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ABSTRACT 

Earth Observation (EO) applications and products can 
greatly benefit from increased spatial resolution and 
revisit time of EO optical payloads. On the other hand, 
increasing spatial resolution poses several technological 
challenges, both in terms of detector arrays and data 
bandwidth. In this paper, we introduce the concept of a 
super-resolved compressive instrument – the SURPRISE 
demonstrator – which is being developed to address a 
super-spectral payload for Earth Observation working in 
the visible and in the medium infrared with enhanced 
performance in terms of at-ground spatial resolution, 
innovative on-board data processing and encryption 
functionalities. To achieve this goal, the SURPRISE 
demonstrator relies on two main technologies: Spatial 
Light Modulator technology and Compressive Sensing. 
Here we present the demonstrator's concept, its overall 
architecture and the approach used for image 
reconstruction. 
 
1. INTRODUCTION 

While Earth Observation (EO) data has become ever 
more vital to understanding the planet and addressing 
societal challenges, applications are still limited by 
revisit time and spatial resolution. Though low Earth 
orbit missions can achieve resolutions better than 100 m, 
their revisit time typically stands at few to several days, 
limiting capacity to monitor dynamic events. 
Geostationary (GEO) missions instead typically provide 
data on an hour-basis but with spatial resolution limited 
to 1 km, which is insufficient to understand local 
phenomena. 

In this respect, the Compressive Sensing (CS) paradigm 
can pave the way to a new concept of optical sensors for 
space applications, with advantages in terms of data 
throughput and low cost technology. Several CS-based 
instrumental concepts were already proposed in the 
literature, mainly for spectroscopic applications with the 
aim of reducing the data throughput of the sensors, 
yielding in some cases to the implementation of 
demonstrators or prototypes (e.g. [1]-[3]). Only few of 
them, however, specifically addressed space applications 
([4]-[7]). 
In this paper, we present the SURPRISE project - 
recently funded in the frame of the H2020 programme – 
that gathers the expertise from eight partners across 
Europe. Its main goal is to implement a demonstrator of 
a super-spectral EO payload - working in the visible 
(VIS) - Near Infrared (NIR) and in the Medium 
Wavelength InfraRed (MWIR) and conceived to operate 
from GEO platform - with enhanced performance in 
terms of at-ground spatial resolution, and featuring 
innovative on-board data processing and encryption 
functionalities. 
The SURPRISE demonstrator aims at improving the 
spatial resolution of EO payloads by addressing a 
compressive sensing-based architecture based on the use 
of a Spatial Light Modulator (SLM) as a core element. 
The latter will be used to devise a super-resolution 
configuration that will be exploited to increase the at-
ground spatial resolution of the payload, without 
increasing the number of detector’s sensing elements at 
the image plane. The Compressive Sensing (CS) 
approach will offer further advantages for handling large 
amounts of data, as is the case of superspectral payloads 



 

with wide spectral and spatial coverage. It will enable fast 
on-board processing of acquired data for information 
extraction, as well as native data encryption on top of 
native compression. By introducing for the first time the 
concept of a payload with medium spatial resolution (few 
hundreds of meters) and near continuous revisit (hourly), 
SURPRISE can lead to an EO major breakthrough and 
complement existing operational services. 
In the following sections, we recall the concepts 
underpinning the SURPRISE project, we present the 
demonstrator's architecture and its working 
principle/Finally, we describe the image reconstruction 
methodology and the advantages offered in terms of on-
board data processing and encryption functionalities. 
 
2. THE SURPRISE BASIC CONCEPTS 

The SURPRISE demonstrator relies on two pillars: CS 
and SLM technology. 
CS is used to optimise data acquisition (e.g. reduced 
storage and transmission bandwidth requirements) and to 
enable encryption functionalities and novel onboard 
processing, with the aim to improve timeliness, 
shortening time needed to extract information from 
images and possibly generate alarms. 
SLM is used to implement the CS paradigm and achieve 
a super-resolution architecture. A proof-of-concept will 
be provided from the implementation of a demonstrator. 
Thus, the major objective of the SURPRISE’s 
demonstrator is to show how the use of SLM technology 
and CS approach can be exploited to yield a significant 
improvement of the performance of EO super-spectral 
payloads in the visible (VIS), near- (NIR) and medium-
wave infrared (MWIR), in terms of their spatial 
resolution, onboard data processing and data encryption 
capabilities. 
 
2.1. Compressive Sensing 

CS is an innovative signal acquisition technique that 
benefits from the feature of many natural signals being 
highly correlated. A high correlation entails the existence 
of a domain (integral transform) in which the signal is 
sparse, and only a small fraction of the transform 
coefficients is significantly different from zero. Nyquist–
Shannon sampling theorem states that an arbitrary signal, 
where the highest frequency is less than half of the 
sampling rate, can be reconstructed perfectly. The main 
idea of CS is that, with prior knowledge about the signal’s 
sparsity, the signal can be reconstructed using fewer 
samples. In a standard signal compression strategy, data 
is first sampled and then compressed to reduce final data 
volume. CS, on the other hand, aims to reduce the volume 
of acquired signal samples. CS techniques rely on the 
acquisition of a set of spatially integrated measurements 
of the scene of interest, modulated by a suitable spatial 
pattern. In practice, this is obtained by using an SLM that 
physically performs the scalar product between a random 

pattern and the incoming light, followed by an optical 
assembly that concentrates signal on a single element 
detector that acquires it. Signal reconstruction requires 
identification of the sparsest signal that matches the 
available measurements, which can be performed using, 
amongst others, linear programming techniques. 
The idea behind the concept of the SURPRISE 
demonstrator is the single-pixel camera [1]. Figure 1 
shows the basic working principle of a single-pixel 
camera: the image produced by the collection optics is 
modulated at the image plane by a SLM - acting as a 
coding mask - and the signal transmitted through the 
SLM is focused by an optical condenser on a single-pixel 
detector. Finally, a set of measurements – each 
corresponding to a different modulation pattern applied 
to the image – is used to reconstruct the original image 
by using suitable CS reconstruction algorithms. 
 

 
Figure 1. SLM technology and single pixel camera. 

 
A CS-based instrument’s architecture can be exploited to 
acquire fewer measurements than the corresponding 
image pixel numbers. According to CS theory, an N-pixel 
detector can be replaced with a single-pixel camera 
performing a number of measurements equal to p*N, 
with p usually ranging from 0.01 to 0.5. Quality of the 
reconstructed image is correlated with parameter p. 
Hence, a CS-based system acquires inherently 
compressed data, so acquisition and compression steps 
are merged in a single process and onboard data 
compression is no longer needed to reduce data amounts 
to be stored and/or transmitted.  
 
2.2. SLM Technology and Super-Resolution 

Although CS has mainly been used for merging data 
acquisition and compression into a single step, it can also 
be used to acquire images whose resolution after 
reconstruction is increased up to that of the coding 
pattern applied. This concept is referred to as the super-
resolution approach. 
A super-resolution imaging system is an imaging system 
whose resolution is enhanced with respect to its nominal 
one. Many techniques can obtain super-resolution, for 
example combining multiple low-resolution images with 
sub-pixel shifts. Computational Imaging with coded 
apertures relies on a different approach for high-
resolution imaging. By using low-resolution 
measurements, the optical modulation of the light field 
occurs before it is digitally acquired. In this way, high 
spatial frequencies can be recovered from several 



 

encoded measurements employing suitable algorithms. 
Many Computational Imaging systems employ an SLM 
to code the incoming light, and CS can be seen as a limit 
case of Computational Imaging, where the number of 
measurements is lower than the number of pixel of the 
high-resolution image to be reconstructed. 
 
3. THE SURPRISE DEMONSTRATOR  

The SURPRISE demonstrator is based on a CS-based 
architecture relying on the use of an SLM as core 
modulating device, with the aim of demonstrating the 
working principle and relevant benefits offered by these 
technologies for the development of an EO payload in the 
VIS-NIR and MWIR spectral regions. The 
demonstrator’s requirements and specification (e.g. 
number of spectral channels, radiometric accuracy, fore-
optics, etc.) are necessarily simplified with respect to 
those of a corresponding operational EO payload. 
Despite this, the design will be scalable to more 
challenging – and expensive – specifications for the 
future implementation of an EO payload. 
The demonstrator is conceived as a whiskbroom spectral 
imager working in the VIS-NIR (> 10 channels) and 
MWIR (two channels: channel#1 with central 
wavelength at 3.3 μm with 0.4-μm FWHM; channel#2 
with central wavelength at 4.0μm with 0.4-μm FWHM), 
able to acquire super-resolved images of a generic target 
by using an implementation of a CS architecture.  
The instrument’s working principle is based on the use of 
an SLM to increase the spatial resolution of the image 
observed by the instrument’s fore-optics. The acquisition 
of several measurements - each corresponding to the 
integrated value of the image modulated by means of 
several SLM patterns - is used to reconstruct the 
superspectral image with a higher spatial resolution. By 
using suitable modulation masks on the SLM, and by 
applying CS techniques, the image can be reconstructed 
by acquiring a total number of measurements smaller 
than the number of pixels of the reconstructed image. 

Figure 2 illustrates the working principle of the 
SURPRISE demonstrator. 
A generic target is imaged by a collection optics. The 
image (hereinafter referred to as ‘macropixel’) is focused 
on an SLM providing spatial coding of the target at 
higher spatial resolution. Such spatially coded image is 
then spatially integrated (averaged) by a condenser lens 
and acquired by a single pixel sensor.  
 

 
Figure 2. SLM technology and super-resolution. 

 
The acquisition is iterated by using a sequence of spatial 
coding masks. If the spatial resolution granted by the 
SLM is N x N pixels (each of which hereinafter referred 
to as ‘micropixel’), a linearly independent sequence of 
N x N spatially coded acquisitions allows the 
reconstruction of the macropixel super-resolved into 
N x N micropixels. By applying CS theory, the number 
of acquisitions for an exact reconstruction of the super-
resolved macropixel (N x N acquisitions) can be reduced, 
obtaining a (lossy) N x N super-resolved reconstructed 
image. The loss of information depends on the sparsity of 
the scene in the compressed domain (defined by the 
spatial coding sequence). 
Figure 3 shows a block diagram of the demonstrator’s 
architecture in which mechanical, electronic and optical 
parts are highlighted. 
 

 

 
Figure 3. The SURPRISE demonstrator's overall architecture. 
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The scene is scanned along two axes by means of a 
suitable scanning system. The fore-optics provides the 
image of the observed portion (target) of the scene on the 
image plane field stop at which the SLM is placed. The 
image captured in the instrument’s Instantaneous Field 
Of View (IFOV) corresponds to a ‘macropixel’ on the 
SLM (Figure 2). Spectral splitting is applied after the 
SLM-based coding stage by means of dichroic mirrors 
and is followed by the spatial integration stage 
implemented by the condensers. The signal is further 
spectrally filtered (or dispersed by the spectrometer for 
the VIS-NIR channels) and finally acquired in spectral 
bands of interest by suitable detectors.  
The overall architecture of the SURPRISE demonstrator 
must also include a suitable master unit that guarantees 
proper synchronisation and data handling. At the 
beginning of the sequence of CS measurements, the 
target scanning system must be positioned so as a given 
portion of the scene (target) is seen by the instrument’s 
IFOV; secondly, a modulation mask must be set on the 
SLM; thirdly, acquisition by each detector can be 
triggered. Once the integration time has run for all the 
detectors, another mask must be set on the SLM and a 
new acquisition by the detectors can be triggered. These 
operations are repeated until the given number of CS 
measurements is reached. At the end of the sequence, the 
scanning system makes another portion of the scene 
being observed by the instrument’s IFOV and the 
sequence of operations can be run again until all the scene 
is scanned. 
The measurement rate is critical for SURPRISE-like 
instruments. It must be as high as possible but is limited 
by the time taken by parts with mechanical drive (e.g. the 
scanning system or the SLM) to move from one position 
to another and by the integration time requested by the 
detectors to achieve a given SNR. The timely sequence 
of operations for a measurement is under the control of a 
master unit. This unit managed the time at which an 
operation is achieved by one of the subsystems. In 
addition, it collects the data generated by the detectors 
and provides data to the SLM defining the position of the 
micromirrors or the modulation mask. The respective 
interface of the subsystems with the master unit is of 
central importance to successfully implement the whole 
system. 
 
4. IMAGE RECONSTRUCTION  

CS theory has demonstrated that a signal can be sensed 
in a linear fashion as = A࢞ (Figure 4), and reconstructed 
with high probability when it exhibits sparsity in some 
transformation domain. 
Several image recovery algorithms from compressive 
measurements have been proposed, also for astronomical 
data compression and astronomical remote sensing [1] 
and the literature on this topic is extremely vast. 

 
Figure 4. CS and the sensing process. 

 
Most existing reconstruction techniques exploit image 
sparsity in a given domain (wavelet, discrete cosine 
transform, gradient domain and so on) and attempt to 
perform the reconstruction with different approaches: 
greedy algorithms, iterative thresholding algorithms, 
convex relaxation algorithms or non-convex relaxation 
algorithms. However, also for moderate-sized images, 
the reconstruction can be still very slow due to the 
complexity of the problem. For this reason, a more 
convenient and popular solution for image reconstruction 
is minimizing the Total Variation pseudo-norm. This 
approach can be particularly useful for natural images but 
for multidimensional signals, e.g. multispectral images 
with which are dealt with in the SURPRISE project, a 
serious problem arises regarding the computational 
complexity of the reconstruction process. 
Fortunately, in the recent years, deep learning algorithms 
have demonstrated the generalization capacity of the 
neural networks improving considerably the performance 
of previous state-of-the-art technologies in many fields, 
including image processing and image reconstruction. 
Deep learning techniques are able to achieve good results 
in terms of time and quality reconstruction and for these 
reasons we will rely on them in the SURPRISE project. 
Deep learning can take advantage of a training set in 
order to learn a domain in which the image is as sparse as 
possible, leading to very effective reconstruction 
algorithms. Results reported in the literature (e.g. [16]) 
show a significant improvement in the reconstruction of 
the sensed image. Moreover, deep learning methods 
typically have lower complexity that conventional 
reconstruction methods, which solve complex inverse 
problems. 
 
5. DATA ENCRYPTION  

CS can provide native encryption, avoiding the need of a 
payload-specific encryption module, and relieving the 
duties to be performed by the encryption module on the 
telecommand&control system. As introduced in [9], CS 
can be seen as a symmetric-key cryptosystem employing 
the sensing matrix as an encryption key. However, 
compressive encryption provides perfect 
indistinguishability only for equal energy signals and 
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when the sensing matrix is made of real-valued Gaussian 
i.i.d. entries and is re-generated at each encryption [10]. 
As far as encryption is concerned, in SURPRISE we aim 
at embedding an encryption functionality in the optical 
payload, to be performed directly during the image 
sensing process. We will translate the theoretical results 
available so far into the first native encryption scheme for 
a space imaging instrument. However, the design has to 
take into account a number of constraints. In order to 
have a practical design for space applications, one has to 
combine the optical design requirements, the data 
security requirements, as well as the ability to extract 
information from the data during on-board processing. 
Notably, the acquisition architecture involving the SLM 
will impose a sensing matrix with a specific structure. As 
highlighted in the literature, structured sensing matrices 
provide a trade-off between the confidentiality of the data 
and the ability to extract the desired information from it 
[11], so in SURPRISE will be carefully analyse this 
trade-off taking into account the instrument design 
constraints. 
Moreover, the SLM is only able to implement sensing 
matrices with binary entries. Even though preliminary 
results show that quantization of sensing matrix entries 
has a limited impact on the confidentiality of 
compressive encryption [13], this aspect should be 
carefully evaluated in the SURPRISE design. Finally, the 
need to continuously update the sensing matrix will 
impose the design of suitable encryption modes to 
support confidentiality for the corresponding instrument 
operating modes. In this respect, SURPRISE will 
investigate a counter mode of operation that can be 
implemented relying on an efficient stream cipher 
module [12]. This design can also enable the 
transmission of the signal energy on a separately 
encrypted channel for scenarios in which the maximum 
confidentiality level is required. 
 
6. ONBOARD INFORMATION EXTRACTION 

The CS framework enables image acquisition in an 
already compressed format thanks to direct optical 
construction of measurements as random projections of 
the scene. This low-complexity encoding is traded for a 
more computationally demanding decoding phase which 
performs image reconstruction from the low-dimensional 
measurements. As long as reconstruction can be 
performed at the ground segment, the computational 
demands can be easily met. However, one might want to 
perform inference tasks on the images directly onboard 
of the acquisition platform. 
Fortunately, a number of important inference problems 
can be efficiently solved in the compressed domain [14], 
without the need to perform expensive image 
reconstruction.  
CS measurements are acquired as random projections of 
a signal, which can be written as: 
 

࢟ = A࢞. 
 
The key property that allows information processing 
directly on measurements y is that the sensing matrix 
implements a stable embedding, i.e. a mapping between 
vector spaces that approximately preserves distances 
between points. A good sensing matrix provides a stable 
embedding by satisfying the Restricted Isometry 
Property (RIP): 
 (1 − ࢛‖(ߝ − ‖࢜ ≤ ‖A(࢛ − ‖(࢜ ≤ (1 + ࢛‖(ߝ −   ‖࢜
 
for signals u,v that are k-sparse in some orthonormal 
basis.  
In a classification problem, one is concerned with 
discriminating signals belonging to different classes by 
drawing a separator in the space the signals live in. 
One can see that approximately preserving distances 
allows to effectively discriminate signals belonging to 
different classes even if they mapped to the reduced-
dimensionality space of CS measurements.  
Let us consider a binary classification problem where we 
want to detect the presence or absence of a signal of 
interest This is a classic hypothesis testing problem 
where the null hypothesis corresponds to only observing 
noise, while the alternative hypothesis is observing a 
signal s corrupted by noise. One can prove that given 
compressive measurements y and knowing the template 
signal s, the following is a sufficient statistic for the 
detection problem: 
ݐ  = ܛଵAି(AA୘)்࢟ =  ,ࢠ்࢟
 
where z can be efficiently precomputed. Comparing the 
statistic t with a threshold solves the detection problem. 
Crucially, it is known that this compressive solution to 
the inference problem has a performance close to the one 
in the uncompressed domain, despite only having access 
to the signal measurements. 
Another task that can be performed in the compressed 
domain is signal filtering, provided that a suitably 
structured sensing matrix is used. When a circulant 
sensing matrix is used, it is possible to compute the 
measurements of the filtered version of the signal by 
filtering the original measurements, thus avoiding signal 
reconstruction [15]. However, the requirement on using 
circulant sensing matrix could clash with the optical 
instrument design which induces a special structure on 
the sensing matrix. A tradeoff with security requirements 
is also present as it is known that circulant matrices leak 
the autocorrelation of the acquired signal[11] [11].  
Finally, we can also generalize the approachto arbitrary 
inference problems and algorithms without the need for 
full reconstruction if we accept some degradation in 
performance. In fact, an inexpensive low-quality 
reconstruction could be obtained via a linear method: 
 



 

ෝ࢞ =  .࢟ࡾ
 
The operator R can be either chosen as the right inverse 
of the sensing matrix: 
ࡾ  = A்(AA்)ିଵ 
 
leading to the reconstruction with minimum Euclidean 
norm fitting the measurements. 
Alternatively, one can learn a better operator from 
training data, by solving: 
ࡾ  = ࢅࡾ‖ࡾ݊݅݉݃ݎܽ − ிଶ‖ࢄ =  (்ࢅࢅ)்ࢅࢄ
 
where X stacks all the training signals by columns and ࢅ = Aࢄ. 
Accessing the full signal reconstruction, albeit at low 
quality, enables arbitrary algorithm to be deployed for 
onboard inference. 
 
7. CONCLUSIONS  

In summary, the EU-funded SURPRISE project aims at 
leveraging CS to design and prototype an innovative 
imaging system in the VNIR/MWIR wavelength, and 
develop the related technologies. Advances are expected 
in hardware (spatial light modulator, optical design, 
electronics) as well as software (CS reconstruction 
algorithms, image analysis, encryption). This will boost 
European competitiveness in several key cutting-edge 
technologies. 
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