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Abstract: Optimal control strategies are a key development step towards commercialization of
wave energy converters (WECs). Most of these rely on optimization routines to find a suitable
control action to maximize WEC power production. Nevertheless, most of these solutions make
use of device dynamical models, with the free-surface elevation as the external (uncontrollable)
input, effectively representing the incoming wave field. Consequently, predictive strategies, such
as model predictive control, strongly depend on the availability of future wave information,
and hence suitable forecasters are commonly used to ‘restore’ the causality of the optimization
problem. Motivated by the intrinsic requirement of suitable forecasting strategies within optimal
WEC control, this study provides a validation and comparison of different algorithms, including
adaptive and non-adaptive techniques, based on experimental data. The paper focuses on the
adaptability of each algorithm, which must be capable to fit properly each wave surface elevation
signal, thus not affecting the optimality condition by providing poor prediction results.

Keywords: Forecast, wave spectrum, AR model, recursive least squares, wave energy.

1. INTRODUCTION

The recent necessity of finding CO2 emission-free power
production systems has significantly pushed research to-
wards efficient renewable energy sources. Among them,
solar and wind have reached a technological maturity, and
are now facing the commercial stage. For what concerns
wave energy, which is widely considered to be promising
due to the vast potential of the wave source (Mattiazzo
(2019)), current efforts are mostly focused on lowering the
energy cost, and converging to a ‘restricted’ set of technol-
ogy concepts (Guo and Ringwood (2021)). In this regard,
optimal control algorithms have a paramount importance
towards effective commercialization of wave energy con-
verters (WECs) (Ringwood et al. (2014)).

Among state-of-the-art algorithms, model-based tech-
niques (Faedo and Ringwood (2018), Li and Belmont
(2014), Scruggs et al. (2013)) have proven their efficiency
in optimizing power production, while respecting typical
constraints of WEC systems. Nevertheless, such controllers
often rely on knowledge of an explicit model of the device
to control the system in a predictive fashion (Faedo et al.
(2017)). Consequently, the optimal solution of this prob-
lem requires knowledge of the future wave elevation signal
exciting the system (which is not known a-priori, see e.g.
Scruggs et al. (2013)). Motivated by these considerations,
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a direct approach to the problem consists in providing such
optimization routines with accurate, short-term prediction
of the time series associated with wave elevation, in such
a way that the control problem can be solved, without
significantly departing from the (non-causal) theoretically
optimal solution.

In the light of the role that forecasting techniques play in
optimal control of WEC systems, this paper presents a val-
idation using experimental data, and a subsequent critical
comparison, of five different strategies (Peña-Sanchez et al.
(2020)) to highlight their strengths and weaknesses. In
this view, static forecasters are expected to perform more
effectively, compared to the adaptive algorithms, when
the wave spectrum is similar to that used for training. In
contrast, adaptive strategies are expected to have a more
constant performance over the validation set.

The reminder of this paper is structured as follows. In Sec-
tion 2, the different algorithms are presented. Section 3 de-
scribes the experimental data and its main characteristics.
In Section 4, the main results of this work are presented
and subsequently discussed, and finally, in Section 5, the
main conclusions are elucidated.

2. FORECASTING MODELS

In this section, a complete description of each wave surface
elevation forecasting strategy is provided, to clearly expose
the main characteristics associated with each technique,
and the advantages and limitations of the different static
and adaptive approaches considered.



From now on, the term static for any predictor implies
that the model parameters are computed offline usen a
given data set, different from the one used for assessment
and validation. In contrast, an adaptive approach trains
dynamically its parameters on the simulation (validation)
data set. The 5 strategies considered are a spectral optimal
predictor, a one-step ahead auto regressive model (AR),
and a direct multi-step ahead AR model, which belongs to
the first subclass (static), while an adaptive one-step ahead
AR model, and the recursive least squares AR model, are
included within the adaptive family.

2.1 Static - spectral optimal predictor (OP)

Modeling the wave surface elevation in irregular sea states
as a zero-mean, stationary stochastic process (within a
time window of approximately 30 min) with slow varying
power spectral density distribution function (PSD), is a
well-known methodology among the wave research com-
munity (Peña-Sanchez et al. (2020)).

Such PSD can assume different shapes (Ryabkova et al.
(2019)) according to the specific location of the wave
resource, wind speed, wave length, wave height, and other
parameters. As a consequence, each sea state can be
modeled directly according to its spectral density function
(SDF). For a given elevation signal, the auto covariance
function can be defined as:

Rηη(τ) = lim
T→∞

1

2T

∫ T

−T

η(t)η(t+ τ)dt, (1)

with η(t) ∈ R the wave surface elevation at a specific
spatial location, and t ∈ R+ the time. Such distribution
is unequivocally defined by the SDF function, since they
constitute a Fourier transform pair (Kullback (1965)).

Following (Peña-Sanchez et al. (2020)), the theoretical
optimal prediction strategy (OP) can be derived from the
SDF, since the forecast for each sampling instant is defined
directly by the frequency domain characterization of the
time trace itself.

Defining

ηk−h|k = [η(k) η(k − 1) . . . η(k − h+ 1)]
T
, (2)

where k = t/Ts ∈ N is a given signal sample, Ts ∈ R is the
sampling time, h ∈ N is the model order, and ηk−h|k ∈ Rh

is the vector of past wave measured values. Defining p ∈ N
as the prediction horizon, the p multi-step ahead forecast,
namely η̂k+1|k+p, can be written as

η̂k+1|k+p = θOPηk−h|k, (3)

with θOP ∈ Rp×h a matrix of parameters obtained starting
from the SDF, where the superscript {̂·} denotes the signal
forecast. The reader can refer to Peña-Sanchez et al. (2020)
for a discussion on the mathematical derivation of (3).

Remark 1. The structure in (3) defines a multi-step ahead
prediction strategy, meaning that the error generated
in the first wave forecast does not propagate in the
subsequent prediction element. In contrast, single-step
ahead minimization strategies do propagate such error. In
particular, if a stable model is not obtained accordingly
within the training stage, the error between prediction and
actual signal can diverge.

2.2 Static - one-step ahead AR model (OSA)

An AR model defines the future value of the considered
signal, with respect to the current discrete time instant k,
as a linear combination of its previous measurements, i.e.

η̂(k + 1) =

h−1∑
i=0

θAR(i)η(k − i) + ε(i), (4)

where θAR ∈ Rh are the prediction coefficients, and ε(k) ∈
R is a Gaussian distributed, zero mean, white noise.

The strategy consists in finding a suitable set of prediction
parameters which, as described in (Peña-Sanchez et al.
(2020)), can be obtained by minimizing the single-step
ahead standard deviation of the prediction with respect to
the training set (one-step ahead (OSA) strategy), which is
essentially a least squares (LS) problem. In particular, the
objective function can be written as

JOSA =

l∑
i=h+1

(η(i)− η̂(i))2. (5)

Let the matrix Φk ∈ Rl×h be

Φk =
[
ηk−l−1|k−1 ηk−l−2|k−2 . . . ηk−l−h|k−h

]
. (6)

Then, the minimization in Eq. (5) can be expressed as

θOSA = ηk−l|kΦ
†
k. (7)

where the symbol {·}† denotes the Moore-Penrose (pseudo)
inverse operation.

Remark 2. If the forecaster is not able to ensure a bounded
output signal, existence of a solution for the corresponding
WEC optimal control problem may not be guaranteed.
Actually, note that the optimization in Eq. (5) does not in-
clude, as part of its formulation, a stability condition (i.e.
constraint) for the corresponding AR dynamical system,
hence compromising the forecaster-controller response.

To prevent the condition discussed in Remark 2, it is
customary to ‘inject’ an additional white noise signal in
the AR model training dataset, in accordance with the
corresponding signal energy, to ensure model stability.

Finally, note that, the corresponding forecast for the OSA
strategy, up until the defined prediction horizon p, is
obtained by repeating Eq. (7) recursively, taking as input
the previous prediction value.

2.3 Static - direct multi-step ahead AR model (DMS)

The AR model can be alternatively obtained by mini-
mizing each prediction error within the forecast horizon
with a different set of parameters (direct multi-step (DMS)
approach). In particular, the cost function is:

JDMS =

l−p∑
i=h

p∑
j=1

(η(i+ j)− η̂(i+ j|i))2, (8)

where the notation η̂(k+1|k) stands for the signal forecast
obtained at time k. The minimization of (8) gives rise to
a corresponding set of DMS parameters θDMS ∈ Rp×h.

As highlighted in Section 2.1, the wave free-surface el-
evation forecast can be equivalently written as in Eq.
(3), using, in this case, θDMS as parameter matrix. As



in the optimal predictor, this strategy has the advantage
of avoiding a direct error propagation in each subsequent
forecast step. Consequently, its set of values θDMS does not
necessarily have to be associated to a stable system.

2.4 Adaptive - one-step ahead AR model (AOSA)

The adaptive version of the one step ahead AR model
(AOSA) differs from that described in Section 2.2 in data
set used to retrieve the model parameters. In particular, at
each sampling time, a new wave sample is stored, and a LS
problem is solved over past wave surface elevation values
to obtain the corresponding (updated) model parameters.

The concept behind this approach is based on the assump-
tion that recent (earlier) waves have a similar behavior
to those following, so that a continue adjustment of the
parameters should be able to track the underlying pro-
cess of the current sea state, and hence adapt to varying
conditions.

Note that the particular solution of this algorithm can be
retrieved analogously to Eq. (7), with the adaptive feature
obtained by updating ηk−l|k and Φk at each time step, i.e.

Φk → Φk+1 =


ηk−l|k

ηk−l−1|k−1

...
ηk−l−h+1|k−h+1


T

,

ηk−l|k → ηk−l+1|k+1.

(9)

A critical aspect for this adaptive strategy is the lack of
a methodology to guarantee model stability. However, as
previously mentioned within this section, a suitable white
noise signal can be applied to the model training set to help
enforcing such property. Additionally, note that including
noise can help towards a good numerical conditioning of
the LS problem.

Another issue with the implementation of this strategy
resides in the necessity for efficient real-time performance:
since, as previously mentioned, forecast strategies in wave
energy are vastly used for optimal control purposes, it is
mandatory that their execution does not compromise real-
time limits (often by keeping a small data set length l
and model order h). However, it is well-known that, to
obtain an accurate model, the dataset must be sufficiently
representative (Golub (1965)), and the forecaster should
have a sufficiently large order to capture any relevant
dynamics (both improved by enlarging l and h). These
principles are clearly in contrast, and a tuning phase
is necessary. A common procedure consists in fixing the
model order to reasonably reduce the fitting error with a
pre-defined sufficiently large l, and then adjust the dataset
length to preserve real-time performances.

2.5 Adaptive - recursive least squares AR model (RLS)

As an alternative adaptive strategy, a recursive least
squares filter (RLS) (Diniz (2020)) estimates the AR
model parameters by minimizing the one-step ahead pre-
diction error, using these to forecast the corresponding
wave elevation.

To estimate the AR model parameters, an approach simi-
lar to (Schlögl et al. (1997)) is adopted:

Algorithm 1 Recursive Least Squares

Initialization:
Θh−1 = 0;
while k ≥ h do

e(k) = η(k)− θ̂k−1
RLSηk−h−1|k−1;

r(k) = λ−1Θk−1ηk−h−1|k−1;

K(k) = r(k)/(ηTk−h−1|k−1r(k) + 1);

θ̂kRLS = θ̂k−1
RLS +K(k)e(k);

Θk = λ−1Θk−1 −K(k)r(k)T;
k = k + 1;

end while
Compute the prediction η̂k+1|k+p,

where Θk ∈ Rh×h

Θk =
[
θ̂kRLS θ̂k−1

RLS . . . θ̂k−h+1
RLS

]
, (10)

is the matrix of previous estimated model parameters, and
λ ∈ R+ is the so-called forgetting factor.

The main tuning parameter for this algorithm is the for-
getting factor λ, constituting an essential step to guarantee
convergence of the parameters in a reasonable time.

One of the main advantages of the RLS algorithm consists
in the parameter speed computation: as a matter of fact,
matrix inversion, which is a burdening operation for large
datasets (Bellman (1965)), is not required by this algo-
rithm, reducing the computational effort within the target
machine. On the other hand, recursion inherently requires
a convergence time to provide an accurate estimate of
the corresponding parameters, since the initial guess can
strongly influence the forecast performance. As such, an
analysis based on the specific application case must be
carried out to trade off convergence time and accuracy.

3. WAVE DATA SET

The different forecasting strategies have been evaluated
on a retrieved data set from the sea-states considered
within the first edition of the wave energy converter control
competition (WECCCOMP) (Ringwood et al. (2019)).

Three different irregular sea states, generated in the wave
tank facilities available at Aalborg University, Denmark,
characterised in terms of three different JONSWAP spec-
tra (Ryabkova et al. (2019)), are considered, with two
realisations per sea state (indicated with a corresponding
subscript). All the sea states share a peak shape factor of
γ = 3.3. Table 1 reports the different wave scenarios in
terms of significant wave height Hs and peak period Tp.
Note that the raw data consists in a measure of the wave

Sea State Hs [m] Tp [s]

SS11 0.0625 1.412
SS12 0.0625 1.412
SS21 0.1042 1.936
SS22 0.1042 1.936
SS31 0.0208 0.988
SS32 0.0208 0.988

Table 1. Experimental data generation.

surface elevation, via wave probes placed within the tank.



4. RESULTS

To provide a fair comparison between static and adaptive
strategies, two main scenarios can be distinguished. The
first scenario consists in performing the training of the
static models on the same simulation (validation) data set,
while the second one focuses on the performance when the
validation set is not coincident with the training set. While
it is appreciated that the former scenario (test) is not
realistic, i.e. the same waves used for model identification
never repeat again in an exact form during the prediction
process, it gives an appraisal of the behavior associated
with each predictor in ‘idealised’ conditions.

The main parameter chosen for performance assessment is
the goodness of fit (GoF) of the prediction with respect to
the original signal, i.e. the normalized root mean squared
error (NRMSE) between the prediction at each time step,
and the actual wave signal. Furthermore, an additional
evaluation factor is included, in terms of the computational
time employed by each strategy. The dataset is sampled
at fs = 100 Hz, with a time length of 300 [s] for each wave
elevation signal.

The orders associated with each model, and prediction
horizon, Thor = p/fs, are fixed, together with the noise
characterization employed for model training. All relevant
tuning parameters are reported in Table 2, where with
SNR it is intended the signal-to-noise ratio. Additionally,

OP DMS OSA AOSA RLS

Model order (h) 100 100 100 100 100
Thor [s] 5 5 5 5 5

Noise SNR [dB] 70 70 70 70 70
Forgetting factor (λ−1) / / / / 10−3

Online dataset
Training length [s]

/ / / 20 20

Table 2. Forecasting tuning parameters.

the prediction data considered to compute the evaluation
parameters is collected starting from t = 20 [s], to ‘fill’
the dataset used by the adaptive strategies before effective
evaluation.

Remark 3. This study does not focus on obtaining a
‘best set’ of parameters for each strategy, but aims at
comparing the different forecasting alternatives over a set
of equivalent conditions. Nonetheless, note that the model
order h and the training noise have been chosen sufficiently
large to guarantee convergence of each of the strategies
considered, and to represent, with sufficient accuracy, the
wave elevation surface process itself. The reminder of the
tuning parameters have been chosen following the same
considerations.

The first scenario, referred to as Test 1, is performed by
training the static strategies on SS11, and using the same
wave set for testing the effectiveness of each algorithm.
The optimal predictor (OP) has been trained using the ex-
act spectrum retrieved from the experimental free surface
elevation data. Test 1, as illustrated in Fig. 1, shows the
superior accuracy of the (OP), which maintains the highest
GoF value for all considered prediction steps. Nonetheless,

Fig. 1. Test 1 - GoF model comparison. Training set: SS11,
Validation set: SS11.
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it can be seen that the DMS strategy performs remarkably
similar, almost matching the GoF obtained with the OP
algorithm. In contrast, adaptive algorithms show a faster
degradation of the overall performance (their training set
must be reduced in dimension to fulfill real-time require-
ments and this implies a lower quality in the phenomenon
characterization).

As a (more realistic) second evaluation test, referred to as
Test 2, the static coefficients are trained on the SS11 data
set, while the simulation is taken over the SS12 time series.
Even within Test 2 (Fig. 2), the static strategies prove

Fig. 2. Test 2 - GoF model comparison. Training set: SS11,
Validation set: SS12.

1

1

0.8

0.6

0.4

0.2

0

-0.2
10 2 3 4 5

their effectiveness in predicting sea states which present
a similar SDF compared to the training data set, while
adaptive strategies degrade faster in performance as the
prediction horizon increases.



The third evaluation test considered (Fig. 3), termed Test
3, aims at reproducing the most common situation in real
sea operation: the static forecasting models are computed
on a given data set, while the validation data is taken from
a completely different sea state. As a matter of fact, note
that the sea spectrum condition changes realistically every
30 minutes (Ochi, 1998) and the AR static model cannot
be re-trained using future (i.e. unknown) conditions, so
their robustness to sea-state changes can be a fundamental
issue, and must be analyzed. The validation data for Test
3 refers to SS21, having a different spectral representation
with respect to that characterizing the training dataset
SS11 (see Table 1).

Fig. 3. Test 3 - GoF model comparison. Training set: SS11,
Validation set: SS21.
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It is evident how a different wave sea state leads to perfor-
mance degradation for the static strategies (due to the un-
derlying spectral difference between sea conditions), while
adaptive forecasters keep an almost constant performance
across the different sea states, and manage to ensure a
robust implementation independently from the operating
condition.

As a final numerical appraisal of the performance for
the considered forecasting strategies, Table 3 performance
for each case according to the following. In particular,
the parameter set computation for the static forecasters
is fixed (computed over SS21), while the validation set
changes accordingly. For this comparison, the GoF charac-
terizing each strategy is compared with the best predictor
available, i.e. the OP forecaster trained on the simulation
signal itself (from now on termed GoFopt). The evaluation
is performed with a prediction horizon of 2 [s], using the
following indicator:

GoFSSij = GoFopt
SSij

−GoFSSij , (11)

where the notation GoFopt
SSij

refers to the performance of

the corresponding OP forecaster trained on SSij , while
GoFSSij indicates the actual predictor performance eval-
uated on SSij , and trained, for the case of static fore-
casters, using SS21. Note that, considering all the eval-

uation scenarios, it is evident that the performance of
the static strategies degrade when changing sea spectrum,
while adaptive algorithms are able to maintain a relatively
constant fitting performance.

Sea State DMS OSA OP RLS AOSA

SS11 0.215 0.268 0.209 0.131 0.103
SS12 0.215 0.266 0.208 0.065 0.066
SS21 (training) 10−5 0.021 0 0.099 0.079
SS22 10−5 0.021 0 0.116 0.081
SS31 0.132 0.095 0.135 0.112 0.053
SS32 0.129 0.095 0.133 0.030 0.059

Table 3. GoF as in (11).

Remark 4. Even if adaptive models do not rely on prede-
fined data collections, from the results, it is evident how
the models fit more accurately certain wave datasets than
others. Such behavior can be reconducted to the necessity
of finding a more suitable model order capable to better
capture the process dynamics. Alternatively, the real-time
dataset training length can be additionally tuned, allowing
the parameter computation to adequately describe the
current sea state spectrum. Note, although, that real-time
requirements must be considered while performing such
re-tuning.

The second evaluation parameter considered, as discussed
earlier in this section, is the worst-case execution time 2

(WCET) over the simulation set, reported in Table 4.

DMS OSA OP RLS AOSA

WCET 42µs 151µs 45µs 286 µs 8.86·103µs

Table 4. WCET for each algorithm step.

In particular, Table 4 clarifies one main advantage per-
taining the set of static strategies: since the parameters
are computed offline, the prediction is effectively obtained
by simple matrix multiplications, having a mild impact on
the overall execution time.

In contrast, despite the fact that both adaptive algorithms
require a greater computation effort, it can be noticed that
the recursive implementation of the RLS forecaster is still
within real-time requirements (equal to Ts = 1

fs
= 10

[ms] since the prediction is computed each sample time).
Differently, the AOSA predictor, which requires matrix
inversion at each step, is closer to the real-time limit.

4.1 A note on the RLS algorithm

The RLS filter requires a given convergence time (Diniz
(2020)), to achieve a one-step prediction error within
acceptable limits. However, note that such error decreases
over time until achieving a convergence value similar to
the forecast error characterizing the optimal predictor.

Fig. 4 shows the deviation characterizing the RLS pre-
diction as the time moves forward, compared to the OP
2 Simulations are carried out on a laptop PC with a 12th Gen
Intel(R) Core(TM) i7-12700H, 2700 Mhz CPU.



Fig. 4. One-step prediction error evolution over time: RLS
and OP algorithm comparison.
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one-step prediction error. Note that the RLS algorithm
converges at around 100 [s], while the OP reaches low error
values from the very beginning. As a direct consequence,
the large one-step ahead prediction error may lead to
poor forecast results, as remarked in the two sub-figures
included within Fig. 4. Nonetheless, this fact does not
necessarily influence operating performance, since, within
a realistic deployment time in operative conditions, is
sufficient to wait for the algorithm to converge before its
inclusion in any WEC control loop.

5. CONCLUSIONS

This study presents a validation and comparison of dif-
ferent short-term wave elevation signal forecasters over a
set of collected data from the sea-states considered within
the first edition of the wave energy control competition
(WECCCOMP). For such purposes, five different strate-
gies, constituted by static and adaptive algorithms, are
considered and analyzed in detail.

To evaluate each method, two indexes are chosen: the GoF,
which provides a measure of the approximation quality
associated with each forecaster, and the computational
time characterizing each technique. It is found that the
static strategies computed with exact knowledge of the
operating sea-state, especially the optimal predictor (OP),
showed their effectiveness in matching properly the future
wave behavior. Nevertheless, if the validation (operational)
scenario differs significantly from the training signal main
characteristics (especially in terms of spectral represen-
tation), the adaptive approaches are able to consistently
outperform the static models.

Concerning the computational burden, static strategies
demonstrate mild requirements. Among adaptive predic-
tors, RLS shows a more efficient implementation than
the AOSA, despite the necessity of a minimum time for
prediction error convergence.
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