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INTRODUCTION 

 

In this paper we aim to describe part of the research that was done in the scope of the SURPRISE project (SUper-Resolved 

comPRessive InStrument) [1] [2]. SURPRISE is a EU-funded project for EO applications in the visible and medium 

infrared with the goal of constructing a class of innovative satellite imaging sensors with enhanced capability in terms of 

onboard data processing, spatial resolution, and encryption functionalities. 

 

The SURPRISE sensors acquire images using Compressive sensing (CS): a technique aiming at acquiring and 

reconstructing a given signal, using fewer samples than required by the Nyquist sampling theorem [3] [4]. Conventional 

signal processing methods for the purpose of image reconstruction present limitations in terms of the quality of the 

reconstruction. 

 

In this paper we analyse the advantages of using deep learning for the purpose of reconstructing images captured through 

CS [5] [6] [7]. In particular, we employ a convolutional neural network named ISTA-Net [4], to perform the reconstruction 

of Earth observation scenes. In this real-world scenario, we address three practical challenges that arise when a 

compressive sensing sensor is used on board: i) how to reduce the border effects; ii) how to exploit the spectral correlation; 

iii) how to correctly describe the acquisition noise. 

 

 

THEORETICAL BACKGROUND 

 

CS acquires an image of a scene by means of a set of measurements obtained as random projections of the image pixels. 

This can be modeled as a linear operation where the image pixels are combined by means of a set of weights stored in the 

sensing matrix [3], as in:  

 

 𝑦 = Φ𝑥 + 𝜂 (1) 

 

In this formula 𝑥 ∈ 𝑅𝑛𝑥1 is a column vector containing the pixels of the image, 𝑦 ∈ 𝑅𝑚𝑥1 is a column vector representing 

the measurements obtained by the acquisition process, 𝜂 ∈ 𝑅𝑚𝑥1 is a noise column vector that models the non-idealities 

of the acquisition process and matrix Φ ∈ 𝑅𝑚𝑥𝑛  is the so called sensing matrix.  

 

The sensing matrix contains the weights employed in the projections and it is a known parameter of the framework. In a 

satellite imaging system employing the CS concept, the onboard processing unit will transmit the vector of measurements 

𝑦 to the ground segment. The ground station must reconstruct the image 𝑥 from the knowledge of 𝑦 and Φ employing a 

suitable reconstruction algorithm: 

 

 �̂� = 𝑅(𝑦, Φ, θ) (2) 

 

where 𝑅(⋅) is typically a nonlinear function that can depend on a vector of parameters 𝜃. 

 

The sensing matrix is a fundamental element of the reconstruction. The CS theory states that the optimal sensing matrix 

should employ Gaussian distributed weights [3] [8]. Indeed, weights following a Gaussian distribution maximize the 

reconstruction accuracy, i.e. the fidelity between �̂� and 𝑥. However, Gaussian weights are not physically realizable, and 
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in practice, the quality of the reconstruction depends on how close to Gaussian the weights are, and the specific 

reconstruction algorithm employed.  

 

Each algorithm can be seen as an optimizer based on a specific model of the image data. Since realistic models are difficult 

to write and optimize in closed form, the best reconstruction results are typically obtained using a “learned” model, i.e. a 

complex non-linear function having a very large number of parameters θ that “encode” the model, whose values are 

determined from optimization on a set of training images, leading to a specific reconstruction algorithm 𝑅(𝑦, Φ, θ). 

Learning such model is best done using deep neural networks (DNN), that is why in this paper we implement a deep 

learning-based reconstruction.  

 

Notice that, typically, a smaller number of measurements (𝑚 < 𝑛) are acquired with respect to the number of pixels, thus 

achieving compression of the information. We define the compression ratio (CR) as the ratio between the number of 

measurements and the number of pixels: 

 𝐶𝑅 =
𝑚

𝑛
. (3) 

 

A lower CR is desirable, as this will reduce the data size for the transmission to the ground segment; this yields a 

“compression” functionality without the need of a specific compression circuitry. On the other hand, this also implies that 

vector 𝑦 may not necessarily contain all the information to reconstruct the image 𝑥 exactly and, even in the case of no 

noise, one cannot employ 𝑅(𝑦, Φ, θ) = Φ−1𝑦 because the matrix Φ is not invertible. In practice CS always attains an 

approximate reconstruction, therefore the CR has to be chosen as a trade-off between conflicting requirements, i.e. the 

amount of data size reduction and the quality of the reconstructed image. The difficulty to reconstruct an image from far 

fewer measurements highlights the need for complex reconstruction algorithms and for this reason a deep learning 

approach is suitable to improves the reconstruction performance.  

 

 

ISTA-NET ALGORITHM 

 

The ISTA-Net framework proposed in [7] consists of mapping the classic Iterative Shrinkage/Thresholding Algorithm 

(ISTA) [9] into a DNN. The architecture is made up of a fixed number of steps that correspond to iterations in the 

traditional algorithm and the network is depicted in Fig. 1. 

 

In the traditional ISTA algorithm, the update step is made up by two equations. These equations correspond in the ISTA-

Net architecture to two modules. The first called 𝑟(𝑘) corresponds to the evaluation of the reconstructed signal at step 𝑘: 

 

 𝑟(𝑘) = 𝑥(𝑘−1) − 𝜌(𝑘)Φ(T)(Φ𝑥(𝑘−1) − 𝑦) (4) 

 

The only main difference with traditional ISTA is that now 𝜌 can vary across iterations instead of being fixed. The second 

module is the 𝑥(𝑘) module. Also in this case, the module is a particular case of proximal mapping associated to the non-

linear transform 𝐹(∙), based on the assumptions that each element 𝑥(𝑘) − 𝑟(𝑘) has an independent distribution with 

common zero mean and variance 𝜎2. 

 

In this algorithm, the step size 𝜌(𝑘), the parameters of the forward and backward transform ℱ(𝑘)(∙) and ℱ̃(𝑘)(∙), as well 

as the shrinkage threshold θ(𝑘) are learned as neural network parameters. Like traditional ISTA, ISTA-Net  initialization 

𝑥(0), given any input CS measurement 𝑦, is computed as: 𝑥(0)  =  𝑄init_𝑦, with 𝑄init_y equal to linear mapping matrix. 

The loss function is defined as: 

 

 ℒtotal(Θ) = ℒdiscrepancy + ℒconstraint (5) 

 

When dealing with natural images, it is possible to optimize the reconstruction process and the result is ISTA-Net+ [7]. 

The substantial difference with ISTA-Net is in module 𝑥(𝑘) where we have: 

 

 𝑥(𝑘) = 𝑟(𝑘) + 𝐺(𝐻(𝑠𝑜𝑓𝑡(𝐻(𝐷(𝑟(𝑘))), 𝜃))) (6) 
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Fig. 1. ISTA-Net [7] 

 

Fig. 1 and Fig. 2 show the ISTA-Net block diagram and the ISTA-Net+ 𝑘-𝑡ℎ phase. In Fig. 2 it is possible to notice the 

changes with respect to the 𝑘-th phase of the baseline version of the algorithm, like the addition of the recursive term 𝑟(𝑘) 

and the additional filters 𝒟(𝑘) and 𝒢(𝑘) to retrieve some missing high frequencies. 

 

The results shown in [7] greatly improve over the results obtained by traditional iterative algorithms at all compression 

ratios, and they perform better also for what concerns the computational time. Furthermore in [7] is highlighted how 

ISTA-Net+ is very flexible as it is possible to let learnable parameters be shared or unshared among the different phases. 

 

In order to study the advanced reconstruction algorithms for the SURPRISE system, it is important to utilize a dataset of 

satellite images, that includes a large enough collection of training samples. The dataset that we are going to use in this 

paper is a subset of the data released by the IEEE Geoscience and Remote Sensing society for the 2020 Data Fusion 

Contest, namely DFC2020 [10]. The data are images acquired by the Sentinel 2 satellite, having 12 spectral channels and 

a ground sampling distance of up to 10m. Our DFC2020 subset is composed of 5178 images with 256x256 pixels. These 

are partitioned into 5128 images to be used for algorithm training purposes and 50 for testing. Fig. 3 reports one example 

from the dataset. 

 

 
Fig. 2. ISTA-Net+ [7]  

 

 
Fig. 3. DFC2020 dataset, image 47, band 2 [10] 
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CONVOLUTIONAL IMAGE RECONSTRUCTION 

 

The activity described in this section is concerned with improving the quality of the reconstructed image in the areas 

around the boundary between sensing blocks. Since each block is independently sensed, it is natural to formulate the 

reconstruction problem independently. This has the advantage of parallelizing the reconstruction process across the 

multiple blocks comprising the scene. However, it does not account for the existence of correlation among nearby pixels 

but belonging to different blocks. This results in a reconstruction exhibiting sharp discontinuities at the boundaries 

between blocks, particularly at compression ratios below 50%. 

 

In order to address this suboptimality, we leverage the fully-convolutional nature of the ISTA-Net neural network used 

for deep-learning-based reconstruction. We can recall that ISTA-Net is composed of stages, each performing a 2D 

convolution operation between a progressively more accurate estimate of the reconstructed image and sets of learned 

filters. Moreover, each stage computes a residual in the measurements domain by simulating the sensing process of each 

pixel. The convolution operation is well-defined for images of arbitrary dimension. Allowing the learned filters to slide 

over the entire image comprising the reconstructions of multiple blocks allows to exploit the inter-block dependencies as 

well as the intra-block ones. Two modifications to the standard ISTA-Net design and training process are required to fully 

take advantage of this property: 

 

1. An area corresponding to multiple blocks must be provided at training time, instead of the conventional single 

pixels. Since this approach increases the memory requirements, we found that just using an area of 2x2 blocks 

was sufficient to learn the inter-block correlation patterns and it not necessary to use an entire scene. 

2. Careful simulation of the sensing process which acts independently for each block is needed for the residual 

computation in the network stages. 

We tested the reconstruction process on the DFC2020 dataset with the 32x32 super-resolution configuration. Training 

used 51280 patches of size 64x64 from the images in the training set to simulate the area corresponding to 2x2 blocks. 

Table 1 reports the root mean squared error (RMSE) achieved by conventional independent reconstruction and with the 

fully convolutional reconstruction on the 50 images from the test set. The network processes all the blocks in the image 

at the same time during testing, in order to maximally avoid border effects. It can be noticed that the convolutional 

reconstruction provides slightly lower RMSE values. Fig. 4 and Fig. 5 show the reconstruction achieved by the 

independent and convolutional methods at 25% compression ratio. It can be noticed that the convolutional method is more 

effective at suppressing blocking artifacts between blocks. 

 

 

MULTIBAND IMAGE RECONSTRUCTION 

 

In this section, we explore the concept of simultaneous reconstruction of multiple spectral bands rather than independent 

reconstruction. The SURPRISE instrument acquires the content of the scene at multiple wavelengths. However, some 

correlation between the scene imaged in different spectral bands might exist and could be fruitfully exploited to improve 

the reconstruction performance. Existing CS reconstruction algorithms, including the state-of-the-art ones using deep 

learning such as ISTA-Net, have neglected this issue, focusing on single-band reconstruction. This activity has modified 

the ISTA-Net algorithm in order to exploit the inter-band correlation in the reconstruction process and benchmarked the 

reconstruction performance against independent reconstruction. 

 

In particular, ISTA-Net is based on the unrolling of an iterative algorithm into a fixed number of stages. The input to each 

stage is an estimate of the reconstructed image, which at the first stage is obtained via an optimized linear operator from 

the CS measurements. The joint reconstruction technique considers the spectral channels as feature channels which are 

merged into higher-level features by means of a weight matrix applied along the channel dimension by the convolutional 

layers of each stage. This allows to extract latent features that depend on all the input spectral bands and that are decoded 

by the last convolutional layer in an equal number of spectral channels. This multiband reconstruction model has a small 

number of extra trainable parameters with respect to the single-band model due to the weights mixing the channels to 

extract the latent features. However, this increase in parameters is very small when compared to the total number of 

parameters of the model and has negligible effects on computational complexity. 

 

For this activity we simulated the acquisition process using three bands in the visible spectrum. The sensing process is 

independent for each channel while independent and joint reconstruction are compared in the following benchmark for 

the 32x32 SR configuration with various compression ratios. Moreover, the fully-convolutional reconstruction procedure 

described in the previous section is used in the following experiments. Table 2 compares the RMSE of the reconstructed 

images in the DFC2020 test set for the initial reconstruction via linear operator, the single-band technique and the multi-

band technique. It can be noticed that, for this dataset, exploiting the inter-band correlation decreases the reconstruction 

error.  
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Table 1. Independent reconstruction vs. convolutional reconstruction (RMSE) 

 RMSE 

Independent 

reconstruction 

Convolutional 

reconstruction 

CR 

25% 74.69 72.87 

50% 47.78 47.04 

75% 29.36 28.73 

 

 

 

Fig. 4. Independent reconstruction. Sensing matrix 32x32, CR 25%. Notice the blocking artifacts. 

 

 

Fig. 5. Convolutional reconstruction. Sensing matrix 32x32, CR 25%. Notice that the blocking artifacts have been 

significantly suppressed. 
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Table 2. Single band reconstruction vs. multi band reconstruction (RMSE) 

 RMSE 

Single band 

reconstruction 

Multi-band 

reconstruction 

CR 

25% 72.87 65.74 

50% 47.04 42.43 

75% 28.73 26.64 

 

 

 

RECONSTRUCTION ACCURACY IN PRESENCE OF NOISE 

 

In this section we explore the impact of noise in the acquisition process on the quality of reconstruction. Given a sensing 

process affected by noise 𝑧 = Φ𝑥 + 𝜂  =  𝑦 +  𝜂, 𝜂 can be modelled according to the following distribution: 

 

 𝜂~𝒩(0, 𝑎𝑦 + 𝑏) (7) 

 

This model is the heteroskedastic normal approximation of a Poisson-Gaussian noise [11]. The signal dependent 

component 𝑎𝑦  models the noise derived from quantum phenomena during photon accumulation, while 𝑏 describes the 

other signal-independent noise sources, such as thermal noise. 

 

We decided to simulate a purely signal dependent noise  𝜂~𝒩(0, 𝑎𝑦) on the DFC2020 datasets and to re-train ISTA-Net 

on the noisy measurements. Three levels of noise were simulated: 𝑆𝑁𝑅𝑧 = 50, 75, 100 [dB]. We define 𝑆𝑁𝑅𝑧 as the 

signal-to-noise ratio on the sensed signal affected by noise  𝑧. It is obtained with the following equation: 

 

 𝑆𝑁𝑅𝑧 = 10 log10

∑ 𝑦2(𝑖)𝑖

∑ 𝜂2(𝑗)𝑗

 (8) 

 

𝑆𝑁𝑅𝑧 is the measure in dB of the ratio between the power of the original sensed signal 𝑦 and the simulated noise 𝜂. Table 

3 compares the RMSE for these three levels of 𝑆𝑁𝑅𝑧 and the noiseless case.  The system was tested for four compression 

ratios: 25, 50, 75 and 100%. Thanks to the re-training process, the Network is capable to adapt to the different levels of 

SNR. The impact of the noise on the reconstruction is minimal, and it is noticeable only at very high levels of SNR (e.g., 

50 dB). In Fig. 6 we show an example of the reconstructions obtained for noise at 50 dB using a compression rate of 25%.  

 

At this point we compared the results obtained using a purely signal-independent noise for the same level of 𝑆𝑁𝑅𝑧.  Again, 

the test was repeated for 𝑆𝑁𝑅𝑧 = 50, 75, 100 [dB]. In the following results we refer to the signal-dependent noise as 𝑎𝑦 

and we use 𝑏 to refer to the signal-independent noise. As it is shown in Table 4, the difference in the distribution of the 

noise seems to affect the quality of the reconstruction in a negligible way. 

 

Table 3. Comparison in reconstruction performance between Linear Reconstruction and ISTA-Net for various levels of 

compression and SNR for the signal-dependent noise 

Root Mean Squared Error (RMSE) 

 Compression Ratio 

25.00% 
Compression Ratio 

50.00% 

Compression Ratio 

75.00% 

Compression Ratio 

100.00% 

 𝑺𝑵𝑹𝒛 [dB] Linear 

Recon. 

ISTA-Net Linear 

Recon. 

ISTA-Net Linear 

Recon. 

ISTA-Net Linear 

Recon. 

ISTA-Net 

50 90.06 81.14 78.81 64.50 74.56 60.39 72.27 58.08 

75 79.47 71.84 51.58 48.54 31.70 29.39 16.94 15.07 

100 79.06 74.07 51.33 47.49 30.36 28.47 5.52 5.51 

Noiseless 79.00  72.90  51.30  47.00  30.50  28.70  0.59  0.59 
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Fig. 6. Comparison between Ground Truth image (on the left), the reconstruction obtained using Linear Reconstruction 

(center) and on the reconstruction obtained using ISTA-Net (on the right) with 50 dB of SNR and SNR 25 dB.  

 

Table 4. Comparison in reconstruction performance between signal-dependent and signal-independent noise  
Root Mean squared Error (RMSE) 

  CR = 25.00% CR = 50.00% CR = 75.00% CR = 100.00% 

𝑺𝑵𝑹𝒛 [dB] Algorithm Noise 𝑎𝑦 Noise 𝑏 Noise 𝑎𝑦 Noise 𝑏 Noise 𝑎𝑦 Noise 𝑏 Noise 𝑎𝑦 Noise 𝑏 

50 dB 
Linear Recon. 90.06 94.83 78.81 74.93 74.56 75.65 72.27 67.42 

ISTA-Net 81.14 88.15 64.50 64.33 60.39 60.64 58.08 56.32 

75 dB 

Linear Recon. 79.47 79.38 51.58 51.58 31.70 30.97 16.94 14.73 

ISTA-Net 71.84 73.08 48.54 47.61 29.39 29.14 15.07 13.95 

100 dB 

Linear Recon. 79.06 79.15 51.33 51.33 30.36 30.36 5.52 4.72 

ISTA-Net 74.07 73.89 47.49 48.37 28.47 28.38 5.51 4.73 

 

 

CONCLUSIONS 

 

In this paper we describe the development of an improved version of the state-of-the-art deep learning algorithm for CS 

reconstruction, destined to be used for compressive satellite imaging. Our experiments demonstrate that a data-driven 

algorithm represents a viable solution to obtain a high-resolution version of a satellite image, taking into consideration 

some of the effects related to a real-world scenario. 
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