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ABSTRACT 

Compressive sensing techniques can greatly reduce the 
complexity of imaging instruments used in space 
applications, by reducing sampling requirements and 
power consumptions without sacrificing image 
resolution. In this paper, we present the compressive 
imaging technique developed within the EU project 
“SURPRISE”. A suitable CS model adapted to the 
optical layout of the instrument enables image 
reconstruction at a resolution higher than the sensing 
elements. Both classical CS reconstruction techniques 
and deep learning-based methods are investigated, 
showing that the latter achieves a better quality of the 
reconstructed images for different compression ratios. 
Interestingly, deep learning-based techniques also reduce 
the complexity of CS reconstruction, since most of the 
computations are performed in the training phase that can 
be executed offline. 
 
1. INTRODUCTION 

Increasing amounts of data are being generated by 
imaging sensors in space applications, due to the 
evolution of image acquisition technologies and the need 
to obtain high-resolution imagery for improved scientific 
and commercial exploitation. As reported in [1] along 
with more data, come increased requirements on the 
computation and memory resources available on the 
onboard processing units, which must be able to handle 
very high data rates with limited power consumption, and 
on the transmission system, which acts as a bottleneck 
and prevents full exploitation of the acquired 
information. 
Signal processing techniques can help to address these 
issues allowing information extraction from the acquired 
data and images directly onboard satellites. This allows 
not only to screen the acquired images and select those 
corresponding to events of interest, but also to generate 
alarms directly on the satellite, which can be 
communicated to the ground stations with very low 
latency, bypassing the image transmission and 
processing chain. 
One of the most important signal processing techniques 
that can have a role in this scenario is CS [2]. CS 
represents a signal (or image) through a small set of linear 

measurements, under the assumption that the signal is 
“sparse” in some domain, i.e., it has only few significant 
coefficients, while most are close to zero. In this case, 
nonlinear reconstruction algorithms can recover the 
signal exactly or with high fidelity. 
CS has been employed for efficient computational 
imaging, e.g., reducing the number of detectors as in the 
single-pixel camera (see [3]). Moreover, it has been 
shown [4] that it is possible to extract information 
directly from the acquired random projections, enabling 
the processing of the data directly onboard, without 
performing the computationally heavy reconstruction 
process which typically takes place at the ground 
segment. Finally, in [5] it has been shown that CS can 
also be used as a cryptosystem, where the sensing matrix 
serves the role of an encryption key. These features are 
very interesting for space applications where CS 
technology potentially enables the design of a class of 
innovative computational imaging instruments perfectly 
suited to “big data from space”, providing native 
compression and encryption, enabling onboard data 
analysis, while at the same time relieving the 
requirements on the onboard processing system. 
This paper describes the compressing imaging instrument 
developed in the “SURPRISE” EU project, discussing 
the acquisition model and the main reconstruction 
techniques. As an important contribution, it is shown that 
deep learning-based reconstruction methods can sensibly 
improve the quality of the reconstructed images with 
respect to conventional techniques, which enables 
simpler sampling architectures for the onboard 
instrument. Moreover, the complexity of deep learning 
methods mainly lies in the training of the network: once 
the reconstruction network is properly trained, the 
reconstruction algorithm is usually faster  than the 
traditional optimization methods used in CS, which is an 
additional advantage of the proposed architecture. 
 
2. COMPRESSIVE SENSING  

CS is a mathematical framework that allows to solve 
under-determined systems and that, applied in the field 
of image processing, allows to represent signals in a 
compact (compressed) way. This framework tries to 
overcome the Shannon-Nyquist theorem by using a 



 

number of data “samples” as close as possible to the 
number of degrees of freedom of the signal. So, the 
acquired data is much less than in the classical case, 
making the signal much easier to manipulate and 
transmit. Nowadays a very large amount of data is 
collected, but only a small portion is actually used. Most 
of it, in fact, is collected and then discarded via lossy 
compression. For example, for an image of megapixel 
resolution, compressed in JPEG 2000, just a few 
kilobytes of data are retained. CS attempts to avoid 
acquiring large amounts of data just to immediately 
discard most of them through the compression process. 
 
CS relies on two main concepts: sparsity and 
incoherence.  A signal is said to be sparse when most of 
its components are equal to zero. In particular a signal 
𝑥 ∈ ℝ! is 𝑘-sparse if it has at most 𝑘 non-zero entries, 
i.e. ‖𝑥‖" ≤ 𝑘. 
In real life, signals are often sparse in a domain different 
from the original one (e.g., image pixels are not sparse, 
but their transformed representation may be). This means 
that 𝑥 will be considered sparse also if it has a sparse 
representation in some basis Ψ: 
 

𝑥	 = Ψ𝑐						with	𝑐	sparse	 (1) 
 
Moreover, signals are rarely exactly sparse, so it is 
required to approximate the concept of sparsity with the 
concept of “compressibility”. So, typically, once data are 
acquired, compressing a signal is equivalent to 
approximating the signal 𝑥 with a signal 𝑥. ∈ Σ#, defined 
as the set of all 𝑘-sparse signals, such that the 
approximation error is minimum: 
 

𝜎#(𝑥)$ = min
	&'∈)!

‖𝑥 −	𝑥.‖$ (2) 
	 

i.e., 𝑥. is obtained by retaining just 𝑘 ≪ 𝑛 components	of 
𝑥 (or 𝑐), that are the ones carrying almost all the signal 
energy.  
Given a sparse or compressible signal 𝑥, with CS it is 
possible to obtain the compressed data 𝑦 directly. The 
sensing operation can be easily written as: 
 

𝑦	 = Φ𝑥 (3) 
 
with 𝑦 ∈ ℝ*×,, 𝑥 ∈ ℝ!×, and Φ ∈ ℝ*×!, 𝑚 ≪ 𝑛. 
Recalling the model in (1), the sensing problem becomes 
𝑦	 = ΦΨ𝑐 and can be solved for a certain sparse vector �̂� 
provided that ΦΨ satisfies suitable properties; in this 
context the notion of incoherence is relevant. 
Incoherence refers to the fact that the sensing matrix 
should have a very dense representation in the 
representation basis Ψ. Coherence is defined as: 
 
𝑣(Φ,Ψ) = √𝑛 max

,-#.-!
B〈Φ# , Ψ/〉B,												𝑣 ∈ [1, √𝑛]	 

 

where Φ# and Ψ. are the columns vector of Φ and Ψ. So, 
if the coherence between the sensing matrix and the 
representation basis is low, then it will promote CS 
operations. It can be proved that random matrices Φ have 
a very low coherence with any fixed basis Ψ.  
 
3. CS RECONSTRUCTION ALGORITHMS 

In this section the state of the art of reconstruction 
algorithms for CS, based on traditional and deep learning 
approaches, are presented.  
 
3.1. Traditional reconstruction algorithms 

Let us consider the sensing process: 
 

𝑦 = Φ𝑥 + 𝜂 (4) 
 
affected by the noise 𝜂 ∈ ℝ*	whose ℓ0 norm is bounded 
by some 𝜀 > 0 and where 𝑥 ∈ ℝ!, Φ ∈ ℝ*×! and 𝑚 <
𝑛. If we assume 𝑥 sparse in the original domain, i.e., Ψ	 =
	𝐼, the reconstruction of the original signal sampled with 
CS, can be obtained solving the ℓ1	problem:  
 

𝑥. = min‖𝑥.‖"												s.t.    ‖𝑦 −Φ𝑥‖0 < 𝜀 (5) 
 
where ‖𝑥.‖" is the ℓ1	pseudo norm, i.e. the number of 
non-zero entries of 𝑥..  
The recovery of the signal is guaranteed under some 
conditions [6], but the problem is NP-hard and 
performing an exhaustive search of the sparsest solution 
is not feasible. 
Usually, this problem can be solved using several 
different approaches, including greedy algorithms: fast 
with low-sparsity signal, but they are sensitive to noise. 
The main representatives are Matching Pursuit [7], 
Orthogonal Matching Pursuit [8], Compressed Sampling 
Matching Pursuit [9], Regularized Orthogonal Matching 
Pursuit [10] and Subspace Pursuit [11]; iterative 
thresholding algorithms: fast, they recover 
measurements by soft and hard thresholding throw 
iterations. Iterative Hard Thresholding based algorithms 
includes Message Passing [12], Sequential Sparse 
Matching Pursuits [13] and Belief Propagation [14]. 
Under Iterative Soft Thresholding algorithms, Iterative 
Shrinkage/Thresholding Algorithm (ISTA) [15] and its 
faster FISTA [16] can be found; convex relaxation 
algorithms: signal reconstruction by linear programming 
with higher complexity then greedy approach. The most 
relevant examples are Basis Pursuit [17], Least Absolute 
Shrinkage and Selection Operator [18] and basis pursuit 
denoising [19];  non-convex relaxation algorithms: faster 
than previous solutions but prone to find local optima 
instead of the global one. In this category Focal 
Underdetermined System Solver [20], Iterative Re-
weighted Least Squares [21] and Bayesian CS [22] can 
be found. 



 

A convenient solution, especially in the case of image 
reconstruction, is to replace the minimization of the 
ℓ1	norm with the minimization of the Total Variation 
(TV) pseudo-norm [23]. This approach is particularly 
useful for natural images that exhibit compressible 
gradients i.e. the most of the energy is packed in very few 
of the image gradients. In the TV formulation, the 
reconstruction problem becomes: 
 

𝑋R = argmin
2

TV (𝑋) + 𝜆‖𝑦 −Φ𝑥‖00	 (6) 
 
where 𝑋 is a two-dimensional image, 𝑥 is the vectorized 
version of the image 𝑋 and the isotropic TV is defined as: 
 

TV(𝑋) =UVB𝑋34,,. − 𝑋3,.B
0 + B𝑋3,.4, − 𝑋3,.B

0

3,.

 

 
The TV reconstruction method is fast and widely used, 
so it has been chosen to represent traditional 
reconstruction algorithms. 
 
3.2. Deep learning-based reconstruction algorithms 

In recent years, the generalization capability of deep 
neural networks has shown to considerably improve the 
performance of previous state-of-the-art technologies in 
many fields, including CS reconstruction. 
In [24] a stacked denoise auto-encoder is proposed to 
improve signal reconstruction performance using the 
statistical dependency between the different entries of the 
signal. A reconstruction network based on fully 
connected layers had been presented in [25] and [26]. In 
[27] authors presented a more advanced CS algorithm 
based on Convolutional Neural Network (CNN) named 
ReconNet which performs a regression to reconstruct the 
original image blocks starting from the CS 
measurements. In [28] a fully convolutional solution is 
presented for CS reconstruction. In [29] authors use a 
CNN to implement the iterative shrinkage-thresholding 
algorithm (ISTA-Net). Lastly in [30] a scalable 
convolutional neural network (SCSNet) is presented to 
improve the image quality reconstructed with a greedy 
algorithm using a hierarchical reconstruction network. 
The two best performing frameworks are ISTA-
Net/ISTA-Net+ and CS/SCSNet. The former has been 
chosen over the latter, because CS/SCNET perform best 
using a sensing matrix adapted to the dataset, whereas 
ISTA-Net/ISTA-Net+ have proven to perform better 
using generic sensing matrices. 
 
3.3. ISTA-Net algorithm 

ISTA-Net [29] framework consists of mapping each 
classic ISTA algorithm update step into a deep network 
architecture in which there is a fixed number of phases 
that correspond to iteration in the traditional algorithm. 
In [29] the authors propose a general nonlinear 

transformation to sparsify images and, in particular, a 
combination of two convolutional operators separated by 
a ReLU. Moreover, all the parameters in this algorithm 
are learned end-to-end, rather than being hand-crafted. 
The two equations corresponding to the update steps in 
ISTA are replaced by two neural network modules. The 
first one, called 𝑟(#), corresponds to the evaluation of 
reconstructed signal at step 𝑘: 
 

𝑟(#) = 𝑥(#8,) − 𝜌(#)Φ(9)YΦ&
(#8,) − 𝑦Z. (7) 

 
 
The only main difference with traditional ISTA is that 
now 𝜌 can vary across iterations instead of being fixed. 
The second module is the 𝑥(#) module, given by 
 

𝑥(#) = ℱ̂(#) _𝑠𝑜𝑓𝑡Yℱ(#)Y𝑟(#)Z, 𝜃(#)Ze . (8) 
 
Also in this case, the module is a particular case of 
proximal mapping associated to the non-linear transform 
ℱ(#)(∙), based on the assumptions that each element 
𝑥(#) − 𝑟(#)	has an independent distribution with common 
zero mean and variance 𝜎0. The step size 𝜌(#), the 
parameters of the forward and backward transform ℱ(#)(∙
) and ℱ̂(#)(∙) as well as the shrinkage threshold 𝜃(#)	are 
learned as NN parameters. Like traditional ISTA, ISTA-
Net initialization 𝑥("), given any input CS measurement 
𝑦, is computed as: 𝑥(") 	= 	𝑄init_:, with 𝑄init_y equal to 
linear mapping matrix. The loss function is defined as: 
 

ℒtotal(Θ) = ℒdiscrepancy + ℒconstraint (9) 
 
where  ℒdiscrepancy	imposes that the reconstructed signal is 
close to training data whereas  ℒconstraint imposes that the 
backward transform approximates the reverse of the 
forward transform.  
Since it provides an excellent trade-off between 
reconstruction accuracy and flexibility, the ISTA-Net 
framework has been chosen as the starting point for the 
development of deep learning-based reconstruction 
algorithms in this paper.  
 
4. SURPRISE INSTRUMENT 

This section describes the proposed SURPRISE 
instrument, and the corresponding image acquisition 
model that is needed to successfully reconstruct the 
images from the subsampled measurements. An 
overview of the instrument is presented in Figure 1. 
The main components of the instrument are: 
• scanning system, in order to enable whiskbroom 

operation; 
• spatial light modulator (SLM) which modulates the 

scene according to a binary pattern, referred to as 
sensing mask; it can be implemented with a digital 
micromirror device (DMD); 



 

 
 

 
Figure 1: Schematic of the optical layout of the SURPRISE instrument

• set of dichroic mirrors used to split VIS-NIR light 
from IR light and the latter, subsequently, into the 
spectral bands of interest for the two MWIR 
channels; 

• set of optical condensers that perform the signal 
spatial integration and focus it on the relevant 
channel's detector; 

• spectrometer and detection system used to 
implement the VIS-NIR channels; 

• single element MWIR detectors and relevant 
bandpass filters used to implement the two MWIR 
channels. 

 
The SURPRISE instrument is a super-resolved 
whiskbroom imager, serially acquiring the scene one 
macro-pixel at a time. The term macro-pixel refers to the 
image captured in the instrument’s instantaneous field of 
view (IFOV). Due to the coded aperture design 
exploiting a spatial light modulator, each macro-pixel can 
be reconstructed into a block of 𝑆𝑥𝑆 micro-pixels, where 
the value of 𝑆 depends on the design super-resolution 
factor. 
 
4.1. Simplified Acquisition model 

We first present a simplified model to highlight the 
terminology in the compressive instrument. In particular, 
we can start by modelling the measurements acquired by 
a macro-pixel in band 𝑖, for a single spatial location P in 
the whiskbroom acquisition procedure: 
 

𝑦3; = Φ3
<𝑥3; (10) 

 
In this model we have: 

• 𝑦3; : column vector of m measurements acquired 
by the detector in band 𝑖 

• 𝑥3; : column vector of n image micro-pixels  

• Φ3
<	: sensing matrix. It depends on the binary 

sensing mask used on the SLM. Notice it might 
be a function of wavelength. 

 
The sensing matrix can be modelled as an 𝑚× 𝑛 matrix 
where each row has different coefficients, corresponding 
to each serially acquired measurement. A detector macro-
pixel acquires 1 ≤ 𝑚 ≤ 𝑛 measurements. When 𝑚 > 1, 
multiple measurements are acquired by serially changing 
the sensing mask on the SLM. The ratio between the 
number of measurements m and the number of micro-
pixels n is called compression ratio. On the other hand, n 
is the super-resolution factor, i.e., how many micro-
pixels can be reconstructed from a macro-pixel 
measurements.  
While ideally the Φ3

< matrix should be a binary 0/1 
matrix, in practice due to nonideality of the SLM it is full 
(no zero entries) and its entries are binary-valued with a 
low value equal to 𝛼 and a high value equal to 𝛽. The 
exact values of the 𝛼 and 𝛽 depend on the SLM 
calibration and can change as a function of wavelength, 
so the same matrix cannot be reused to model the 
acquisition of all detectors in all bands. A first 
approximation can be considered that fixes 𝛼 = 0 and 
𝛽 = 1 and an unknown rescaling factor that can be 
measured at calibration time. This approximation is 
expected to be realistic and simulating system 
performance using it should yield reliable results. Second 
order effects are expected due to 𝛼 being a small positive 
constant instead of zero, and 𝛼, 𝛽 being stochastic, 
possibly time-varying, quantities with associated 
uncertainties, albeit small. 
It is also worth noticing that implementation of the SLM 
will be performed with a DMD with a number of 
micromirrors typically higher than the number of micro-
pixels to be imaged. This allows for binning 
micromirrors into blocks, which helps reduce the 
uncertainty on the values of 𝛼, 𝛽. 
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The following equation presents an example with a 
super-resolution factor of 4 and a compression ratio of 
75%, i.e., three measurements are serially acquired by a 
macro-pixel corresponding to four micro-pixels. 
 

q
𝑦3,;

𝑦30;

𝑦3=;
r = s

	𝛼	 	𝛼	 𝛽 𝛽
𝛽 𝛽 	𝛼	 𝛽
	𝛼	 𝛽 𝛽 	𝛼	

t

⎣
⎢
⎢
⎢
⎡𝑥3,

;

𝑥30;

𝑥3=;

𝑥3>; ⎦
⎥
⎥
⎥
⎤

(11) 

 
However, it is important to consider a global image 
model in order to effectively exploit spatial correlation in 
the image reconstruction algorithms.  The measurements 
acquired by means of whiskbroom scanning of a scene 
with the proposed instrument can be modelled as: 
 

𝑦3 = Φ3𝑥3 (12) 
 
where the sensing matrix Φ3 is now a sparse block-
diagonal matrix. The following example considers a 
scene with 4 spatial locations, each composed of 4 micro-
pixels, a compression ratio of 75% and a super-resolution 
factor of 4.  
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑦!"

#"

𝑦!$#"

𝑦!"#"

𝑦!$#$

𝑦!"#$

𝑦!$#$

𝑦!"#%

𝑦!$#%

𝑦!%#%

𝑦!"#&

𝑦!$#&

𝑦!%#&⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
	𝛼	 	𝛽	 𝛼 𝛽
𝛽 𝛽 	𝛼	 𝛼
	𝛼	 𝛽 𝛼 𝛽	

0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

	
	𝛼	 	𝛼	 𝛽 𝛽
𝛽 𝛽 	𝛼	 𝛽
	𝛼	 𝛽 𝛽 	𝛼	

0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

	𝛽	 	𝛼	 𝛽 	𝛼
	𝛼 𝛽 	𝛼	 𝛽
	𝛼	 	𝛼 𝛽 	𝛽	

	
0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

	
0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

	
0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

0 0 0 0
0 0 	0	 0
	0	 0 0 	0	

	𝛼	 	𝛽	 𝛽 	𝛼
𝛽 	𝛼 	𝛼	 𝛽
	𝛼	 𝛽 	𝛼 	𝛽	⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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𝑥!"#$

𝑥!$#$
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𝑥!$#%

𝑥!%#%

𝑥!&#%

𝑥!"#&

𝑥!$#&
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⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(13) 

 
Notice that the SLM sensing mask is changed for every 
imaged spatial location. 
 
4.2. Full acquisition model 

The overall instrument can be modelled as a linear 
system, acquiring measurements of the scene. In this full 
model, we take into account the effects of the optics as 
well as the noise introduced by the detectors. For a single 
spatial location, the model can be written as: 
 

𝑦3.; = 𝟏𝐻𝜙3.;𝑥3; + 𝜂3.; (14) 
 
for the j-th measurement, where 𝐻 is the linear operator 
modelling the effect of the point spread function (PSF) of 
the optical system, 𝜙3.; = 𝑑𝑖𝑎𝑔(Φ3.

? ) is a diagonal matrix 
whose entries are the entries of the j-th row of Φ3

? and 1 
is a row vector of ones that integrates the result onto a 
single measurement. 
This model now accounts for both the spatial modulation 
introduced by the SLM and the effects of the optical 
system, which allows to provide a more accurate 

reconstruction of the image. Moreover, the term 𝜂3; 
accounts for sensor noise, including thermal noise, shot 
noise, readout noise. 
Finally, an even more complex model can take into 
account distortion effects due to optical elements (e.g., 
the dichroic filter and spectral filter). In this model, the 
matrix 𝐻 would be a product of different degradation 
operators: 
 

𝐻 = 𝐻,𝐻0…𝐻@ 
 
where 𝐻@ represents the PSF, and each of the other 
matrices 𝐻3 models a specific type of degradation. 
 
5. RESULTS 

The performance of the SURPRISE instrument has been 
evaluated by running preliminary experiment on both 
natural images and simulated hyperspectral images. In all 
cases, the reconstruction quality achieved by the 
algorithms has been evaluated using the PSNR, which is 
a common metric adopted to evaluate the quality of a 
reconstructed image respect the original one. This metric 
is defined as the ratio between the squared maximum 
possible value of a signal and the power of the noise that 
affects the fidelity of its representation after 
sensing/reconstruction. It is usually expressed in terms of 
the logarithmic decibel scale (dB). Typical values of 
PSRN are in a range of 20 – 40 dB. Moreover, being 
expressed in terms of the logarithmic decibel scale, an 
improvement of 0.25 dB can be considered significant. In 
our specific case, after evaluating each test image 
individually by calculating the PSNR between the 
original and the reconstructed image, the average PSNR 
will be calculated and reported in appropriate tables. 
ISTA-Net+ has been trained on a training set of 431 
natural pictures, while for TV this phase is not necessary. 
It is noted that, while these images are not representative 
of an Earth observation scenario, it is possible to retrain 
ISTA-Net for a specific Earth observation dataset. In 
practice, one can keep the baseline ISTA-Net network as 
a pre-trained network and fine-tune its parameters on a 
new dataset. For the training, we used a learning rate of 
0.001 with the Adam optimizer. The neural network has 
been trained for 200 epochs. 
For both algorithms, a binary matrix with entries 0 – 1/𝐵 
has been used as sensing matrix 𝜙, where the dimension 
of the sensing mask is 𝐵𝑥𝐵. Dividing by 𝐵 is performed 
in order to normalize 𝜙 and the same sensing matrix is 
used also in TVAL to have a fair comparison. In all 
experiments, the sensing mask will have a size of 32×32. 
The sensing matrix is obtained starting from a binary 
mask with the same size as the sensing mask. 
Specifically, we generate a binary random matrix of 
dimensions 32×32 from which we extract each time the 
groups of micro-pixels we are interested in. Then, we 
flatten the entries of a micropixel and insert them, 
columns-shifted, in different rows of the sensing matrix 



 

𝜙. This allows us to obtain a 𝜙 which has, for every row, 
only few non-zero elements and hence a sparse structure, 
according to equation (13). When using macro-pixels 
having 2×2, 4×4 and 8×8 size it may happen that we are 
unable to extract enough measurements from a single 
32×32 mask to fill the sensing matrix as just explained, 
especially when we want to obtain a large number of 
measurements 𝑀. In those cases, we will generate 
multiple masks to be able to get the right number of 
measurements. Finally, the sensing is independent for 
every spatial location, composed of multiple micro-
pixels associated to on macro-pixel. However, for the 
reconstruction we consider macro-pixels with several 
spatial location to take advantage of the correlation of the 
image. Finally, in this stage we assumed no degradations 
from the optical systems, i.e., 𝐻 = 𝐼 in equation (14). 
 
5.1. Performance on natural images 

Here, we compare the performance of both ISTA-Net and 
TVAL on a dataset composed of 11 natural images. The 
main goal is to understand how the algorithms 
performance varies with the number of macro-pixels 
contained in an image, starting from a 32×32 size mask, 
and the super-resolution factor. The number of macro-
pixels in a 32×32 sensing mask changes as a function of 
the number of micro-pixels that compose it. In our case 
we have studied macro-pixels having 2×2, 4×4 and 8×8 
size with several different masks for obtaining the 
number of measurements we are interested in. The results 
will be shown for different total number of measurements 
𝑀 that are needed for each configuration.  
The results are reported in Tables 1-4 and show that 
ISTA-Net sensibly outperforms TVAL for all 
compression ratios. Moreover, the gain of ISTA-Net over 
TVAL is usually larger for compression rates in the range 
25%-50%. 
 

M=64 

Micro-Pixels & 
Mask 

ISTA-Net+ 
Average PSNR 

TVAL 
Average PSNR 

4×4, 1 mask 23.06 20.08 

8×8, 4 masks 23.18 20.19 

Table 1: Average PSNR with a CS ratio of the 6.25% 
 

M=128 

Micro-Pixels & 
Mask 

ISTA-Net+ 
Average PSNR 

TVAL 
Average PSNR 

4×4, 2 masks 25.43 21.25 

8×8, 8 masks 25.97 22.83 

Table 2: Average PSNR with a CS ratio of the 12.50% 

 
M=256 

Micro-Pixels & 
Mask 

ISTA-Net+ 
Average PSNR 

TVAL 
Average PSNR 

2×2, 1 mask 29.22 23.56 

4×4, 4 masks 29.11 23.95 

8×8, 16 masks 29.93 25.80 

Table 3: Average PSNR with a CS ratio of the 25% 
 

M=512 

Micro-Pixels & 
Mask 

ISTA-Net+ 
Average PSNR 

TVAL 
Average PSNR 

2×2, 2 masks 33.38 26.40 

4×4, 8 masks 34.12 27.31 

8×8, 32 masks 34.88 29.58 

Table 4: Average PSNR with a CS ratio of the 50% 
 
 
5.2. Simulation of SURPRISE Instrument 

For this simulation, we have 8 images which have been 
simulated in MATLAB by IFAC-CNR for testing the 4×4 
super-resolution. They have the following features: 388 
rows, 28 columns, 10 bands. Moreover, the spatial 
resolution is 250 m and the spectral one is 40 nm. 
Furthermore, the original pictures have been acquired 
with an along track dimension bigger than the across one.  
 
 

Image Average PSNR 

Argentario_020712 24.20 

Argentario_020914 27.63 

Firenze_021219 32.80 

Firenze_100714 26.54 

SanRossore_120810 31.99 

Umbria100325 30.56 

Venezia_010607 30.77 

Venezia_010607 29.67 

Table 5: Average PSNR for Instrument Simulation. 
 



 

Since ISTA-Net+ has been trained to work with pictures 
having two dimensions, for every simulated picture, we 
decided to separate the 10 bands and process the obtained 
images independently. Regarding the performance 
evaluation, the results are shown in Table 5 and they 
represent the average PSNR measured on all 10 bands.  
We can observe that the reported results are quite 
heterogeneous. In three cases, the performances are 
lower than those achieved previously with the same 
configuration, but on totally different images such as 
natural ones, probably due to the presence of numerous 
details for all the bands. 
 
 

          
Figure 2: Original bands image for Argentario_020712. 
 

          
Figure 3: Reconstructed bands image for 
Argentario_020712. 

In the remaining cases, however, the performance is 
better than in the case of natural images, this is probably 
due to the fact that the images are very sparse and with 
few details. We report in Figure 2 the 10 original bands 
pictures for the image Argentario_020712 and in Figure 
3 the reconstructed ones.  
 
6. CONCLUSIONS 

This paper has addressed several key problems in CS 
reconstruction as applied to computational multispectral 
imaging systems. The results show that methods based 
on deep learning are better than conventional methods for 
CS reconstruction, as they achieve better reconstruction 
accuracy. Moreover, such methods are relatively robust 
to the partial lack of knowledge of the system parameters, 
as well as robust to the scene content. Among all possible 
configurations and super-resolution factors, the best 
results seem to be obtained when high super-resolution 
factors are sought. In this case, the image is comprised by 
fewer macroblocks, and a larger number of 
measurements are acquired for each macroblock. It has 
to be noted that, given the sequential nature of the CS 
process, this configuration tends to require a longer 
acquisition time for a given scene. A possible drawback 
of those method is the training time and the need of a 
training set. However, the required training set is not 
necessarily specific to the sensor under analysis, and a 
rather generic set of natural images will suffice. 
Moreover, since the neural network is run at the ground 
segment, where the reconstruction takes place, the 
complexity is not a significant hurdle. 
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