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Abstract: In the wave energy field, one of the main challenges towards commercialisation
of wave energy devices is the development of suitable control laws, able to maximise the
absorbed energy while guaranteeing effective satisfaction of any required physical constraint.
However, one of the main characteristics of this optimal control problem is that the system
behaviour is strongly influenced by the external (uncontrollable) input arising from the wave
source, i.e. the wave excitation, which is often unmeasurable. As such, computation of optimal
control solutions for WEC systems requires availability of instantaneous knowledge of the wave
excitation, and hence input-unknown estimators are developed within the control loop. State-of-
the-art estimation strategies are based on the knowledge of control-oriented linearized models of
the system, often neglecting the influence of nonlinear phenomena within the system description.
We propose, in this paper, an approach inspired by disturbance observer-based control, able
to accommodate well-known hydrodynamic nonlinear effects in the process of estimating the
unknown excitation force acting on the device. This strategy, which in contrast to the usually
applied estimators does not require an implicit/explicit model of the wave excitation force,
is tested on a hardware-in-the-loop facility in different sea state conditions, to realistically
assess its performance in terms of estimation error and delay. The experimental appraisal show
satisfactory results in terms of normalized root mean square error and average delay, which,
together with the simplicity of the method, positions the proposed strategy as a promising
candidate for hardware implementations in real environments.

Keywords: Wave energy; unknown-input estimation; nonlinear systems; experimental
assessment; energy-maximising control; disturbance observer-based control.

1. INTRODUCTION

Among state-of-the-art energy extraction techniques, wave
energy converters (WECs) have a remarkable untapped
potential (Mattiazzo, 2019), capable of greatly supporting
the pathway towards energy decarbonisation. Nonetheless,
wave energy technology has not reached a level of maturity
able to enable full commercialisation, especially due to
its currently high levelised cost of energy (LCoE) (Guo
and Ringwood, 2021). In this context, one of the key step-
ping stones towards a competitive and appealing LCoE is
the development of suitable control strategies (Ringwood,
2020). The WEC control problem, whose solution is cru-
cial for economic viability, can be written in terms of a
constrained and energy-maximising problem (Hals et al.,
2011; Faedo et al., 2017). In fact, any developed strat-
egy should maximise the absorbed energy over a certain
time window T , while, at the same time, respecting any

⋆ Nicolás Faedo has received funding from the European Union’s
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possible constraint on the device, effectively minimising
potential failures of the conversion system. These goals and
requirements are usually translated into an optimal control
problem (OCP), whose definition is virtually alwaysmodel-
based. In fact, a simplified control-oriented version of the
system model is usually adopted to describe the WEC
dynamics, and propagate it through future time instants
within the window T , over which the control action is
optimised. However, these models are often subject to
simplifications (e.g. linearisation around an equilibrium
position (Carapellese et al., 2022a), or the omission of
nonlinear contributions at the modeling stage (Penalba
et al., 2017)), and thus affected by inaccuracies that, if not
properly considered (Faedo et al., 2022a), could dramat-
ically interfere with the synthesis of the elements consti-
tuting the control loop. Moreover, such systems are highly
influenced by an external (uncontrollable) force, i.e. the
wave excitation force, which effectively represents the force
exerted by the incoming wave field on the WEC system.
Most of the strategies adopted to solve the OCP require
the knowledge of this contribution (Li and Belmont, 2014;



Table 1. Full-scale dimensions of the emulated
flap-type WEC.

Parameter Value (m)

D1 2.2
D2 10.0
D3 18.0
D4 8.0

Garcia-Violini et al., 2020; Carapellese et al., 2022b), since
it directly affects the optimality condition (Faedo et al.,
2022c). For this reason, among the elements that need to
be designed to develop the control loop, a crucial role is
that played by so-called unknown-input estimators, able
to provide an instantaneous estimate of the (generally non
measurable) wave excitation force signal (Peña-Sanchez
et al., 2020; Abdelrahman and Patton, 2020; Abdelkhalik
et al., 2016; Zhang et al., 2020). Since the development of
such estimators is also model-based, the degree of fidelity
of the employed model has, naturally, an impact on the
outcome of the estimation process. Motivated by the need
of estimation strategies able to incorporate nonlinear con-
tributions inside the model adopted in the synthesis stage,
we develop and test, within this paper, an unknown-input
estimator able to accomodate well-known hydrodynamic
nonlinear effects which characterize wave energy devices.
The presented estimation process is tested on an hardware-
in-the-loop (HiL) system to assess the capabilities of esti-
mating the unknown signal in real-time.

The remainder of the paper is organized as follows. In Sect.
2, the model used to describe the WEC dynamics is pre-
sented, together with the set of assumptions adopted. Sect.
3 is aimed at describing the HiL facility used in the results
assessment. In Sect. 4, the approach for the development
of the proposed unknown-input strategy is introduced,
highlighting its validity and design procedure, while Sect.
5 present, and analyses, the experimental results. Finally,
in Sect. 6, conclusions are presented regarding main capa-
bilities of the strategy, highlighting the scope of potential
applications.

2. WEC MODELING

Among WEC technologies, one of the possible concepts is
the oscillating wave surge converter (OWSC, also known
as a ‘flap’), which converts the energy coming from the
wave motion by damping the torque exerted on a flap by
virtue of the wave field (Henry et al., 2010). Its structure
is composed of a flap placed on the seabed, connected to
a Power Take-Off (PTO) system, and free to rotate about
the axis of the latter. The generator shaft constitutes the
flap hinge. A schematic representation can be seen in Fig.
1, together with the full-scale dimensions of the WEC
emulated in this paper in Table 1.

The dynamics of these devices can be modeled by means
of potential flow theory assumptions, considering a single
degree of freedom 1 (DoF) as:

Iz z̈(t) = fr(t) + f l
hr(t) + fnl(t) + fex(t)− fPTO(t), (1)

where Iz ∈ R+ is the device inertia, t 7→ z(t) ∈ R is
the WEC angular displacement, t 7→ fr(t) ∈ R is the

1 Note that similar arguments can be made for multi-DoF devices
(see, for instance, (Folley, 2016)).

Fig. 1. Flap-type WEC schematic.

radiation torque, t 7→ f l
hr(t) ∈ R is the linearised hydro-

static restoring torque (where the Jacobian linearisation is
usually performed about the equilibrium position z = 0),
t 7→ fnl(t) ∈ R represents potential sources of nonlin-
earity, t 7→ fex(t) ∈ R is the wave excitation torque, and
t 7→ fPTO(t) ∈ R denotes the control torque applied by the
PTO. In control-oriented modeling, fr is usually split 2 in
two contributions: the first one corresponds to an effect
of added mass, while the second one, which following the
so-called Cummins’ equation (Cummins, 1962), is repre-
sented by a convolution integral, is usually parameterised
by a state space representation (Peña-Sanchez et al., 2019).
The linearized restoring contribution f l

hr, instead, is mod-
eled as a stiffness term, proportional to the WEC displace-
ment from the equilibrium position. Finally, the excitation
torque term fex is usually modeled as a Gaussian process,
to take into account the stochastic nature of the wave
phenomena (Merigaud and Ringwood, 2018).

Potential sources of nonlinearity that typically affect wave
energy converters are viscous effects, nonlinear restoring
contributions, or other forms of nonlinearity that depend
on either the device wetted surface, or any internal state
(e.g. velocity) (Penalba et al., 2017). In this paper, we
consider, as nonlinear torque acting on the flap device,
a nonlinear viscous effect fnl

v , written in terms of the
following Morison-like equation:

fnl
v = −βv ż|ż|, (2)

where βv is the viscous coefficient.

Having defined the torques acting on the WEC as in (1),
the only external force contributions on the system are the
excitation torque fex, and the control torque fPTO applied
by the PTO. Letting x be the state-vector associated with
the WEC system, we can write the dynamical equation,
describing the WEC motion, as:

gWEC :

{
ẋ = Ax+B(fex − fPTO + fnl(x)),

ż = Cx,
(3)

with the triple (A,B,C) minimal and of appropriate
dimensions, and where fnl : Rn → R (with n the

2 From now on, the dependence on t is dropped when clear from the
context.



Fig. 2. COER flap-type HiL scheme (adapted from (Faedo et al., 2022d)).

dimension of (3)) describes, without any loss of generality,
the (purely) nonlinear effects acting on the system, i.e.
∂fnl

∂x

∣∣∣
x=0

= 0. When the system is linearized about x = 0,

the associated linear representation becomes:

glWEC :

{
ẋ = Ax+B(fex − fPTO),

ż = Cx,
(4)

For the purposes of the presented paper, we assume also
here that glWEC is internally stable in the Lyapunov sense,
and minimum-phase. It is also important to note that, for
glWEC, the transfer function G0(s) = C(sI−A)−1B can be
defined.

3. OWSC WEC HIL

The assessment for the estimator designed within this
paper is performed by means of a HiL system, which is
located within the facilities of the Centre for Ocean Energy
Research, Maynooth University, Ireland. The HiL system
emulates a 1/30th scale of OWSC WEC (for a more com-
prehensive description of the system, the reader is referred
to (Faedo et al., 2022d)). A schematic of both hardware
and software elements constituting the rig is presented in
Fig. 2. The HiL system is composed of two mechanically
coupled servo motors (Panasonic MSME504G1G), each
equipped with an independent driver (Panasonic MFD-
HTA464 ). The coupling is performed by means of a flap-
like structure, whose inertia can be changed by means
of additional weights attached to the flap, to emulate
different WEC inertial characteristics.

The first motor (M1) is used to emulate the hydrodynamic
forces impacting the WEC device, and can be modeled by
the user according to the formulation presented in Eq. (1).
As mentioned in Sect. 2, apart from the linear contribu-
tion, we implement the nonlinearity given by the nonlinear
viscous effect within the flap HiL dynamics (Eq. (2)). The
second motor (M2) acts as the WEC PTO, exerting the
control torque. As it is possible to notice from Fig. 2, an
input/output (I/O) interface is present (National Instru-
ments PCIe-6343 acquisition board), while any software-
emulated component in the data acquisition process is im-
plemented in real-time Matlab Simulink®. Apart from
the WEC system dynamics and control, two additional

blocks in the HiL schematic are noteworthy. The first one
is a Kalman filter, which is used to filter the angular
displacement of the flap structure measured by an encoder,
also providing an estimate of the flap angular velocity.
The second one is, instead, the ‘compensation function’,
whose aim is the minimisation of the error between the
actual motion of M1 and the desired WEC behaviour. This
block has an important role in the HiL scheme, since it
is responsible for compensating any intrinsic dynamics of
the rig, which do not represent any specific (desired) WEC
behaviour.

4. UNKNOWN-INPUT ESTIMATOR: WORKING
PRINCIPLE AND DESIGN

As mentioned in Sect. 1, the wave excitation torque fex,
i.e. the torque exerted by the incoming wave field on
the WEC system, is an external (uncontrollable) contri-
bution that is virtually always unmeasurable. Moreover,
the knowledge of present (and future) values of fex is of
paramount importance for the proper solution of the WEC
optimal control problem (for the contributions that this
term has on both absorbed energy and constraint handling
capabilities (Pasta et al., 2022)). This motivates the need
for an unknown-input estimator.

Popular estimation approaches are typically based upon an
internal model of the wave process (e.g. a harmonic model
(Peña-Sanchez et al., 2020; Davis and Fabien, 2020)) and,
for this reason, their design parameters normally require
re-tuning according to the different sea states that can
potentially be faced by the device. However, an alterna-
tive approach, which is inspired by disturbance observer-
based control and that does not require implicit/explicit

Fig. 3. Estimator loop representation.



Fig. 4. Tests frequency responses and identified G0.

representations of fex, can be adopted (Faedo et al.,
2022b). Following this approach, with the right setting,
an unknown-input strategy, able to accommodate well-
known hydrodynamic nonlinear effect, can be developed,
as discussed in the following.

A schematic representation of the loop characterising the
estimation approach can be observed in Fig. 3. In this
scheme, the WEC block corresponds to the real WEC
system (that in the following section will be substituted
by the HiL), żm is the measured velocity, u = fex − fPTO

is the total external (controllable and uncontrollable)
torque, gWEC (as described in Sect. 2) is the WEC model
describing the relation u 7→ ż, while K is the ‘control’
block used by the unknown-input estimator. Through K,
the estimator tracks żm ideally achieving:

lim
t→∞

∥ż − żm∥ = 0. (5)

It must be noticed that, with this structure, gWEC can
be nonlinear if any fnl is modeled. This enables the
possibility to take into account the system nonlinearities in
the process, to enhance the estimation. Within this paper,
the tracking controller K is designed by means of the
Youla-Kŭcera parametrisation, on the basis of the linear
model G0(s) of the WEC system described in Eq. (3), i.e.:

K(s) =
Q(s)

1−Q(s)G0(s)
, (6)

with Q(s) designed following the principle of plant-
inversion, to achieve reference tracking, through the shap-
ing filter FQ(s):

Q(s) = FQ(s)G
−1
0 (s), (7)

FQ(s) =
ωc/qfs

s2 + ωc/qfs+ ω2
c

, (8)

where, in Eq. (8), ωc is the band-pass filter cut-off
frequency, and qf is the shaping factor.

In this paper, we perform a system identification process
to obtain the total HiL system transfer function G0, to in-
clude in the linear representation, used in the correspond-
ing estimator design, any potential dynamics not perfectly
compensated by the compensation function implemented
inside the HiL platform. To do that, a set of multisine
signals (with box spectrum in the range of frequencies of

Table 2. List of tested sea states.

Wave ID Hs (m) Tp (s) Hscal.
s (m) T scal.

p (s)

S1 2 8 0.067 1.461
S2 3 10 0.100 1.826
S3 2.5 6 0.083 1.095
S4 2.5 9 0.083 1.643

interest, random phases, and different amplitude values
(Schoukens and Ljung, 2019)) has been applied to the
PTO axis (acting as the total external contribution u),
via motor M2. On the basis of the average frequency
response of the system to the different multisine signals,
a minimal parametric model is identified, consistent with
the physical WEC properties discussed in Sect. 2. It is
important to note that the presence of the shaping filter
in the design enables the possibility of rejecting noise
contributions at frequencies which are higher than those of
interest. Moreover, since no assumption has been made in
the design stage about the fex contribution to be tracked,
the same estimator design should be suitable for different
wave conditions, as long as the closed-loop bandwidth
is sufficiently large, in contrast to other state-of-the-art
estimation techniques.

5. EXPERIMENTAL RESULTS

Following the design and synthesis of the estimator in
terms of the loop in Fig. 3, the proposed technique is
deployed in the HiL rig. To assess the performance of the
estimator online, four sea states are considered, each one
characterised in terms of two different realisations. Table
2 presents a list of all the considered wave conditions.

To assess the performance of the estimator, the estimated

excitation torque f̂ex is compared with the real excitation
force fex, which, in the HiL, is provided by M1. The com-
parison is performed in terms of the normalized root mean
square error (NRMSE), and delay between the target and
estimated signal (∆t). The NRMSE is computed as:

NRMSE =

√√√√∑L
k=1(fex(k)− f̂ex(k))2∑L

k=1 fex(k)
2

, (9)

where fex(k) and f̂ex(k) are the values of fex and f̂ex at
the k -th time instant, and L is the number of signal values.
The delay between the estimated and target excitation
torques is computed by finding the lag which maximises

the correlation between fex(k) and f̂ex(k), i.e.

Corr(klag) =

L−1∑
k=1

fex(k)f̂ex(k + klag), (10)

k⋆lag = argmax
klag

(Corr(klag)), (11)

∆t = Tsk
⋆
lag, (12)

where klag ∈ Z is a possible delay between the two
considered signals, Corr(klag) is the correlation function,
k⋆lag is the lag that maximises the correlation, and Ts is
the sampling time.

The results of the performance assessment in the four
sea conditions are shown in Table 3, where the subscript
of the Wave ID identifies the realisation. Note that the
average NRMSE among the tests is around 9.8%, while
the average delay is about 0.0085s. Moreover, the worst



Fig. 5. Estimator tested with Wave ID S3: torque valida-
tion.

performances correspond to sea state S3, which is the
one with highest significant wave height. This result can
be explained in terms of the controller used to track
the velocity inside the estimation loop. This controller
is based on the linear version of the system model G0,
which becomes less representative of the WEC process
as the wave height increases (i.e. as the system departs
from its equilibrium position). Moreover, for the sake of
completeness, it must be highlighted that the estimation
strategy is deployed on the hardware and run in real-time
successfully at a sampling frequency of 1 kHz.

Finally, a comparison in the time domain of target and
estimated signals is reported in Fig. 5 for S31. Note that
the estimation strategy is able to estimate the target wave
excitation torque with negligible error most of the time,
showing good potential for control-oriented applications,
in which precise information on the applied force is of
paramount importance (especially in terms of instanta-
neous phase-locking - see e.g. (Faedo et al., 2021)). More-
over, since the entire estimation strategy is based on the
concept of tracking the real measured velocity, a compar-
ison between żm (in blue) and ż (in green) is presented in
Fig. 6. The velocity is properly tracked, corroborating the
results concerning the estimated torque.

6. CONCLUSIONS

In this paper, we propose a strategy to design an unknown-
input estimator able to include the knowledge of nonlin-
earities that usually affect wave energy converters. The
estimator is based on the concept of disturbance observer-

Table 3. Estimation results: estimation
NRMSE and delay.

Wave ID NRMSE (%) ∆t (s)

S11 9.66 0.008
S12 9.76 0.007
S21 10.66 0.010
S22 11.17 0.011
S31 8.92 0.007
S32 8.60 0.007
S41 10.43 0.009
S42 9.90 0.009

Fig. 6. Estimator tested with Wave ID S3: velocity track-
ing.

based control, and, in the process of estimating the exci-
tation torque, it tracks the measured WEC velocity. The
performance of the estimation strategy are tested in real-
time on a facility that emulates the behaviour of a OWSC
device, after identification of a representative linear model
of the system through prior tests. Four sea conditions are
tested, each one characterised in terms of two different
wave realisations. The experimental results show an av-
erage NRMSE of about 9.8%, and an average estimation
delay of 0.0085s. As demonstrated by the tests, the simplic-
ity of the proposed approach allows straightforward real-
time hardware implementation, with satisfactory results
both in terms of error, and delay between estimated and
target excitation torque signal. Moreover, in contrast to
state-of-the-art approaches, a single tuning for all the
different wave conditions is employed, since no assumption
is made on the model that describes the contribution to
be estimated. Future work will evaluate the incorporation
of more sophisticated control-oriented models within the
design and synthesis of the adopted estimator, including
nonlinear static and dynamic Froude-Krylov effects (which
are considered to be linear, i.e. separable, within this pa-
per), by exploiting the (parametric) data-based modelling
approach presented in (Faedo et al., 2022a).
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