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The distributions of uncalibrated speaker
verification scores: a generative model for domain

mismatch and trial-dependent calibration
Sandro Cumani, Salvatore Sarni

Abstract—Speaker verification systems that compute log-
likelihood ratios (LLR) between the same and different speaker
hypotheses allow for cost-effective decisions that depend only
on prior information. Domain mismatch, inaccurate model as-
sumptions or the intrinsic nature of non-probabilistic classifiers
often result in mis-calibrated scores, and a re-calibration step is
required to map the classifier outputs to well-calibrated LLRs.
Standard calibration is based on Logistic Regression, often paired
with quality measures to provide trial-dependent calibration
transformations. More recently, generative methods have been
proposed as an alternative to discriminative approaches, which,
however, are not yet able to exploit additional side information.
In this work we introduce a novel generative approach based on
the analysis of the effects of speaker vector distribution mismatch
on the distribution of verification scores for PLDA and PLDA-
based classifiers. We show that target and non-target scores can
be modeled by Variance-Gamma distributions, whose parameters
represent effective between and within-class variability. This
allows us to introduce utterance-dependent variability models
that can incorporate both explicit quality measures, such as the
utterance duration, or implicit measures, such as the norm of a
speaker embedding. Experimental results on different test sets
with different front-ends and classifiers show that the proposed
approach improves both calibration and verification accuracy
with respect to state-of-the-art calibration models.

Index Terms—Speaker verification, score calibration, log-
likelihood ratio, duration variability, variance-gamma distribu-
tion

I. INTRODUCTION

Speaker verification systems output scores that allow clas-
sifying sets of speech segments as belonging to the same
speaker (target trial) or to different speakers (non-target trial).
Cost-effective decisions require estimation of an application-
dependent threshold, which, for well-calibrated scores, de-
pends only on prior probabilities and on the costs of different
kinds of errors. In many cases, however, the intrinsic nature
of the classifier, mismatch between the training and evaluation
populations or imprecise model assumptions may lead to
poor calibration, which results in lowered performance of the
recognizer. Score calibration approaches are usually employed
to transform the recognizer outputs to approximately well-
calibrated LLRs. The standard calibration approach is based
on discriminative prior-weighted Logistic Regression (Log-
Reg) [1], [2], successfully employed in a plethora of different
scenarios [3]–[7]. Logistic regression is effective in reducing
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miscalibration, and allows incorporating side-information, the
most important being segment duration, to improve not only
calibration, but also the accuracy of speaker verification sys-
tems [8]–[10]. Generative models have recently proven to be
a viable alternative to discriminative methods that allows both
for supervised and unsupervised training. In [11] the authors
analyzed the constraints that well-calibrated score distributions
should satisfy, and proposed a simple yet effective linear
calibration model based on constrained Gaussian distributions
(CMLG). The model was further extended in [12] to han-
dle missing labels. In [13] the authors proposed to model
target and non-target scores with different, unconstrained
densities, including T–student and Normal Inverse Gaussian
(NIG). More recently, we have proposed a generative linear
model [14]–[16] based on an analysis of the theoretical distri-
bution of well-calibrated log-likelihood ratios of a Probabilistic
Linear Discriminant Analysis (PLDA) [17], [18] classifier. We
have shown that Variance-Gamma (VΓ) distributions are suited
for modeling well-calibrated scores, and we have provided
sufficient conditions for Variance-Gamma distributed random
variables to represent well-calibrated LLRs. We have also
introduced the Constrained Maximum Likelihood Variance-
Gamma (CMLVG) model, that assumes that target and non-
target scores are obtained as an affine transformation of
well-calibrated scores, modeled through VΓ-distributed ran-
dom variables, with parameters tied to satisfy the LLR con-
straint [11], [14]. The simple calibration model, paired with
an accurate characterization of the score distribution, also
allows for effective unsupervised training. However, as for
standard logistic regression, it may provide sub-optimal results
for those scenarios where linear functions do not provide a
good approximation of optimal calibration transformations.

Both standard Log-Reg and generative models provide
global calibration: scores are mapped to LLRs through a
transformation that depends only on the score. In many
scenarios, however, different trials may be affected by different
miscalibration sources, and may thus require trial-dependent
transformations. A well-known example is utterance duration:
global calibration models tailored to long segments usually are
not effective for short utterances. Discriminative approaches
have been extended to partially handle trial-dependent mis-
calibration, for example by incorporating in the calibration
transformation additional side-information, such as utterance
duration or noise level [8]–[10], [19]. On the other hand,
current generative models are not able to explicitly account for
this kind of information. In this work we extend our analysis
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of the distribution of well-calibrated PLDA scores [14] to
explicitly account for distribution mismatches between training
and evaluation populations. This allows us to derive a non-
linear, generative score model that is able to characterize the
distribution of target and non-target score in terms of VΓ
densities whose parameters represent effective between and
within-class variability of the training and evaluation speaker
vectors (for example neural embeddings [20]). We then extend
the model to incorporate trial-level mismatch sources. We
present a simple duration model that can be combined with
the score model to achieve state-of-the-art calibration for
utterances of variable duration. Furthermore, we show that
speaker vector-derived information, such as the squared norm
of an utterance embedding, can be employed as a measure
of utterance-level uncertainty, and incorporated at calibration
level. Preliminary results with duration models were reported
in [21]. In this work, we extend our analysis, providing a more
detailed description of the theoretical framework and investi-
gating additional side-information beyond utterance duration.
We also significantly extend our experimental analysis.

II. CALIBRATION MODELS

Well-calibrated speaker verification systems compute the
log-likelihood ratio for the evidence e associated to a trial:

x = LLR(e) = log
P (e|S,M)

P (e|D,M)
, (1)

where e represents a trial (e.g., a pair of i-vectors [22] or
speaker embeddings [20]), M is a statistical model for e,
and S and D are the target and non-target trial hypotheses,
respectively. Usually, the statistical model M is estimated
over a training population, and may not properly characterize
the evaluation population in presence of domain mismatch. In
other cases, a recognizer may be intrinsically unable to provide
a well-calibrated LLR. For example, the Pairwise Support Vec-
tor Machine (PSVM) approach [23], [24] produces accurate
scores which do not have a probabilistic interpretation. Score
calibration is employed to estimate a mapping fcal from an
uncalibrated score s to a well-calibrated score x = fcal(s).

The standard discriminative approach for score calibration
is prior-weighted logistic regression (Log-Reg) [1], [2]. Log-
Reg optimizes the logarithmic proper scoring rule for a specific
target prior assuming an affine calibration model, and has been
extended to incorporate side information [8]–[10] through
additional terms that depend on quality measures, such as the
utterance duration:

fQMcal (s) = as+ b+Q(qE , qT ,q) (2)

where qE , qT are the enrollment and test quality measures,
and a, b and q are the model parameters. This approach
allows modeling, for example, effects due to different utterance
duration or noise levels. We will refer to these models as
Logistic Regression with Quality Measures (LogReg + QM).

Alternative to discriminative methods, generative models
estimate the calibration transformation fcal through a statisti-
cal model M′ that describes the distribution of the observed
scores. These models interpret an observed score s as a sample
of a Random Variable (R.V.) S, whose conditional densities

given target and non-target hypotheses are fS|S and fS|D,
respectively1. Given a score s, the calibration function corre-
sponds to the LLR for the score under the two hypotheses:

x′ = fcal(s) = log
fS|S(s)

fS|D(s)
. (3)

The statistical model can either consist of an explicit expres-
sion for the target and non-target densities, which implicitly
defines the calibration transformation, or be provided through
an explicit model for the calibration transformation fcal and
a model for the distribution of the calibrated scores. In
the latter case, the distributions of the calibrated scores are
constrained as to satisfy the LLR property [11]. For example,
constrained Gaussian densities paired with a linear calibration
model (CMLG) have been proposed in [11]. In [14] we have
shown that Variance-Gamma (VΓ) distributions provide more
accurate characterization of the scores generated by PLDA
and PLDA-derived models. Well-calibrated LLRs were thus
assumed to be samples of VΓ-distributed R.V.s,

X|D ∼ VΓ(λ, α, β, µ) , X|S ∼ VΓ(λ, α, β + 1, µ) , (4)

where the VΓ density is defined as

fVΓ(x|λ, α, β, µ) =
γ2λ|x− µ|λ− 1

2Kλ− 1
2
(α|x− µ|)

√
πΓ(λ)(2α)

λ− 1
2

eβ(x−µ)

(5)
with λ > 0, α > |β| and γ2 = α2 − β2, and Kν(x) denotes
the modified Bessel function of the third kind of order ν. The
parameters of the distributions in (4), µ, β, α > max(|β|, |β+
1|), λ > 0, are tied between the target and non-target densities
as to satisfy the LLR constraint. As for CMLG, the model
can be paired with an affine calibration transformation to
obtain the distribution of the observed scores. The parameters
of the calibration transformation and of the well-calibrated
distributions can be estimated by Maximum Likelihood. The
resulting model is effective for tasks where linear calibration is
sufficient. Furthermore, the more accurate characterization of
the scores, combined with a simple calibration transformation,
allows also for robust unsupervised estimation of the model
parameters. We will refer to this model as Linear VΓ.

While effective at compensating global miscalibration, gen-
erative approaches are not able to account for trial-dependent
miscalibration sources, such as utterance duration. Further-
more, both discriminative and generative models rely on
assumptions that are not directly related to the distributions of
speaker vectors. In the following sections we therefore analyze
the effects of domain mismatch on the distribution of scores
of PLDA classifiers.

III. THE DISTRIBUTION OF PLDA SCORES

The simplified PLDA2 model [26] assumes that a speaker
vector is a realization of a Random Vector (R.V.) Φ that can
be expressed as the sum of two factors

Φ = Y + E . (6)

1For the sake of readability we omit conditioning fS|S and fS|D on the
model M′

2Extension to subspace models is straightforward — see, for example, [25]



3

Φ is the M -dimensional R.V. responsible for generating an
observed speaker vector φ (e.g. an i-vector [22], e-vector [27],
or speaker embedding [20]), Y is the R.V. representing the
speaker identity and E represents residual noise. The model
assumes that Y and E are a priori normal distributed, as:

Y ∼ N (mM,BM) , E ∼ N (0,WM) . (7)

mM represents the global dataset mean, whereas BM and
WM can be interpreted as between-class and within class co-
variance matrices. Without loss of generality3we also assume
mM = 0, and that both BM and WM are diagonal. The

PLDA score for a pair of speaker vectors z =
[
φTE ,φ

T
T

]T
is

`(z) = KM −
1

2
zT
(
Σ−1
M,S −Σ−1

M,D

)
z , (8)

ΣM,S =

[
TM BM

BM TM

]
, ΣM,D =

[
TM 0

0 TM

]
,

where TM = BM + WM and KM collects the constant
terms. Since BM,WM are diagonal, it can be expressed as
a sum of M terms

`(z) =

M∑

i=1

1

2
zTi Aizi + ki , (9)

where zi =
[
φE,i ,φT ,i

]T
stacks the i-th components of the

speaker vectors φE ,φT , and

Ai =
BM,i

T2
M,i −B2

M,i

[
−BM,i

TM,i
1

1 −BM,i

TM,i

]
, (10)

TMi
= BM,i + WM,i , (11)

ki =
1

2
log T2

M,i −
1

2
log
(
T2
M,i −B2

M,i

)
. (12)

PLDA assumes that (6) holds for both the training population,
that is used to estimate the values of BM and WM, and for
the evaluation population. However, in presence of domain
mismatch the evaluation population may be better character-
ized by a different model. The distribution of the evaluation
population affects the distribution of the PLDA scores and,
in general, mismatches result in non-calibrated scores. In the
following we assume that evaluation trials are realizations of
a PLDA model that differs from the model used to compute
the score. In particular, we assume that an evaluation trial is
a sample of R.V. Z, with conditional distributions given by

[
ΦE

ΦT

]
|D ∼ N (m,ΣD) ,ΣD =

[
TE 0

0 TT

]
,

[
ΦE

ΦT

]
|S ∼ N (m,ΣS) ,ΣS =

[
TE BC

BC TT

]
, (13)

and TE = BC + WE and TT = BC + WT , corresponding to
a PLDA model

ΦS = YC + ES , S ∈ {E , T } , (14)
YC ∼ N (m,BC) , ES ∼ N (0,WS)

3These assumptions can be recovered through an affine transformation of
the data.

Matrix BC represents the common between-class variability
for the evaluation population, whereas WE and WT represent
within-class variability for the enrollment and test segments,
which may also differ across different segments (e.g. due to
the intrinsic difference in the amount of information contained
in a spoken segment, or to the uncertainty in the estimation
of different speaker vectors [28]–[30]). To keep the model
tractable, we assume that BC , WE and WT are diagonal.
Although this may seem a strong assumption, experimental
results confirm that the resulting model is powerful enough to
improve calibration with respect to state-of-the-art models. We
also assume4 m = 0. As we showed in [14], if an evaluation
trial z is a realization of R.V. Z, its score can be interpreted
as a realization of R.V. L = `(Z). To derive the distribution
of target and non-target scores, we consider R.V.s5

ZD ∼ Z|D , ZS ∼ Z|S .

The scores are therefore realizations of two R.V.s

L|D = `(Z|D) , L|S = `(Z|S) (15)

Since we assumed that BE ,WE and WT are diagonal, the
R.V.s corresponding to different components of the speaker
vectors Zi = [ΦE,i ,ΦT ,i] are independent under both the
same and different speaker hypotheses, with

Zi|D ∼ N (0,ΣD,i) , Zi|S ∼ N (0,ΣS,i) , (16)

where

ΣD,i =

[
TE,i 0

0 TT ,i

]
, ΣS,i =

[
TE,i BC,i

BC,i TT ,i

]
. (17)

BC,i, TE,i and TT ,i are the i-th elements of the diagonals
of BC , TE and TT , respectively. From (9), the R.V.s that
describe the distribution of target and non-target PLDA scores
can be expressed as sums of M independent R.V.s as:

L|h = `(Z|h) =

M∑

i=1

Li|h , h ∈ {S,D} , (18)

Li|h = `(Zi|h) =
1

2
ZTh,iAiZh,i + ki , (19)

Zh,i ∼ Zi|h ∼ N (0,Σh,i) . (20)

Let X ∼ N (0, I) be a standard normal distributed R.V. Let
also Ch,i be the Cholesky decomposition of Σh,i = Ch,iC

T
h,i,

and Uh,iDh,iU
T
h,i denote the eigen-decomposition of

Mh,i , CT
h,iAiCh,i = Uh,iDh,iU

T
h,i . (21)

4The evaluation population mean can be easily estimated and compensated
from few, unlabeled evaluation samples.

5If X(ω) is a R.V. defined over the probability space (Ω,A,P), and H
is an event, then X|H is not a R.V. over (Ω,A,P(·)). However, we can
interpret conditioning as acting on the probability space rather than just on
the probability distribution [31]. In this sense, we can define (X|H)(ω) as
a R.V. which is functionally identical to X(ω), (X|H)(ω) := X(ω), but is
defined on the probability space (Ω ∩H, {H ∩A : A ∈ A},P(·,H)/P(H)).
As long as we don’t mix R.V.s defined over different spaces, we can work with
the R.V.s ZD ∼ Z|D and ZS ∼ Z|S, each defined on its own probability
space, whose distributions correspond to the conditional distributions of R.V.
Z, given the labeling hypotheses h. With an abuse of notation, we will denote
both the conditional distribution of Z|h, h ∈ {D,S} and the distribution of
R.V. Zh with the same symbol Z|h. The same considerations apply to score
distributions L|h.
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We can express the conditional distributions of Li as

Li|h ∼
1

2
XTCT

h,iAiCh,iX+ki ∼
1

2
YT

h Dh,iYh + ki , (22)

where
Yh = Uh,iX ∼ N (0, I) (23)

Since the determinant of Ai is negative, the determinant of
Mh,i is also negative, thus its two eigenvalues have different
sign. To derive an expression for Li we analyze the distribution
of quadratic, indefinite forms (22). For the sake of readability,
we drop all suffices and we consider quadratic forms

L =
1

2
YTDY + k =

1

2
d+Y

2
+ −

1

2
|d−|Y 2

− + k (24)

where D is a 2 × 2 diagonal matrix with diagonal elements
d+ > 0 and d− < 0 and Y is standard normal distributed:

D =

[
d+ 0

0 d−

]
, Y =

[
Y+

Y−

]
∼ N

([
0

0

]
,

[
1 0

0 1

])
.

(25)
We observe that Y+and Y− are independent, and Y 2

+ and Y 2
−

are Gamma-distributed as

Y+ ∼ Γ

(
1

2
,

1

2

)
, Y− ∼ Γ

(
1

2
,

1

2

)
. (26)

L corresponds to a difference of independent, Gamma-
distributed R.V.s

L = G+ −G− + k , G+ ,
1

2
d+Y

2
+ , G− ,

1

2
|d−|Y 2

− ,

G+ ∼ Γ

(
1

2
,

1

d+

)
, G− ∼ Γ

(
1

2
,

1

|d−|

)
. (27)

The Moment Generating Function (MGF) of L is

ML(t) = ektMG+(t)MG−(−t)
= ekt(1− d+t)

− 1
2 (1− d−t)−

1
2

= ekt
(
1− Tr(D)t+ det(D)t2

)− 1
2 , (28)

where Tr and det denote the trace and determinant op-
erators, respectively. The MGF of a VΓ distributed R.V.
X ∼ VΓ(λ, α, β, µ) is

MX(t) = eµt
(

1− 2β

γ2
t− t2

γ2

)−λ
, (29)

where γ2 = α2 − β2. Therefore, L is VΓ-distributed [14],
[32], and the parameters can be recovered by inspection:

λ =
1

2
, µ = k , γ2 = − 1

det(D)
, β = −1

2

Tr(D)

det(D)
. (30)

Combining (30) and (22) we have that Li|D and Li|S are
also VΓ-distributed. From (21), we also have that

Tr(Dh,i) = Tr(Mh,i) = Tr(AiΣh,i)

det(Dh,i) = det(Mh,i) = det(AiΣh,i) (31)

thus

Li|h ∼ VΓ

(
1

2
, αh,i, βh,i, ki

)
(32)

with parameters

βD,i = −1

2

Tr(AiΣD,i)

det(AiΣD,i)
, βS,i = −1

2

Tr(AiΣS,i)

det(AiΣS,i)
,

γ2
D,i = − 1

det(AiΣD,i)
, γ2

D,i = − 1

det(AiΣS,i)
, (33)

α2
D,i = γ2

D,i + β2
D,i , α2

S,i = γ2
S,i + β2

S,i .

The parameters in (33) depend on the parameters of the
speaker vectors distributions BM,i,WM,i,BC,i,WE,i,WT ,i
only through the ratios

ηE,i =
TM,i

TE,i
, ηT ,i =

TM,i

TT ,i
, (34)

ρE,i =
BC,i
WE,i

, ρT ,i =
BC,i
WT ,i

, ρM,i =
BM,i

WM,i
(35)

ηE,i and ηT ,i represent the ratio between the scales of the
training population and the enrollment and test population, re-
spectively, whereas ρM,i, ρE,i and ρT ,i represent the between-
to-within class variability ratios for the training, enrollment
and test populations, respectively. We can observe that the
parametrization is redundant, since ηE,i and ηT ,i can be
expressed in terms ρE,i and ρT ,i and of a common ratio
ηC,i =

2TM,i

TE,i+TT ,i
representing the ratio between the scale of

the training population and the average scale of enrollment
and test population. In many cases it’s reasonable to assume
that the enrollment and test populations are homogeneous, i.e.
that WE = WT , WC . In this case ρE,i = ρT ,i , ρC,i,
ηE,i = ηT ,i = ηC,i and after some algebraic manipulations we
obtain

γ2
D,i = η2

C,i
1 + 2ρM,i

ρ2
M,i

, γ2
S,i = γ2

D,i

(1 + ρC,i)
2

1 + 2ρC,i
, (36)

βD,i = −ηC,i , βS,i = ηC,i
1 + ρC,i
1 + 2ρC,i

(
ρC,i
ρM,i

− 1

)
.

We can observe that the skewness of the target distribution
depends on whether ρC,i is greater or smaller than ρM,i. In
the former case, the distribution will be right-skewed. This
corresponds to evaluation vectors that are easier to discrimi-
nate with respect to training samples along direction i. In the
latter case the distribution will be left-skewed. Finally, we can
observe that the shape of the non-target distribution does not
depend on the between-over-within variability ratio ρC,i of the
evaluation population. The results for the distribution of well-
calibrated PLDA scores we derived in [14] can be recovered
by assuming that the evaluation population follows the same
distribution as the training population, i.e. ρE,i = ρT ,i = ρM,i

and ηE,i = ηT ,i = 1.
As for the well-calibrated case, we are not aware of closed

form solutions for the distribution of L|D and L|S. However,
if we assume that the ratios ηC,i, ρM,i, ρE,i and ρT ,i are the
same for all directions i

ηC,i = ηC , ρM,i = ρM, ρE,i = ρE , ρT ,i = ρT , ∀i (37)

then L|D and L|S are again VΓ-distributed, with

L|h ∼ VΓ

(
M

2
, αh, βh,

M∑

i=1

ki

)
, (38)
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where the parameters αD, βD, αS, βS can be computed
from (33) using the any index i.

IV. A GENERATIVE MODEL FOR MISMATCHED DATA

Equation (38) provides a model for the distribution of
target and non-target scores, assuming that the M -dimensional
speaker vectors are distributed according to (13), and that,
for each speaker vector direction, the covariance matrices are
related to a common set of normalized variances as

BM,i = ξibM ,WM,i = ξiwM

BC,i = ξibC , WE,i = ξiwE , WT ,i = ξiwT , (39)

for scalars ξi 6= 0. Although assuming isotropic normalized
variances may seem a strong hypothesis, we have shown
in [14] that this approximation is effective as long as we
assume that the score depends only on a small set of “effec-
tive” speaker vector dimensions. Indeed, most speaker vector
dimensions, which have small between-over-within variability
ratios, provide small contributions to the PLDA scores. We
can therefore assume that the score has been generated by an
effective speaker vector with smaller dimensionality, which
approximately satisfies the assumption (39). In terms of the
distributions of target and non-target scores, this can be
modeled through the parameter λ of the VΓ distributions [14].
As starting point to derive our model we therefore consider
the score model

L|D ∼ VΓ (λ, µ, αD, βD) , L|S ∼ VΓ (λ, µ, αS, βS) (40)

where λ is a shared shape parameter, µ is a shared location
parameter and αD, αS, βD, βS depend on the parameters
bM, wM, bC , wE , wT through

tM = bM + wM , tE = bC + wE , tT = bC + wT

ΣM,S =

[
tM bM

bM tM

]
, ΣM,D =

[
tM 0

0 tM

]

A = Σ−1
M,D −Σ−1

M,S

ΣS =

[
tE bC

bC tT

]
, ΣD =

[
tE 0

0 tT

]

βD = −1

2

Tr(AΣD)

det(AΣD)
, βS = −1

2

Tr(AΣS)

det(AΣS)
,

γ2
D = − 1

det(AΣD)
, γ2

S = − 1

det(AΣS)
,

α2
D = γ2

D + β2
D , α2

S = γ2
S + β2

S . (41)

We can observe that the model is over-parametrized: scaling
bM, wM, bC , wE , wT by some ξ > 0 results in the same
solution for the VΓ parameters, thus we can arbitrarily fix
any one of these parameters. In the following we assume
wM = 1. According to the PLDA model, the location
parameter µ is shared by both distributions, and should be
tied to the remaining parameters. However, PLDA-derived
models often include bias terms (e.g. Pairwise Support Vector
Machines [23], [24], [33] or discriminative PLDA [34]). These
terms result in score shifts that are optimal for the training
criterion, but may not result in well-calibrated scores. We can

capture such behavior through a shared location parameter that
is independent from the remaining parameters and is estimated
form the data. Furthermore, our derivations do not consider
dataset shifts or the equivalent effects of linear terms that
appear in PSVM or discriminative PLDA scoring functions.
The resulting distributions would become more complex, and
we are not aware of closed-form solutions even for isotropic
models. We can, however, assume that the shift is sufficiently
small, and model its effects in terms of a linear transformation
of the VΓ distributions. For this reasons, we introduce an
additional free location parameter and an additional free scal-
ing parameter that represent the location and scale differences
between target and non-target distributions. In practice, both
location and scaling parameters can be accounted for through
two independent location parameters µS and µD, and a scaling
parameters aS that scales the target distribution (we do not
require an equivalent scaling parameter for the non-target
class, since the model can already estimate the distribution
scaling through the original parameters (39)).

The proposed VΓ model becomes

L|D ∼ VΓ (λ, µD, αD, βD) , L|S ∼ VΓ

(
λ, µS,

αS

aS
,
βS
aS

)

(42)
Our model depends on the 8 free parameters Π =

(λ, µD, µS, bM, bC , wE , wT , aS). If enrollment and test data
are affected only by i.i.d. nuisance, we can reduce the number
of parameters to 7, by tying wE = wT = wC . Since the
parameters can be interpreted as “effective” variance, we refer
to this model as VΓ-Var. Given a set of calibration scores (SS,
SD), the model can be trained by maximizing the weighted
likelihood [14]

arg max
Π

ζ

|SS|
∑

s∈SS

fL|S (s; Π) +
1− ζ
|SD|

∑

s∈SD

fL|D (s; Π) ,

(43)
where fL|S (s; Π) and fL|D (s; Π) are the VΓ densities
for the target and non-target distributions (40) and ζ is
a weighting factor. For a given set of parameters Π =
(λ, µD, µS, bM, bC , wE , wT , aS) the calibration transforma-
tion is given by

fcal(s; Π) =
VΓ
(
s|λ, µS,

αS

aS
, βS

aS

)

VΓ (s|λ, µD, αD, βD)
(44)

with the VΓ densities defined in (5), and will, in general,
consist of a non-linear function of the scores. Since the model
defines a calibration transformation, we can also discrimina-
tively estimate the model parameters through prior-weighted
logistic regression. The discriminative objective function can
be expressed as

arg min
Π

π

|SS|
∑

s∈SS

log
(

1 + e−fcal(s;Π)−log π
1−π

)

+
1− π
|SD|

∑

s∈SD

log
(

1 + efcal(s;Π)+log π
1−π

)
(45)

where π is the effective prior for the target class. As we
show in the experimental section, discriminative training ob-
tains similar results as generative training, confirming that
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our model can provide a good characterization of the score
distributions.

V. UTTERANCE-DEPENDENT CALIBRATION

According to our model, a score for a trial z =
[
φTE ,φ

T
T

]T

can be interpreted as a sample of a R.V. with conditional VΓ-
distributions given by (40), where the parameters wE and wT
represent “effective” within-class variability for the enrollment
and test speaker vectors. To account for utterance-dependent
nuisance, we can then assume that the terms wE and wT are
not fixed, but vary from utterance to utterance. In particular,
for each speaker-vector φi we let the effective within-class
variance wi be a function of both i.i.d. and utterance-dependent
miscalibration sources.

A. Utterance duration
Given the significant effect of utterance duration variability

on the accuracy of speaker verification systems, in this section
we focus on modeling the effects of utterance duration on
wi, taking inspiration from i-vector [22] models. The i-vector
model allows accounting for i-vector uncertainty through the
i-vector posterior covariance matrix [28]–[30]. Incorporating
the i-vector uncertainty at trial level is equivalent to modeling
target and non-target trials as in (13), but replacing the
covariance matrices TE and TT with TE = BC+WE+CE,i
and TT = BC + WT + CT ,i, where CE,i and CT ,i are
the i-vector posterior covariances for enroll and test i-vectors
of trial zi. An i-vector posterior covariance matrix C has a
complex expression that depends on the zero-order statistics
for an utterance computed on a Universal Background Model
(UBM). However, it can be reasonably approximated [35] by
a matrix whose form is

C ≈ (I +DM)
−1

, (46)

where M depends on the UBM and the i-vector model
parameters, whereas D is the utterance duration. We further
assume that C has the same principal directions as WM, WE
and WT , so that they can be jointly diagonalized (a similar
approximation was used in [36]). Each component Cj of C
has then a functional form Cj = 1

1+Dη−1
j

=
ηj

ηj+D
. In this

sense, we can interpret the i-vector posterior covariance matrix
as a measure of the effects of utterance duration on the within-
class variability of speaker vectors. To incorporate utterance
duration in our score model, we adopt a similar functional
relationship. We represent the effective variances wE,i and
wT ,i for a trial zi as

wE,i = wE +
ψ

DE,i + η
, wT ,i = wT +

ψ

DT ,i + η
, (47)

where DE,i and DT ,i are the enroll and test segment duration,
and ψ and η are additional free model parameters, shared for
all trials. As for the VΓ-Var model, also in this case we can
assume that wE = wT = wC . We refer to this model as VΓ-
Var + Dur. It is worth noting that this approach can also be
interpreted as a way to model speaker vector uncertainty in
those cases where we have no access to uncertainty estimates
(e.g. x-vectors [20]), or uncertainty cannot be taken into
account at classification level (e.g. PSVM).

B. Speaker vector norms as a proxy for utterance-dependent
variability

Standard PLDA models employ length normalization to
improve the classification accuracy. In this section we show
that the squared norm of a speaker vector can, indeed, be in-
terpreted as a measure of utterance-dependent variability, and
length normalization as a way to reduce intra-trial mismatch.
Our derivations are based on the model of [37] that introduces
a simplified Heavy-Tailed PLDA (HT-PLDA):

Φi = m + UY + Ei , (48)

Y ∼ N (0, I) , Ei|Vi ∼ N (0, ViW) , V −1
i ∼ Γ

(a
2
,
a

2

)

where Vi is a hidden R.V. representing an utterance-dependent
scaling factor. The HT-PLDA model assumes a gamma prior
for the inverse of Vi. In typical PLDA applications the speaker
subspace is of much smaller dimension than the speaker vector
space, thus we also assume that the dimensionality of Y is
D � M . Without loss of generality, we also assume that
speaker vectors have been whitened so that m = 0, W = I
and the D-dimensional speaker subspace corresponds to the
first D principal directions of the speaker vector space. The
speaker vector can be partitioned in two components:

U =

[
U

0

]
, Φi =

[
Φu
i

Φn
i

]
=

[
UY + Eu

i

En
i

]
(49)

where U is a D×D matrix, Φu
i refers to the first d components

of Φi, Φn
i refers to the remaining components of Φi, which

do not depend on the speaker factor y, and similarly for the
noise terms Eu

i , En
i .The marginal density for a set of k vectors

belonging to a single speaker is

fΦ1...Φk(φ1 . . .φk) =

=

∫
fΦ1...Φk|Y,V1...Vk

(φ1 . . .φk|y, v1 . . . vk)fY(y)dy

k∏
i=1

fVi (vi)dvi

=

∫ k∏
i=1

fΦui |Y,Vi
(φu

i |y, vi) fY(y)dy
k∏

i=1

fΦni |Vi
(φn

i |vi) fVi (vi)dvi

=

k∏
i=1

fΦni
(φn

i )

∫ k∏
i=1

fΦui |Y,Vi
(φu

i |y, vi) fVi|Φni (vi|φn
i ) dvifY(y)dy.

(50)

The LLR for a given trial depends only on the integral term
of equation (50). We can observe that Vi|Φn

i acts as a prior
for the conditional likelihood of Φu

i |Y, Vi, with

(
V −1
i |Φn

i = φni
)
∼ Γ

(
a+M −D

2
,
a+ ‖φni ‖2

2

)
(51)

Rather than working with the posterior distribution, we con-
sider an approximation that replaces the posterior distribution
for Vi with a Maximum-a-Posteriori (MAP) point estimate6:

vMAP
i =

a+ ‖φni ‖2
a+M −D + 1

. (52)

6The posterior distribution of Vi|Φn
i = φn

i is an inverse-Gamma with the
same parameters of (51). The MAP estimate for V −1

i is slightly different,
but has a similar formal expression.
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Replacing R.V. Vi with the MAP estimate (52) we obtain again
a standard PLDA model, where the noise variance for embed-
ding i corresponds to vMAP

i I. It is worth noting that, rather than
estimating the HT-PLDA model, we can approximate matrix
U with the subspace found by Linear Discriminant Analysis.
The MAP solution would then correspond to the norm of
the embedding computed in the complement of the LDA
subspace. If we assume that the speaker subspace is small-
dimensional, and that the between-to-within variability ratio
is nevertheless small for most embedding directions, then the
MAP solution can be further approximated by the norm of the
original, whitened embedding. Length normalization has thus
the effect of making the noise term distribution approximately
utterance-independent, although it introduces a dependency of
the speaker factor distribution on the utterance. Since the esti-
mated vMAP

i acts as a proxy of utterance-dependent variability,
it can alternatively be incorporated in our calibration model by
considering effective enrollment and test variances, defined as

wE,i = wC+ψ
∥∥UcφE,i

∥∥2
, wT ,i = wC+ψ

∥∥UcφT ,i
∥∥2
. (53)

where Uc is a projection matrix corresponding to the comple-
ment of an LDA subspace, and ψ is a parameter that can be
estimated by Maximum Likelihood over the calibration set.

VI. EXPERIMENTS

In this section we analyze the performance of the proposed
models with different speaker vector front-ends and classifi-
cation back-ends on different test sets.

A. Classification back-ends

We consider two different back-ends, PLDA and Pairwise
Support Vector Machine (PSVM) [23], [24]. The PSVM
approach trains a single classifier on speaker vector pairs
aimed at separating same-speaker from different-speaker trials.
The separation surfaces are derived from the PLDA log-
likelihood ratio expression, whereas the model is trained using
the standard SVM objective.

B. Evaluation sets, front-ends and training data

We consider three datasets, SRE 20197, SRE 20128 and
SRE 20109, with different front-ends.

1) SRE 2019: For the SRE 2019 dataset we consider three
embedding extractors, trained on a common list including Vox-
Celeb1 and VoxCeleb2 [38], Mixer 4,5 and 6 and Switchboard
data10. The MUSAN [39] and the AIR [40] datasets were used
for data augmentation. The first extractor is based on a Time-
Delay Neural Network (TDNN) with the same topology as
in [41]. The DNN input consists of 24-dimensional Perceptual
Linear Predictors (PLP) features, and the speaker embeddings
are 512-dimensional.11. The embeddings have been further

7https://www.nist.gov/publications/2019-nist-speaker-recognition-
evaluation-cts-challenge

8https://www.nist.gov/itl/iad/mig/sre12-results
9https://www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-2010
10Available from Linguistic Data Consortium
11Since we employed a different training set, the results are not directly

comparable to those we previously published in [21] and [14] for the Linear
VG model

processed by means of Linear Discriminant Analysis (LDA),
which reduces the dimensionality to 400 for PSVM and 200
for PLDA. The second front-end is based on a Factorized
Time-Delay Neural Network (FTDNN) [42], implemented as
in [43], trained using softmax and cross-entropy loss on clean
data only. Embeddings are 512-dimensional. As for TDNN,
LDA was applied to reduce the embedding dimensionality.
The third extractor is based on the ECAPA architecture [44].
The network has been trained using Additive Angular Mar-
gin softmax [45] and cross-entropy loss. The embeddings
are 192-dimensional. In this case no further dimensionality
reduction was applied. For both back-ends we analyzed the
effects of an additional length normalization step applied
to whitened embeddings. The PSVM pre-processing pipeline
further includes a Within-Class Covariance (WCCN) normal-
ization step, applied either on the raw embeddings, or on
the length-normalized vectors. PLDA has been trained on
SRE 2018 Evaluation data, comprising about 13 thousand
segments. Since PSVM requires more data to provide good
results, PSVM models were trained with an additional subset
of Mixer 4, 5 and 6, Switchboard and VoxCeleb data, for a
total of about 110 thousand segments. The training lists were
chosen based on the best results of each baseline model on
SRE 2019 Progress data. The calibration models were trained
on a subset of the SRE 2019 Progress set. The calibration
performance was evaluated on the SRE 2019 Evaluation set.

2) SRE 2012: The SRE 2012 system is based on a hybrid
GMM/DNN model [46], [47] trained using SRE-04 to SRE-
10 and Switchboard data, for a total of about 42 thousand
segments. The acoustic features consist of 20 PLP coefficients
and their delta and delta-delta parameters. The DNN comprises
256 outputs. For each DNN output, we fit an 8-dimensional,
full covariance GMM using the approach in [48]. Overall, the
UBM has 2048 components. The speaker vectors are obtained
from a 400-dimensional e-vector extractor [27]. The back-ends
have been trained using the same front-end datasets. Tests were
performed on the extended tel-tel core condition (condition 5).
The test set was divided into two, non overlapping parts. The
first part, which comprises 25% of the enrollment segments,
was used to estimate the calibration parameters. The remaining
part was used as evaluation.

3) SRE 2010: The SRE 2010 system is based on 400-
dimensional i-vectors, estimated from a gender-dependent,
1024-components, diagonal covariance UBM based on
45-dimensional MFCC features, incorporating delta and
double-delta parameters. The back-end is a PLDA classifier.
I-vectors pre-processing consists of whitening and length
normalization. The front-end has been trained using
Switchboard, SRE-04 to SRE-06 and Fisher data. The
back-end has been trained on the same lists, but without the
Fisher dataset. Tests were performed on the female extended
tel-tel condition (condition 5). The test set was divided into
two, non overlapping, parts. The first part, comprising 25% of
the enrollment segments, was used to estimate the calibration
parameters. The remaining part was used for evaluation.

For all test sets, both calibration and evaluation embed-
dings have been centered with respect to the calibration set
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(a) ECAPA embeddings

PLDA with L2-norm PLDA w/o L2-norm PSVM with L2-norm PSVM w/o L2-norm
0

0.2

0.4

0.6

0
.2

4
6

0
.3

0
7

0
.2

4
5

0
.2

5
5

0
.2

5
9 0
.3

3
5

0
.2

5
0

0
.2

7
0

0
.2

6
3 0
.3

4
3

0
.2

5
1

0
.2

7
6

0
.2

4
7

0
.3

0
8

0
.2

4
6

0
.2

5
6

0
.2

4
8

0
.3

0
8

0
.2

4
6

0
.2

5
6

0
.2

4
5

0
.2

5
0

0
.2

4
0

0
.2

4
1

0
.2

3
4

0
.2

2
5

0
.2

4
6

0
.2

1
4

0
.2

3
1

0
.2

2
5

0
.2

4
6

0
.2

1
5

C
ll
r

Min Cllr (original scores) Log-Reg Linear VΓ VΓ-Var (Gen)
VΓ-Var (Disc) Log-Reg + QM4 VΓ-Var + Dur (Gen) VΓ-Var + Dur (Disc)

(b) FTDNN embeddings
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(c) TDNN embeddings

Fig. 1: Cllr for different calibration approaches with different embedding front-ends on SRE 2019 short segments. Calibration
models have been trained with target prior π = 0.1 (discriminative models) or target weight ζ = 0.1 (generative models).

embedding mean, to account for possibly non-zero evaluation
population means (cf. Section III, where we assumed that the
evaluation populations have zero-mean distribution, i.e. m = 0
in (14)).

C. Results on SRE 2019
The first set of experiments shows the results of the VΓ-

Var and VΓ-Var + Dur models on SRE 2019 data. Since
duration models are more effective in presence of short and
variable utterance duration, we first report results on short cuts
obtained from the original SRE 2019 data. In particular, both
enrollment and test segments have been randomly truncated to
a length between 3 and 30 seconds. In Fig. 1 and Table I we

compare the performance of different calibration approaches
for different front-end and back-end combinations in terms
of Cllr [4], [49], [50]. In Table I we additionally report
the actual primary cost Cprim as defined by NIST for the
SRE 2019 evaluation, and, since duration modeling improves
discrimination, we also provide Equal Error Rates (EER). The
first row of each table reports minimum costs computed on
the original classifier outputs. The following four rows show
the performance of calibration models that do not employ
side-information. The baseline systems consist of a prior-
weighted Logistic Regression model (Log-Reg) and the linear,
Constrained ML Variance-Gamma model of [14] (Linear VΓ).
Rows labeled VΓ-Var (Gen) and VΓ-Var (Disc) report the



9

TABLE I: Results on the SRE 2019 evaluation dataset with short segments. Calibration models have been trained with target
prior π = 0.1 (discriminative models) or target weight ζ = 0.1 (generative models).

(a) ECAPA embeddings

PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER

Min. costs† 0.246 0.485 6.8% 0.296 0.486 8.7% 0.195 0.448 5.3% 0.204 0.452 5.6%

Log-Reg 0.264 0.495 6.8% 0.333 0.571 8.7% 0.202 0.457 5.3% 0.213 0.466 5.6%
Linear VΓ 0.270 0.488 6.8% 0.339 0.551 8.7% 0.203 0.456 5.3% 0.218 0.458 5.6%
VΓ-Var (Gen) 0.248 0.486 6.8% 0.301 0.487 8.7% 0.196 0.449 5.3% 0.205 0.454 5.6%
VΓ-Var (Disc) 0.250 0.485 6.8% 0.299 0.487 8.7% 0.197 0.449 5.3% 0.206 0.454 5.6%

Log-Reg + QM4 0.245 0.493 6.1% 0.282 0.532 6.7% 0.185 0.467 4.8% 0.186 0.484 4.7%
VΓ-Var + Dur (Gen) 0.230 0.485 6.1% 0.251 0.484 6.6% 0.180 0.447 4.8% 0.175 0.454 4.6%
VΓ-Var + Dur (Disc) 0.228 0.478 6.1% 0.243 0.461 6.6% 0.180 0.448 4.8% 0.174 0.454 4.6%

(b) FTDNN embeddings

PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER

Min. costs† 0.246 0.466 7.0% 0.307 0.477 9.0% 0.245 0.536 7.0% 0.255 0.529 7.1%

Log-Reg 0.259 0.482 7.0% 0.335 0.564 9.0% 0.250 0.550 7.0% 0.270 0.553 7.1%
Linear VΓ 0.263 0.474 7.0% 0.343 0.531 9.0% 0.251 0.544 7.0% 0.276 0.534 7.1%
VΓ-Var (Gen) 0.247 0.467 7.0% 0.308 0.477 9.0% 0.246 0.537 7.0% 0.256 0.531 7.1%
VΓ-Var (Disc) 0.248 0.466 7.0% 0.308 0.477 9.0% 0.246 0.537 7.0% 0.256 0.530 7.1%

Log-Reg + QM4 0.245 0.486 6.5% 0.250 0.520 6.4% 0.240 0.558 6.6% 0.241 0.591 6.3%
VΓ-Var + Dur (Gen) 0.234 0.468 6.4% 0.225 0.457 6.1% 0.246 0.537 7.0% 0.214 0.518 5.9%
VΓ-Var + Dur (Disc) 0.231 0.465 6.4% 0.225 0.454 6.1% 0.246 0.537 7.0% 0.215 0.520 5.9%

(c) TDNN embeddings

PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER

Min. costs† 0.285 0.514 7.9% 0.349 0.532 10.2% 0.226 0.480 6.1% 0.217 0.462 5.9%

Log-Reg 0.331 0.528 7.9% 0.443 0.652 10.2% 0.239 0.486 6.1% 0.228 0.476 5.9%
Linear VΓ 0.341 0.517 7.9% 0.451 0.623 10.2% 0.246 0.480 6.1% 0.231 0.464 5.9%
VΓ-Var (Gen) 0.292 0.526 7.9% 0.367 0.536 10.2% 0.227 0.480 6.1% 0.219 0.463 5.9%
VΓ-Var (Disc) 0.288 0.526 7.9% 0.358 0.537 10.2% 0.228 0.481 6.1% 0.219 0.464 5.9%

Log-Reg + QM4 0.314 0.529 7.2% 0.403 0.613 8.3% 0.226 0.488 5.7% 0.198 0.511 5.0%
VΓ-Var + Dur (Gen) 0.275 0.537 7.2% 0.309 0.536 8.3% 0.216 0.487 5.7% 0.190 0.465 4.9%
VΓ-Var + Dur (Disc) 0.267 0.536 7.1% 0.297 0.534 8.2% 0.213 0.479 5.6% 0.187 0.472 5.0%

† Minimum Cllr , minimum Cprim, and EER computed on the classifier scores. Models using side-information may provide lower costs.

results of our proposed VΓ-Var model (42) trained with a gen-
erative, ML criterion (43) and a discriminative objective (45),
respectively. For generative models we set the target weight
to ζ = 0.1. For discriminative models the target prior was
set to π = 0.1. The last three rows show the performance of
calibration approaches that incorporate duration information.
Our baseline follows the approach of [8], which enriches the
linear Log-Reg calibration model with quality measures that
account for the effects of duration. In particular, we select
QM4 of [8], since it provided the best calibration results in

our scenario. For each back-end, we report both results without
(blue columns) and with (yellow columns) embedding length
normalization. For the ECAPA front-end we also show in
Fig. 2-a and 2-b the calibration transformations and Bayes
error plots for the duration-agnostic models, and the Bayes
Error plots for duration-aware models, trained with different
target priors π or target weights ζ.

Concerning the baseline systems, the minimum cost re-
sults show that the PSVM back-end significantly outperforms
PLDA, both with and without length normalization. Further-
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Fig. 2: Calibration transformation and Bayes error plots for different calibration models and different back-ends on SRE 2019
evaluation data, ECAPA front-end.

more, we can observe that length normalization allows for
a significant reduction of Cllr and EER for PLDA, whereas
for PSVM the benefits of the normalization are significantly
smaller, and for TDNN it actually decreases performance.
Concerning calibration, Logistic Regression and Linear VΓ
provide similar results, the former achieving slightly lower
Cllr at the cost of a degradation in terms of Cprim. Except for
the TDNN-PLDA system, where both models provide signifi-
cant miscalibration error, these approaches produce reasonably
good results for length-normalized embeddings, but incur in a
significant degradation for PLDA models trained over non-
normalized embeddings. Fig. 2-a compares the calibration

transformations of the different models with the solution pro-
vided by isotonic regression computed through the PAV [51]
algorithm on the calibration set for the ECAPA front-end with
length-normalized embeddings. We can observe that a linear
approximation of the PAV solution cannot provide optimal
calibration over the whole range of scores. Without length
normalization (not shown in the figures due to lack of space),
the non-linearity becomes even more evident, and results in
a significant calibration loss for linear models. The proposed
VΓ-Var approach, on the contrary, intrinsically computes non-
linear mappings that account for distribution mismatches, and
is therefore able to provide a better fit to the PAV calibration
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TABLE II: Results on the SRE 2019 evaluation dataset with original segments. . Calibration models have been trained with
target prior π = 0.1 (discriminative models) or target weight ζ = 0.1 (generative models).

(a) ECAPA embeddings

PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER

Min. costs† 0.176 0.365 4.6% 0.204 0.358 5.6% 0.135 0.323 3.5% 0.135 0.330 3.5%

Log-Reg 0.192 0.370 4.6% 0.237 0.405 5.6% 0.144 0.326 3.5% 0.146 0.334 3.5%
Linear VΓ 0.200 0.366 4.6% 0.245 0.388 5.6% 0.147 0.326 3.5% 0.151 0.331 3.5%
VΓ-Var (Gen) 0.179 0.368 4.6% 0.210 0.360 5.6% 0.137 0.326 3.5% 0.137 0.334 3.5%
VΓ-Var (Disc) 0.179 0.367 4.6% 0.206 0.360 5.6% 0.139 0.326 3.5% 0.137 0.335 3.5%

Log-Reg + QM4 0.180 0.371 4.3% 0.217 0.395 5.0% 0.137 0.326 3.2% 0.137 0.340 3.1%
VΓ-Var + Dur (Gen) 0.167 0.368 4.3% 0.190 0.356 5.0% 0.132 0.323 3.3% 0.128 0.340 3.1%
VΓ-Var + Dur (Disc) 0.165 0.362 4.2% 0.186 0.350 5.0% 0.130 0.324 3.2% 0.127 0.334 3.1%

(b) FTDNN embeddings

PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER

Min. costs† 0.163 0.326 4.3% 0.185 0.329 5.0% 0.150 0.366 3.9% 0.145 0.350 3.7%

Log-Reg 0.176 0.331 4.3% 0.202 0.354 5.0% 0.158 0.370 3.9% 0.155 0.358 3.7%
Linear VΓ 0.182 0.327 4.3% 0.212 0.334 5.0% 0.160 0.367 3.9% 0.161 0.352 3.7%
VΓ-Var (Gen) 0.165 0.330 4.3% 0.186 0.330 5.0% 0.152 0.367 3.9% 0.147 0.351 3.7%
VΓ-Var (Disc) 0.165 0.329 4.3% 0.186 0.331 5.0% 0.152 0.367 3.9% 0.146 0.353 3.7%

Log-Reg + QM4 0.165 0.330 4.0% 0.172 0.349 4.3% 0.150 0.376 3.6% 0.144 0.374 3.4%
VΓ-Var + Dur (Gen) 0.155 0.332 4.0% 0.160 0.326 4.2% 0.146 0.372 3.7% 0.134 0.354 3.3%
VΓ-Var + Dur (Disc) 0.153 0.329 3.9% 0.157 0.316 4.2% 0.143 0.370 3.6% 0.133 0.353 3.3%

(c) TDNN embeddings

PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER

Min. costs† 0.200 0.387 5.2% 0.236 0.396 6.4% 0.164 0.366 4.2% 0.140 0.339 3.6%

Log-Reg 0.231 0.388 5.2% 0.287 0.438 6.4% 0.177 0.370 4.2% 0.150 0.340 3.6%
Linear VΓ 0.246 0.392 5.2% 0.301 0.412 6.4% 0.189 0.370 4.2% 0.154 0.341 3.6%
VΓ-Var (Gen) 0.206 0.407 5.2% 0.244 0.403 6.4% 0.165 0.366 4.2% 0.142 0.341 3.6%
VΓ-Var (Disc) 0.204 0.403 5.2% 0.238 0.406 6.4% 0.165 0.367 4.2% 0.141 0.344 3.6%

Log-Reg + QM4 0.218 0.391 4.8% 0.267 0.435 5.8% 0.169 0.366 4.0% 0.140 0.349 3.2%
VΓ-Var + Dur (Gen) 0.195 0.420 4.9% 0.223 0.409 5.8% 0.160 0.381 4.0% 0.133 0.351 3.2%
VΓ-Var + Dur (Disc) 0.191 0.431 4.8% 0.215 0.398 5.7% 0.155 0.363 3.9% 0.130 0.345 3.2%

† Minimum Cllr , minimum Cprim, and EER computed on the classifier scores. Models using side-information may provide lower costs.

transformation, obtaining actual costs that are very close to the
minimum ones both for PLDA and PSVM, with and without
length normalization. The generative and discriminative VΓ-
Var models obtain similar results, suggesting that VΓ-Var
provides an accurate characterization of target and non-target
score distributions. Fig. 2-b shows the effects of training with
different target prior π or target weight ζ for the ECAPA front-
end (duration-agnostic models, dashed lines). We can observe
that Logistic Regression is sensitive to the chosen prior —
setting π = 0.5 results in a slightly lower Cllr, however it

significantly increases the actual primary cost Cprim. The VΓ-
Var models, on the other hand, are less affected by the choice
of ζ, providing similar results with both ζ = 0.1 and ζ = 0.5.
Concerning duration-aware models, both Log-Reg + QM4 and
the proposed VΓ-Var + Dur outperform the corresponding
duration-agnostic methods both in terms of Cllr and EER for
almost all front-end and back-end combinations, showing both
better calibration and discrimination capabilities. The VΓ-
Var + Dur approach consistently outperforms quality measure
based methods in terms of Cllr, with relative improvements
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TABLE III: Comparison of length-normalization-aware calibration models on the SRE 2019 evaluation dataset.

Short segments Original segments
PLDA PSVM PLDA PSVM

L2-norm Calibration Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER

ECAPA

3 VΓ-Var (Gen) 0.248 0.486 6.8% 0.196 0.449 5.3% 0.179 0.368 4.6% 0.137 0.326 3.5%
7 VΓ-Var + Norm (Gen) 0.229 0.483 5.9% 0.188 0.453 4.9% 0.175 0.363 4.3% 0.135 0.329 3.3%

FTDNN

3 VΓ-Var (Gen) 0.247 0.467 7.0% 0.246 0.537 7.0% 0.165 0.330 4.3% 0.152 0.367 3.9%
7 VΓ-Var + Norm (Gen) 0.222 0.457 6.1% 0.215 0.510 5.9% 0.160 0.319 4.1% 0.135 0.345 3.4%

TDNN

3 VΓ-Var (Gen) 0.292 0.526 7.9% 0.227 0.480 6.1% 0.206 0.407 5.2% 0.165 0.366 4.2%
7 VΓ-Var + Norm (Gen) 0.275 0.536 6.9% 0.198 0.464 5.1% 0.211 0.406 5.1% 0.141 0.337 3.4%
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(b) VΓ-Var + Dur (Gen)

Fig. 3: Calibration transformations of duration-aware models
for different, fixed scores as a function of segments dura-
tion. ECAPA embeddings without length normalization, PLDA
back-end.

ranging from 3% to 15% for length normalized embeddings,
and from 6% to 26% for non-normalized embeddings, while
providing similar or slightly better EERs. We observe a small,
2% relative degradation with respect to Log-Reg + QM4 only
for the FTDNN / PSVM combination with length-normalized

embeddings. In this case, however, we can observe that the
best results are still obtained by combining the proposed
VΓ-Var + Dur approach with non-normalized embeddings.
Concerning Cprim costs, Log-Reg + QM4 results are not
consistent, with the model providing similar or slightly worse
results with respect standard Log-Reg for back-ends that
employ length normalization. For back-ends trained over non-
normalized embeddings we see an improvement for PLDA but
a significant degradation for PSVM models. Compared to Log-
Reg + QM4, our approach provides better Cprim, although
on average the Cprim is close to that of our VΓ-Var model.
Finally, Fig. 2-b shows the Bayes error plots of Log-Reg +
QM4 and generative VΓ-Var + Dur models (duration-aware
models, solid lines). Also in this case, we observe that Log-
Reg + QM4 is sensitive to the choice of the training prior,
whereas our approach provides consistent results for both
ζ = 0.1 and ζ = 0.5. To better understand the differences
between Log-Reg + QM4 and VΓ-Var + Dur models we show,
in Figure 3, how the same score, produced by different trials,
would be transformed by the two models as a function of the
trial enrollment and test duration. For each model we consider
3 scores, namely the average target score SS, the average
non-target score SD and their mean SS+SD

2 , corresponding
to the three surfaces shown in the figure. The plot refers to
the ECAPA-PLDA with non-normalized embeddings system.
This system was chosen because the effects are graphically
more pronounced. Similar considerations, however, hold also
for the other systems. We can observe that Log-Reg + QM4

models provide the same kind of transformation regardless of
the score value. Indeed, quality measures simply act as an
additive term to the score. On the contrary, VΓ-Var models
provide transformations that affect differently target and non-
target scores. We can observe that shorter duration results in
scores being driven toward a LLR of zero. This is consistent
with the fact that shorter segments have naturally larger
uncertainty, which is not taken into account at the classification
level [28]. The back-end scores tend to be over-confident for
shorter utterances, and the VΓ-Var model is compensating this
behaviour.
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(b) FTDNN embeddings
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(c) TDNN embeddings

Fig. 4: Cllr for different calibration approaches with different embedding front-ends on SRE 2019 original segments. Calibration
models have been trained with target prior π = 0.1 (discriminative models) or target weight ζ = 0.1 (generative models).

It is worth noting that for all front-ends duration models are
less effective in presence of length-normalized embeddings.
This is consistent with our assumption that length normaliza-
tion is actually normalizing the within-class variance of the
embeddings, thus reducing also variability due to duration.
Since duration variability has been partially compensated,
duration-aware calibration models are less able to further
improve accuracy. We can observe that, at least for PSVM, it’s
actually more effective accounting for duration variability at
calibration stage, rather than relying on length normalization.

For completeness, we report in Fig. 4, Table II and Fig. 2-c
the results of the different calibration approaches for the orig-
inal SRE 2019 segments. Similar considerations as for short
segments apply, the main difference being that, as expected,

duration-aware models provide smaller relative improvements.

A second set of experiments analyzes the effectiveness of
accounting for the embedding norm at calibration rather than
at classification level. Table III compares VΓ-Var calibra-
tion for length-normalized back-ends with the normalization-
aware VΓ-Var + Norm model (53) paired with back-ends
that do not employ length normalization. In both cases, the
embedding norm was computed from the whole vector. The
yellow rows refer to normalized embeddings with VΓ-Var
calibration, whereas the blue rows refer to raw embeddings
and VΓ-Var + Norm models. Although standard PLDA with
standard calibration benefits from length normalization, we can
observe that incorporating the embedding norm at calibration
level rather than at scoring level is, for this dataset, actually
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beneficial. The VΓ-Var + Norm model, combined with PLDA
scores from non-normalized embeddings, provides signifi-
cantly lower Cllr and EER for short segments, with no impact
on actual Cprim costs. For longer segments we do not observe
a significant improvement over length-normalized back-ends,
although the VΓ-Var + Norm model provides slightly lower
EER and similar performance in terms of Cllr and Cprim.
For PSVM we observe, on average, a significant reduction
of Cllr and EER when the embedding norm is accounted
for at calibration level. For FTDNN and TDNN embeddings
we also obtain an improvement in terms of Cprim, whereas
for ECAPA embeddings the results of the two approaches
are very similar. It is worth noting that combining VΓ-Var +
Norm with length-normalized embeddings would not provide
additional benefits over VΓ-Var models. Indeed, the norm that
should be employed at calibration level is the norm of the
input vectors of the PLDA model, i.e. the norm of the length-
normalized vectors. Since this norm would be the same for all
embeddings, the VΓ-Var and VΓ-Var + Norm models would
become equivalent.

Finally, we also considered a simple model that combines
both duration and embedding norm variability as

wS,i = wC + wdur,i + wnorm,i (54)

where wdur,i and wnorm,i are the duration and norm compo-
nents used in VΓ-Var + Dur and VΓ-Var + Norm models. For
SRE 2019, we observed that incorporating both terms does not
provide additional benefits, suggesting that both terms convey
similar side information.

D. SRE 2010

The SRE 2010 test contains mainly long utterances. As
for SRE 2019, also in this case we consider a modified test
set where segments have been cut to a duration between 3
and 60 seconds. The i-vector front-end allows quantifying
the uncertainty in the i-vector estimate, which is strongly
related to utterance duration. For the short segments setup
we therefore consider as additional baseline a Full-Posterior-
Distribution PLDA (FPD-PLDA) model [28]. The results are
reported in Table IV. The first row shows the minimum
costs of PLDA and FPD-PLDA for short segments, and the
minimum costs of the same PLDA model for the original
segments. For short segments we can observe that FPD-PLDA
significantly improves both Cllr and EER, while the actual
Cprim costs of the two models are very close. The next four
rows compare the duration-agnostic calibration models. As for
SRE 2019, the VΓ-Var models provide the lowest Cllr, and
significantly improve performance in terms of Cprim with
respect to linear models. Concerning short utterances, Log-
Reg + QM4 reduces both Cllr and EER with respect to
standard Log-Reg, but slightly degrades the actual primary
cost, although, given the small number of evaluation trials, this
may not be statistically significant. On the other hand, VΓ-Var
+ Dur models outperform both Log-Reg + QM4 and VΓ-Var
both in terms of Cllr and Cprim, while providing similar EER.

Comparing the results of PLDA and VΓ-Var + Dur with
FPD-PLDA and VΓ-Var, we can observe that the two models

achieve similar performance. This confirms again that our
duration model is indeed able to incorporate embedding un-
certainty directly at calibration level, achieving similar effects
as the combination of uncertainty models and PLDA back-
ends, but without requiring an explicit model for embedding
uncertainty. Since DNNs usually are not able to provide
uncertainty measures, the VΓ-Var approach can be employed
as a proxy for modeling the effects of uncertainty propagation
directly at score level. As expected, duration-aware models do
not further improve the FPD-PLDA results. Finally, results on
long utterances show that duration modeling does not provide
improvements in this scenario. Again, this was expected, since
for longer utterances the miscalibration effects due to duration
variability fade. The results are consistent with those of FPD-
PLDA models for long segments [28].

Table V shows the results of PLDA with length-normalized
embeddings and VΓ-Var calibration, and PLDA with non-
normalized embeddings paired with VΓ-Var + Norm. The
first four rows of the table refer to the original (long) seg-
ments. Without length normalization we observe a significant
degradation of performance, with Log-Reg models providing
significantly worse Cprim than VΓ-Var. Once we incorporate
the embedding norm at calibration level, however, the gap is
significantly reduced. We observe only a small degradation
in terms of Cllr and EER with respect to length-normalized
PLDA, although the degradation in terms of Cprim is still
relevant. The second part of the table compares the same
approaches over short segments. Again, length normalization
is essential for this dataset, and also in this case VΓ-Var +
Norm significantly reduces the gap between non-normalized
and normalized embeddings. Finally, Rows 9 to 12 report the
results for duration-aware models. Results are similar to those
obtained for long segments. In contrast with SRE 2019 tests, in
this case we observe an improvement when we combine both
duration and embedding norms, although length normalization
paired with VΓ-Var + Dur models seems to be more effective
than the combined VΓ-Var + Norm + Dur approach.

E. SRE 2012
The last set of experiments was conducted on SRE 2012

evaluation data. The SRE 2012 enrollment set consists of
multiple repetitions per speaker, some being the same utter-
ance recorded through different microphones. Since these ut-
terances are not independent, it’s difficult to define an effective
utterance duration for the enrollment side. However, as we
showed in [29], we can assume that enrollment embeddings
have been extracted from long utterances, i.e. we can ignore
the uncertainty due to the enrollment duration. Table VI reports
the results of different calibration approaches. Duration-aware
models have been trained with a fixed enrollment duration,
set to a large value. The results show that for this dataset
Logistic Regression based models are effective and provide
good calibration. The VΓ-Var models do not provide improve-
ments in terms of Cllr, but improve calibration for low false-
alarm regions, resulting in lower primary costs. Concerning
duration-aware models, we observe that the proposed approach
achieves again similar Cllr as Log-Reg + QM4, while slightly
decreasing the actual primary costs.
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TABLE IV: Results on SRE 2010 with an i-vector frontend.

Short segments Original (long) segments
PLDA FPD-PLDA PLDA

Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER

Min. costs 0.288 0.756 8.1% 0.251 0.764 7.3% 0.094 0.420 2.5%

Log-Reg 0.297 0.818 8.1% 0.260 0.809 7.3% 0.098 0.444 2.5%
Linear VΓ 0.298 0.835 8.1% 0.260 0.818 7.3% 0.099 0.460 2.5%
VΓ-Var (Gen) 0.292 0.791 8.1% 0.256 0.797 7.3% 0.097 0.430 2.5%
VΓ-Var (Disc) 0.292 0.784 8.1% 0.257 0.774 7.3% 0.097 0.425 2.5%

Log+Reg + QM4 0.261 0.827 7.0% 0.260 0.832 7.2% 0.098 0.451 2.5%
VΓ-Var + Dur (Gen) 0.259 0.755 7.0% 0.256 0.798 7.3% 0.097 0.430 2.5%
VΓ-Var + Dur (Disc) 0.253 0.787 7.0% 0.257 0.774 7.3% 0.097 0.425 2.5%

TABLE V: Results on SRE 2010 with an i-vector frontend.

PLDA Calibration
Cllr Cprim EER

L2-norm Model

Original (long) segments

3 VΓ-Var (Gen.) 0.097 0.430 2.5%

7 LogReg 0.173 0.612 4.3%
7 VΓ-Var (Gen.) 0.167 0.491 4.3%
7 VΓ-Var + Norm (Gen.) 0.102 0.501 2.6%

Short segments

3 VΓ-Var (Gen.) 0.292 0.791 8.1 %

7 LogReg 0.427 0.971 12.7%
7 VΓ-Var (Gen.) 0.415 0.914 12.7%
7 VΓ-Var + Norm (Gen.) 0.305 0.789 8.7%

3 VΓ-Var + Dur (Gen.) 0.259 0.755 7.0%

7 LogReg + QM4 0.345 0.932 9.5%
7 VΓ-Var + Dur (Gen.) 0.333 0.874 9.4%
7 VΓ-Var + Norm + Dur (Gen.) 0.282 0.790 8.0%

TABLE VI: Results on SRE 2012 with an e-vector frontend.

PLDA PSVM

Cllr Cprim Cllr Cprim

Min. costs 0.062 0.211 0.057 0.210

Log-Reg 0.065 0.244 0.061 0.217
Linear VΓ 0.066 0.269 0.061 0.224
VΓ-Var (Gen) 0.066 0.241 0.062 0.213
VΓ-Var (Disc) 0.065 0.224 0.061 0.212

Log+Reg + QM4 0.054 0.211 0.051 0.209
VΓ-Var + Dur (Gen) 0.056 0.230 0.054 0.204
VΓ-Var + Dur (Disc) 0.055 0.186 0.053 0.199

VII. CONCLUSIONS

We have presented a generative model able to incorpo-
rate utterance-dependent miscalibration sources in terms of
“effective”, utterance-dependent within-class variance. This
allows us, for example, to explicitly model utterance dura-
tion at calibration level. The resulting model improves both

calibration and verification accuracy, and achieves similar or
better performance with respect to discriminative approaches
based on quality measures. Being generative, the model can
be extended to deal with missing labels. Future work will
investigate the effectiveness of the VΓ-Var approach for
semi-supervised scenarios. Furthermore, our approach pro-
vides strong interpretations for the calibration parameters,
and a novel interpretation of the role of embedding norm in
representing utterance-level uncertainty. Although the model
assumes common between-class variability for all speakers,
the approach can be easily extended to deal with sub-groups of
speakers with different between class variability (e.g. male and
female gender). Future work will also investigate the effects
of employing variable between-speaker variability factors,
and other methods to measure utterance-dependent variability,
including, for example, those provided by score normalization
statistics [52], with the goal of providing a unified framework
for score normalization and calibration.
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