UE.
For MCS = 27 and RBs = 36, the predicted CPU utilization from (2)
is 45.62%, which is very similar to the value of 45.84% obtained
from (3) with no connected UE. Further, in Fig. 2(a) and Fig. 2(b) we
validate our models in (2) and in (3) with the linear functions provided
for one UE, as functions of the MCS (varied from O to 27) and the
number of allocated RBs (varied from 12 to 50), and considering as
minimum values of the MCS and the number of allocated RBs 0 and
12, respectively. We can observe that the CPU usage is almost identical
with the same parameter settings for both models, which confirms the
accuracy of the prediction models in (2) and (3).

In order to utilize the linear model with diverse parameter settings
(different MCS and RB configurations), all our experimental data can
be exploited to derive a model as the number of UEs (n), MCS, and RBs
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Fig. 5. (a) Residuals plot for the regression model in (2), for different values of the MCS index and 36 allocated RBs; (b) Residuals plot for the regression model in (3), for a

different number of allocated RBs and MCS = 27.
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Fig. 6. Residual plot for the regression model in (4), for different values of the MCS
index and occupied RBs.

vary. The corresponding regression model is given by,

CPU[%] =3.46-n+0.325 - RBs + 0.28 - MCS + 26.55 “4)

For MCS = 27 and number of occupied RBs = 36, the predicted CPU
usage from the model in (4) is 59.65% for 4 connected UEs, while the
actual CPU usage from the experiments is 61% for the same parameter
settings. Fig. 6 plots the residuals obtained for the model in (4) showing
that all residual values are within —1.5% and +1.5%. These results,
along with an F-statistic value lower than 0.05, indicate that the linear
regression model well describes the behavior of CPU utilization. It is
worth mentioning that the CPU utilization at the eNB can be accurately
predicted also when different values of MCS are used for different UEs.
Indeed, since the MCS index takes discrete values over a very specific
range, using in (4) the average value of the MCS indices allocated
over the different users still provides an accurate estimate of the CPU
consumption at the eNB.

Finally, it is important to underline that the relationship between
CPU consumption and factors such as the MCS, the number of allocated
RBs, and the number of connected UEs may become non-linear for
a certain number of UEs. Although, due to hardware constraints, we
had to restrict our analysis to 4 UEs, we have profiled the downlink
scheduler when UEs are varied from 1 to 4 and it was found that the
processing time increases with the number of users: as an example,
the downlink scheduler processing time for 1 UE is 10 ps, while for
4 UEs it is 20 ps. Additionally, some recent work [22] confirms that
the processing time of downlink transmission tasks does vary with the
number of users (e.g., scheduling becomes more complex). Based on
our experiments, we observed that under low values of MCS (as shown
in Fig. 3(a)), the primary CPU consumption is not due to the MCS, but
rather to the increment in the number of users. For instance, for MCS
= 9, the CPU consumption is 43.63% for 1 UE, while it is 52% for 4
UEs. For MCS = 27, the CPU consumption is 48.58% for 1 UE, while it
is 61.209% for 4UEs.

To conclude, our proposed linear relationship models hold for the
downlink® traffic transfer with any value of MCS between 0 and 27,

1 It is worth observing that uplink data transfer will unarguably influence
the analysis of the CPU utilization: e.g., the processing time for decoding
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occupied RBs from O to 50 (i.e., for a 10 MHz channel), and a number of
UEs from 1 to 4. From our experiments, we found that, for higher values
of MCS index (i.e., more sophisticated modulation and coding schemes
are used), number of allocated RBs (i.e., higher-rate transmissions take
place), and number of users, the CPU consumption increases linearly.
Moreover, the dominant impact on CPU consumption is due to the
number of connected UEs.

5. VRAN slices: Modeling and optimization

We now leverage the characterization of the VRAN computational
requirements given in Section 4, to develop a solution framework for
designing and optimizing VRANS slicing. In particular, after modeling
the VRAN and the slices supported therein (Section 5.1), we formulate
the problem of cost-efficient slice (CES) dimensioning, which maxi-
mizes the slice profit while accounting for the CPU cost (Section 5.2).

5.1. System model

We focus on a gNB supporting a group of users (£) requiring eMBB
service, and a set of users (V") demanding uRLLC service. For simplicity
of notation, we consider a set of slices M including only a single
eMBB and a single uRLLC slice, although the extension to the case of
multiple eMBB and uRLLC slices is straightforward. Time is divided into
Transmission Time Intervals (TTIs), denoted by t € 7 = {1,2,...,T}.
Radio resource is divided both in the frequency domain and in the time
domain, yielding F RBs, each of bandwidth B. Considering an equal
power allocation, the SINR of the generic UE i at time 7 is given by
Viji = Pl»;' S where P is the transmit power of the gNB, H,, is the
channel gain of user i on RB j at time ¢, and N, is the power of additive
white Gaussian noise (AWGN).

For the conventional services, such as eMBB with large transmitted
packet size, the achievable data rate of UE i for RB j € F at the tth TTI
can be directly estimated according to Shannon’s capacity as written
below in (5)(a):

(@
Ar~B[1og2<1+y,.J,,)— %Q‘I(E)logze]A )

At - Blog,(1 + y,»,j‘,)
(5)

Fiju =

However, for the short-sized packet transmission (ranging from 32
bytes to 200 bytes), such as uRLLC [39], the data rate falls in the finite
block-length channel coding regime [40]. Therefore, the data rate are
modeled as (5)(b), where

+ At is the time duration of one TTI, which set to 1 ms,
« ¢ is the transmission error probability,
« Q7!(.) is the inverse of the Gaussian Q-function,

is longer than for encoding, and it increases with the MCS index, as shown
in [3,12,22].
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* I;, represents the length of the codeword block in symbols and
can be obtained based on the selected numerology for the uRLLC
slice,

* C;;, is the channel dispersion, which depicts the stochastic vari-
ability of the channel relative to a dete{ministic channel with the
same capacity, given by C; ;, =1 - TR

Notice that, to guarantee (1 — ) reliability for the transmission of r; ;,

bits per TTI towards a user, it is required to assign sufficient RBs with

a large SNR. Thus, we consider that the SNR for every user on each RB

never drops below 5 dB [41].

The achievable rate of an eMBB UE, e € &, in TTI ¢ is thus given by:

F
Foy = Z At Teji
Jj=1

where binary variable a,;, = 1 indicates that the jth RB is allocated
to UE ¢, and «, ;, = 0 otherwise. The achievable rate of an uRLLC UE,
u € U, in time slot ¢ is instead given by:

(6)

r

™=

u,t ﬂu,j,t Tyt (7)

1

J

where binary variable f, ;, = 1 indicates that the jth RB is allocated to
UE « and §,;, = 0, otherwise.

Next, we introduce the SLA model, which includes data rate and
packet latency as performance metrics. While the former can be derived
by aggregating the amount of data that is successfully transmitted over
time, a queuing model of UEs’ packets is needed to derive the latter.

To this end, we assume that each slice has its DL queue at the gNB,
and all packets belonging to a slice share the same queue. We then
model the uRLLC slice queue at the gNB as an M/M/1/K queue with
service rate u and traffic arrival rate A [42]. As u depends upon the
scheduling process at the MAC layer, while A corresponds to the traffic
rate of the users running on top of the slice, we write:

Zf:l Buji * Tuju
L
vl d,
L

where L is the packet size of the uRLLC application, || is the number
of UEs belonging to the uRLLC slice, d, is the traffic arrival rate of
uRLLC service per user, and u € U'. The queue length at the 7-th TTI
can be derived as [43]

Hup = (8)

A= ©

K
1- pu,t k

K+1
1 - pu,t k=0

Qur = (10)

u,t

where p,, = Mi Little’s law can then be applied to estimate the latency
u,t
experienced by uRLLC packets in the corresponding queue:

ﬁu,t = qu,t/j' N

At the t-th TTI, the delay of a packet arriving at the uth UE is given by
the sum of transmission delay and queuing delay,

1D

Du,z = VVu,x + 5u,t 12)

where the transmission delay, W, ,, is the queue service time, which
depends upon the datarate used to transmit towards the UE (see (7)).
We then write the average packet delay of the |U°| uRLLC UEs at the
t-th TTI as,

D, = > D,

D, =— (13)
' IV' uevy”

5.2. Cost-effective slicing (CES)
In this section, we formulate the problem of ensuring a Cost-

Efficient Slicing (CES) of the vVRAN, and provide some details of the
problem solution.
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Our goal is to obtain an optimal VRAN slicing control strategy
that maximizes the expected long-term profit of all slices. Such profit
is defined as the difference between the sum of utility of all eMBB
UEs across T TTIs and the normalized cost of computing resource
consumption due to the slices supported on the VRAN. Specifically, the
objective is twofold: (i) when the CPU capacity is sufficient, the goal
is to minimize the operational cost (in terms of CPU usage) as long as
the deployed slices meet the desired performance; (ii) when there is a
deficit of computing capacity to meet such performance target, the aim
is resource efficiency, i.e., to maximize the data rate of eMBB services
and minimize the delay experienced by uRLLC users. By taking «, ;,
and f, ;,, indicating the RBs allocation for the eMBB and uRLLC slices,
as decision variables, the CES problem formulation is given by:

max IE“teT Z Ue,r - Z ¢:,, (14)
{a}.15) ecf memM
st D+ Y <l ViEFVIET (14a)
eef uel’
D, <Dy, VIET (14b)
e €10.1},8,,, €(0,1) VuelU,Vee&, jeF. (140)

The utility (U,,) of the generic eMBB user e at TTI ¢ is given by the
eMBB user data rate on that TTI, i.e.,

|

where

1 —erf(x"" — x2,)
erf(x — x2)

H o th
if xg, =X

U .
otherwise

et

(15)

« x' is the target data rate of an eMBB UE and x?, is the observed
data rate of user e on TTI t. Our choice of erf function for
estimating individual UEs utility is motivated by its shape, which
takes O value at the origin, and gradually increases (decreases)
and saturates to the maximum (minimum) value in the positive
(negative) direction [21]. When the target is met, the utility value
is positive and it further increases to its maximum value at +1,
as the observed data rate approaches its target value. Likewise,
when the target is not met, the value of the utility is negative,
which further reduces and saturates to the minimum value —1 as
the observed data rate moves away from the target. Moreover, it is
essential to keep the observed data rate as close as possible to the
respective target for optimum utilization of network resources:
substantially better values than the target ones would indeed
translate into a waste of resources. Thus, our choice of utility
function equally accounts for the aforementioned properties;

¢,, is the cost of computing resource consumption for deploying
slice m € M, which, based on our experimental findings and
model in Section 3, is given by

$n=39-n,+044-a,+30 Vme M (16)

where n,, is the number of users served by slice m and a,, is the
number of RBs allocated to the slice.

Constraint (14a) limits the RB resources, while (14b) guarantees
that the average uRLLC users’ packet delay will not exceed the target
value D,,,, at any TTI. Constraint (14c) ensures binary-valued «, ;, and
ﬂu,j,t'

5G NR [44], adhering to the principles of OFDMA technology,
supports multiple waveform configurations, which results in scalable
numerology. A numerology represents a set of parameters such as sub-
carrier spacing (SCS), PRB bandwidth, time-slot duration, and OFDM
symbol duration. While LTE supports carrier bandwidths of up to
20 MHz with a mainly fixed OFDM numerology (15kHz SCS), 5G NR
offers scalable OFDM numerologies by scaling the basic LTE SCS by 2#,
where u is an integer between 0 and 4. The numerology is selected
independently from the frequency band, with possible SCS of 15kHz
to 240 kHz. Regardless of the numerology, the length of a radio frame

max
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Table 3

Parameter settings.
Parameter Value
Number of RBs (F)/RB Bandwidth 50/180 kHz
gNB transmit gain 80 dB
D, 5 ms

'max
Service type
Packet size

eMBB and uRLLC
800 bytes (eMBB); 200 bytes (uRLLC)

and a subframe are always 10 ms and 1 ms, respectively, while the
difference is represented by the number of time slots within a subframe.
The coefficients in our model in (3), which represents the rate of
change in CPU utilization as the number of RBs and users increase,
are independent of numerology. Moreover, as already discussed in
Section 5.2, we use the normalized cost of CPU resource consumption
while designing our slicing solution. As a result, using the flexible frame
structure of 5G NR, our models can significantly help design a slicing
solution for 5G VRAN.

The problem formulation, along with the above constraints, results
in a mixed integer quadratically constrained programming (MIQCP)
problem. Moreover, the problem includes non-positive semi-definite
quadratic equality constraints. To find the CES solution, we used
Gurobi [45] where the non-linear functions are approximated as piece-
wise linear functions. When solving the model, the objective bounds
section provides information on the best known objective value for a
feasible solution (i.e., the objective value of the current incumbent),
and the current objective bound provided by leaf nodes of the search
tree. A new feasible solution is found, either by a MIP heuristic or
by branching. When the gap between the best feasible solution and
the best bound is smaller than the default MIPGap parameter (set to
10~4), Gurobi produces an optimal termination status. Although a MIP
problem is in general known to be an NP-complete problem, we were
able to solve the model with an optimality gap that is at maximum just
0.01%.

6. CES performance evaluation

In this section, we demonstrate the effectiveness of our proposed
network slice dimensioning method, CES, while also considering isola-
tion guarantees.

We set the system parameters as presented in Table 3, and we com-
pare the slice profit of CES to static resource slicing (SRS), where slice
requests are processed without considering the CPU cost of the gNB
due to slicing. Clearly, the fewer the RBs assigned to a slice, the higher
the profit of the slice. Recall that two different slices are considered in
our analysis, namely, eMBB and uRLLC; also, the results are obtained
considering two UEs (Fig. 7) and four UEs (Fig. 8) connected to a gNB
for each of the slices.

Comparison of slice profit. The plots in Figs. 7 and 8 for the
two considered scenarios present the number of RBs allocated to the
slices, respectively, under our proposed scheme (CES) and under the
considered benchmark (SRS).

For the first scenario, in the first pair of plots (Figs. 7(a) and 7(b))
and in the second pair of plots (Figs. 7(c) and 7(d)), the target eMBB
data rate for every UE is set to 2 Mbps and 3 Mbps, respectively, while
two different values of uRLLC traffic demand are considered, namely,
0.4 packets/TTI in Figs. 7(a) and 7(c), and 0.8 packets/TTI in Figs. 7(b)
and 7(d). The results highlight how the number of RBs allocated to
the eMBB and uRLLC slices is lower under CES compared to SRS. Also,
notice that the requirements in terms of delay for uRLLC traffic and data
rate for eMBB traffic are always fulfilled, under both CES and SRS, as
reported in Table 4

For the second scenario, in the first pair of plots (Figs. 8(a) and 8(b))
and in the second pair of plots (Figs. 8(c) and 8(d)), the target eMBB
data rate for every UE is set to 2 Mbps and 3 Mbps, respectively, while
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Table 4

Achieved data rate of eMBB UEs [Mbps] and average delay for uRLLC UEs [ms] for
CES and SRS, as uRLLC traffic demand [Mpbs] and target eMBB data rate [Mbps] vary
for 4 connected UEs.

URLLC traffic x CES x?, SRS x?, CES D, SRS D,
0.4 2 2 2 0.22 0.14
0.8 2 2 2 0.20 0.16
0.4 3 2.96 2.96 0.22 0.10
0.8 3 2.96 2.96 0.43 0.17

two different values of uRLLC traffic demand are considered, namely,
0.1 packets/TTI in Figs. 8(a) and 8(c), and 0.4 packets/TTI in Figs. 8(b)
and 8(d). The results highlight how the number of RBs allocated to the
eMBB and uRLLC slices is less under CES compared to SRS, and it equals
that of SRS only for high traffic demand of the eMBB slice. Additionally,
we remark that the target delay for uRLLC traffic is always fulfilled,
under both CES and SRS.

The plots confirm that CES is more efficient than SRS in the support
of both the uRLLC and eMBB slice: CES is able to reduce the radio re-
source consumption even in the presence of high eMBB traffic demand.
Additionally, by looking at both Fig. 8(d) and Table 5, we notice that
CES can reduce the cost due to slices support also when both the slices
exhibit high traffic demand, by compromising at maximum 20% of the
target eMBB data rate.

In conclusion, in all of the considered scenarios, the radio resource
consumption is lower under CES than under SRS, which confirms
the validity of our approach. In summary, CES performs a dual role
of reducing the CPU cost and at the same time fulfilling the SLA
requirements (i.e., increasing the utility of eMBB users to meet the
target rate and maintaining uRLLC target delay). This strategy drives
CES to efficiently allocate radio resources at the edge devices where
computing resources are constrained.

Slice isolation. Isolation performance in network slicing can be
evaluated by measuring the impact that changes (e.g., in traffic de-
mand) occurring in certain slices have on another slice. To correctly
measure and evaluate the isolation performance of the CES scheme, we
consider two scenarios:

(i) Given the eMBB traffic demand, the traffic demand of the uRLLC
slice is varied and the subsequent effect on the data rate of eMBB
users is evaluated;

(ii) The delay experienced by uRLLC traffic is assessed, as the traffic
demand of the eMBB slice varies while keeping that of the uRLLC
slice fixed.

Tables 4 and 5 illustrate the observed data rate of eMBB UEs (x7 )
and experienced delay of uRLLC UEs (B,), for different values of uRLLC
and eMBB traffic demand. Looking at the difference between the target
and achieved data rate, it can be noted that the performance of the
eMBB slice under CES is not affected much by the variation of uRLLC
traffic and this holds also for different values of eMBB demand. Tables 4
and 5 also present the observed uRLLC delay for different values of
eMBB traffic. Importantly, the variation of the eMBB demand does not
affect the delay of the uRLLC slice, which remains always below the
max tolerable delay value (set to 5 ms) regardless of the value of uRLLC
traffic, thus highlighting again a very good level of isolation between
the two slices.

We evaluated the performance of CES only in terms of the number of
allocated radio resources, since, as it can be noted by comparing (2) and
(3), the dominant impact on the CPU consumption is represented by the
number of connected UEs, rather than by the number of allocated RBs.
In addition, we would like to highlight that further considerations about
the CPU consumption can be made starting from the plots in Figs. 7 and
8, which show how CES allocates a lower number of RBs to the eMBB
and uRLLC slices, with respect to SRS. The smaller the number of radio
resources allocated, the lower the CPU utilization of the virtual gNB
according to (3).
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Fig. 7. Comparison of the number of RBs allocated to the slices at each TTI, under CES and SRS. The traffic demand of each eMBB UE is set to 2 Mbps in (a) and (b), and to

3 Mbps in (c) and (d).
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Fig. 8. Comparison of the number of RBs allocated to the slices at each TTI, under CES and SRS. The traffic demand of each eMBB UE is set to 2 Mbps in (a) and (b), and to
3 Mbps in (c) and (d).

Table 5

Achieved data rate of eMBB UEs [Mbps] and average delay for uRLLC UEs [ms] for
CES and SRS, as uRLLC traffic demand [Mpbs] and target eMBB data rate [Mbps] vary

for 8 UE case.

URLLC traffic X CES x?, SRS x?, CES D, SRS D,
0.1 1 0.96 0.96 0.25 0.13
0.4 1 0.96 0.96 0.2 0.11
0.1 2 2.0 2.0 0.25 0.19
0.4 2 2.0 2.0 0.20 0.13
0.1 3 2.8 2.96 0.36 0.25
0.4 3 2.4 2.96 0.2 0.2

7. Conclusions and future work

Virtualized radio access networks (VRANs) are the basis of next-
generation base stations design. To provide real-world insights and key
inputs to design optimized resource management in VRANSs, we inves-
tigated and characterized the computational requirements of vVRANs by
developing an srsRAN-based test-bed. Through extensive experiments,
we profiled the CPU utilization of the VRAN. Our results shed light on
the vRAN behavior across different scenarios, showing that, remark-
ably, the CPU utilization of the eNB increases substantially with the
number of users. It is worth underlining that the results have been
obtained under a constant value of traffic load and number of occupied
resource blocks. Based on these empirical results, we also built linear
regression models for the prediction of CPU utilization as the number
of users varies.

Then, leveraging our experimental findings, we formulated the
problem of cost-efficient network slicing (CES). The numerical results
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confirmed that our solution leads to a cost-efficient resource slicing
with 10%-15% reduction in radio resource consumption, while also
accomplishing performance isolation and meeting the data rate and
delay specified in the service level agreements of, respectively, eMBB
and uRLLC slices.

Future work will consider a wider range of services and applica-
tions, and it will investigate how radio resources allocation can be
further improved by exploiting 5G numerology.
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