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Abstract

Physics-based simulations are a powerful tool to analyze the behavior of semicon-
ductor devices under different operating conditions. Due to the continued shrinking
of transistor dimensions, the scenario of semiconductor device technology is nowa-
days characterized by the significant technological variability and difficult thermal
management, strongly affecting the device operation and producing a spread of
their performances. Physics-based sensitivity analysis is the ideal tool to link phys-
ical/technological parameter variations to the device performance spread, but its
numerical burden may prove to be a limiting factor in the widespread diffusion of
TCAD tools, especially in frequency-dependent multi-harmonic analyses. One way
to overcome this limit is to rely on new agile and flexible techniques, such as the
Green’s Function (GF) approach.

This thesis presents the framework of advanced physics-based modeling for the
peculiar needs of microwave devices. An in-house, pre-existing 2D physics-based
simulator, allowing for large-signal multi-tone periodic and quasi-periodic analysis
through the Harmonic Balance technique, has been extended and optimized. The
original version of the in-house code, implementing the drift-diffusion model, has
been improved through the treatment of more accurate temperature dependencies in
the most important materials, e.g. Silicon, GaAs, GaN. The worsening of environ-
mental conditions makes thermal management increasingly important, leading to the
need of implementing the self-heating equation. The investigation of trap signatures,
another fundamental aspect to achieve good RF performances, has been accounted
implementing the trap rate equation. These advanced capabilities make the in-house
simulator able to evaluate frequency dispersion effects related to temperature and
trapping mechanisms, also including an interplay of traps and thermal dynamics.
Moreover, the TCAD solver has been extended to allow for efficient sensitivity anal-
yses in both static and dynamic conditions through the GF technique, with the aim of
assessing the device response to a small physical/technological parameter variation,



vi

e.g. temperature, doping concentration, trap energy, etc. These improvements make
the TCAD solver very appealing with respect to commercial tools for the simulation
of nanoscale devices in analog RF/microwave applications.

The research activity has addressed two significant case studies to demonstrate
the TCAD capabilities. A T -dependent sensitivity analysis is presented on a 54 nm
Si FinFET Class A Power Amplifier (PA) in both the DC case, including self-heating,
and the LS regime. The analysis demonstrates the accuracy of the GF technique and
its advantage in terms of simulation time of about 20%. Thermal sensitivity affects
all operating conditions, showing more than 1 dB output power reduction at T = 350
K. LS T -dependent simulations are also performed with the concurrent variation
of an additional parameter, i.e. load and doping concentration of the source/drain
regions. The analyses are carried out with no extra numerical burden and demonstrate
that temperature variations dominate over load sensitivity, while concurrent doping
variations further affect the PA 1 dB compression point.

The TCAD high computational cost suggests that it cannot be used routinely
for circuit design, but it can a basis to extract computationally efficient circuit-
level models. As a demonstrator, a complete dynamic electro-thermal analysis has
been developed on the same PA exploiting the T -dependent X-parameter model,
exported from TCAD simulations into EDA tools. The accuracy of the T -dependent
X-parameter model is demonstrated by comparing circuit simulations with TCAD
results in continuous wave, including self-heating. The analysis is extended to pulsed
modulated operation, highlighting thermal dynamic effects as a function of the pulse
period. Finally, the pulsed operated analysis is repeated for a Class B PA to highlight
the different role of thermal memory.

TCAD analysis represents a unique opportunity to investigate the impact of traps
in the GaN technology: DC and AC GF-based sensitivity analyses are performed
on a 0.150 µm Fe-doped AlGaN/GaN HEMT through to the variation of a trap
physical parameter, e.g. trap energy and concentration, showing accurate results with
respect to repeated TCAD simulations. Traps are responsible for the low-frequency
dispersion peak of the Y-parameters, which is shifted towards higher values with
decreasing trap energy level. Furthermore, the GF approach allows to extract the
local sensitivity, giving a unique insight into the device operating conditions and
showing the parts of the device where traps influence most the HEMT AC parameter.
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Chapter 1

Introduction

Physics-based simulation is a powerful way to understand, optimize and design semi-
conductor devices under different operating conditions, through the development of
physical models describing electrical, optical and thermal properties. Technology
Computer-Aided Design (TCAD) simulators are the best environment to accurately
describe the behavior of active devices. Their development started in the late 1960s
from underlying the fundamental physical principles of bipolar technology and
moving on with an increasingly in-depth analysis of the scaling issues related to
the Very-Large-Scale-Integration (VLSI) technology. The hierarchy of TCAD tools,
shown in Fig. 1.1, starts from process simulation, aimed at modeling the fabrication
of semiconductor devices giving information about geometry, doping profiles, con-
tact placement; the first modeling tool in this panorama was SUPREM developed
by Stanford University, later commercialized by Silvaco, Inc. These data are then
exploited by device simulation in order to analyze the physical behavior of semi-
conductor devices providing an output in terms of temperature, voltage and current
as a function of time or frequency; very common examples are Synopsys TCAD
Sentaurus and PADRE. Finally, terminal current and voltages are the basis for circuit
simulation, aimed at the generation of compact models; a well-known example is
SPICE.

The growth of VLSI technology is due to the continued shrinking of transistors to
even smaller dimensions, leading to higher packing densities, higher circuit speeds,
low power dissipation and lower cost per unit function realized. These benefits have
been a central role during the years, leading to today’s computers, wireless units and
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Fig. 1.1 Hierarchy of TCAD tools.

communication systems characterized by better performances, lower cost and smaller
size [15]. Nevertheless, the miniaturization process has led to a significant techno-
logical variability and a difficult thermal management, which strongly affect the
electron device operation and produce a spread of their performances. An efficient
way to evaluate the device performance variation is the sensitivity analysis, which
provides information in terms of threshold voltage, saturation current and subthresh-
old slope in digital applications, while relevant parameters become the power gain,
harmonic distortion and efficiency in analog RF/microwave circuits. In this scenario,
physics-based sensitivity analysis is the ideal tool to link physical and technological
parameter variations to the device performance spread. Nevertheless, TCAD analysis
of RF/microwave devices is limited by the important numerical burden of physics-
based simulations, especially in frequency-dependent multi-harmonic analyses. The
high computational cost is further worsened not only in three-dimensional (3D)
structures, but also in simulations accounting for deterministic or random concurrent
variations of multiple parameters (e.g. temperature and source/drain doping concen-
tration). In the last years, numerically efficient TCAD sensitivity analysis has been
introduced exploiting, for example, the Green’s Function approach, and reaching
the right compromise between accuracy and computational cost. Several TCAD
commercial tools, such as Synopsys Sentaurus, are able to perform these kinds of
analyses in 2D or 3D dimensions, but limited to the DC conditions only. In-house
physics-based implementations overcome these issues, restricting the analysis to the
2D case, but allowing for frequency-dependent sensitivity simulations [16].



3

Fig. 1.2 Electronic circuits miniaturization.

Nowadays, technological variability, ever increasing with the development of
the new technology nodes, is a relevant issue in device fabrication, especially in
nanometer scale MOSFETs, FinFETs, UTB-SOI, FDSOI and AlGaN/GaN HEMTs
[17]. It is considered a device parameter as important as performance improvements
in meeting the requirements of Moore’s Law and can be more easily mitigated in
digital than analog circuits. The overall uncertainty in device perfomance can be
affected by various phenomena, including process variations, inherent spread of
physical parameters, induced crystal strain or thermal stress. Process variations refer
to the variation in the manufacturing process, such as gate length, gate dielectric
thickness or doping, and lead to performance differences from one device to another,
even if they are fabricated on the same wafer. The inherent spread of physical
parameters is related to the material variability in terms of mobility, trapped charge
density or metal work function, having a stronger impact in conjunction with induced
crystal strain or thermal stress [17]. Many studies have been carried out in order to
investigate variability: in MOSFET devices random dopant fluctuations (RDFs) in
the channel are the main contributor to the threshold voltage fluctuations. Fig. 1.3
shows the threshold voltage variability σVT of a MOSFET, measured on different
gate dimensions and scales, providing a picture of global variability within a wafer
and local variability in two cases: within mismatch-paired MOSFETs and within
SRAM cells, for an in-depth investigation on how the distance between devices can
impact on σVT [1]. Fabrication process-induced fluctuations also affect the device
performance in RF/microwave applications, such as mixers or power amplifiers.
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Fig. 1.3 VT standard deviation at different levels [1]. Triangles: within-wafer (global vari-
ability). Filled squares: within-mismatch-structure (local variability). Empty squares:
within-SRAM-cells.

For instance, Fig. 1.4 shows the output power and the Power-Added Efficiency
(PAE) due to process fluctuations simulated on a 24-GHz class-AB power amplifier
topology, based on a 65-nm MOSFET technology [2].

The thermal management is another critical issue: in any given technology the
power dissipation of active and passive devices makes heat generation inevitable and
the poor heat dissipation to the surroundings leads to a local temperature increase,
namely the self-heating effect. Moreover, the semiconductor industry has been
pushing towards extremely scaled technologies and higher performance, leading to
the use of new material systems, such as III-V semiconductors, and the development
of new non-planar devices, such as FinFETs. Their peculiar 3D structure brings along
a set of parasitics, in terms of mutual capacitances and access resistances, due to the
scaled interconnects and the reduced device drive capability related to the small size.
Consequences of these choices are the further increase of the local power dissipation
and, hence, of self-heating. One of the earliest examples of this phenomenon,
reported in literature, dates back to 1989, when Mautry and Trager measured a local
temperature increase up to 60 K in a MOSFET with design dimensions W/L =

10/0.6 µm and supply voltage of 5 V [3], demonstrating a linear behavior with
respect to power dissipation (see Fig. 1.5). In planar structures, this heat dissipation
to the bulk occurs through lateral spreading, while in 3D architectures, there is
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Fig. 1.4 Power amplifier performance fluctuation of (a) the output power and (b) the PAE as
a function of the input power [2].

Fig. 1.5 Temperature increase as a function of power dissipation on a 0.6 µm-MOSFET [3].
Left: total variation vs. power. Right: curves for each gate bias offset for clarity starting with
zero offset at 5 V and increasing by 10 K for each lower gate voltage.
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Fig. 1.6 Heat dissipation through the substrate in planar (left) and 3D (right) structures [4].

Fig. 1.7 Measurements of local temperature rise on the metal sensor as a function of the
normalized input power. The input power is such that the power dissipation is mainly in the
channel region and reduced at the contact resistances [4].

a potential higher thermal resistance due to the lateral isolation, as shown in Fig.
1.6. For instance, the local self-heating can be extracted as a function of the input
power, using metal-line thermometers above large multi-gate MOS transistors as
test structures [4]. In this way, the temperature coefficient of the metal resistance
is exploited to measure the local temperature. In Fig. 1.7, the extracted local
temperature rise shows a linear behavior for three different Intel’s 22 nm Tri-Gate
transistors, targeted for analog applications thanks to the cut-off frequency higher
than 200 GHz and the maximum frequency up to 4 THz. The layout size has a strong
influence on the drain current degradation, in fact a multi-fin multi-gate structure
has higher temperature increase and lower current with respect to a small-single-fin
device, as shown in Fig. 1.8.

Furthermore, the deployment of III-V semiconductors, such as Gallium Nitride
(GaN) and Aluminum Nitride (AlN), finds a match in GaN-based HEMT devices,
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Fig. 1.8 Drain current degradation vs. drain voltage in different device layouts [4].

which have a great relevance in high-power and high-frequency applications. In
fact, nitride-based semiconductors are promising materials thanks to their superior
properties, such as wide band gap, high electron mobility, high breakdown voltage
and high saturation velocity. Nevertheless, they are characterized by the high cost of
the growth techniques, mainly due to the presence of dislocation layers, which may
compromise their optical and electrical properties [18]. In fact, HEMT technology is
affected by trapping and de-trapping mechanisms due to the presence of deep-level
traps, which degrade the dynamic device performance. The type of traps and their
localization inside the structure play a key role to determine RF performances and
device reliability. The investigation of trap signatures has been carried out in many
different ways including pulsed measurements and, more recently, also with low-
frequency Y-parameters measurements and simulations in a Fe-doped AlGaN/GaN
HEMT of 0.150 µm gate length and 8×50 µm gate width [5]. In particular, Fig. 1.9
shows two frequency peaks of the Y21 parameter from 25 ◦C to 75 ◦C: the positive
one is associated to surface traps localized at the interface between the AlGaN barrier
and the oxide passivation layer, while the negative one is due to the presence of
buffer traps. Moreover, the temperature increase shifts the two peaks towards higher
frequency values.

Purpose of this thesis is the extension and optimization of a pre-existing two-
dimensional in-house physics-based simulator, implementing large-signal and small-
signal-large-signal simulations through the Harmonic Balance technique. With
this aim, the original version of the in-house code has been improved through
the treatment of all temperature dependencies involved in a wide set of physical
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Fig. 1.9 Imaginary part of the Y21 parameter at different temperatures [5].

models. Furthermore, the device heat dissipation has been accounted allowing for
both parametric temperature variations and self-heating. The temperature-dependent
in-house solver has been further enriched through the refinement of the trap rate
equation for the investigation of different trapping mechanisms and the introduction
of new physical models suited for the analysis of heterostructures and/or nitride-
based semiconductor devices. These improvements make the TCAD solver suited
for the simulation of nanoscale devices for analog RF/microwave applications, which
are typically modeled in large-signal multi-tone periodic or quasi-periodic operating
conditions. Moreover, the enhanced version of the TCAD solver opens the way
to sensitivity analyses aimed at evaluating the device performance spread due to
the variation of temperature or of a trap model parameter. In the second instance,
the thesis also highlights how in-house physics-based simulations are exploited for
the extraction of behavioral models, such as the X-parameters, which are the ideal
framework to translate TCAD simulations into Electronic Design Automation (EDA)
tools suited for circuit-oriented analysis.
The thesis organization is hereafter reported. Chapter 2 is aimed at describing the
semiconductor equations implemented in the in-house code, paying particularly
attention to the temperature dependencies involved in the physical models. Chapter
3 provides a description of how the TCAD solver is implemented, giving details
on discretization techniques and solution methods. Chapter 4 presents the efficient
numerical implementation for the calculation of the so-called Green’s functions and
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explains how they are exploited for the sensitivity analysis. Chapter 5 shows the
results of an efficient large-signal thermal variability analysis perfomed by the TCAD
solver on a 54 nm Si FinFET power amplifier. Chapter 6 presents the electro-thermal
compact modeling of the same device exploiting the X-parameter model. Chapter
7 exhibits the results of the DC and AC sensitivity analyses through the trap rate
equation in an 0.150 µm AlGaN/GaN HEMT. Finally, in Chapter 8 some conclusions
will be drawn.



Chapter 2

Physics-based thermal modeling and
advanced features

2.1 Introduction

Physics-based device simulations represent an ideal environment to accurately model
the behavior of an active device, especially in RF/microwave circuits, as they keep
trace of the underlying technological and physical parameters. With the ever increas-
ing capability of computation machines, the frequency domain analysis of electron
devices operated in highly nonlinear conditions has proved to be a fairly manageable
task even within TCAD simulators, especially in mixed-mode simulations, where the
device physical equations need to be solved concurrently with an external embedding
circuits.

This chapter is aimed at presenting the main semiconductor device equations
included in an in-house, pre-existing two-dimensional (2D) physics-based simu-
lator developed within the Microwave and Optoelectronic Group (MOG) of the
Department of Electronics and Telecommunications (DET) of Politecnico di Torino.
The solver basically consists of a 2D drift-diffusion code, including the Poisson
equation, the continuity equations for electrons and holes, the trap rate equation and
the external circuit equations. It allows not only for time-invariant and small-signal
simulations, but also for large-signal multi-tone periodic and quasi-periodic analyses
[19], which exploit the Harmonic Balance frequency domain technique and are
typically performed in the scenario of RF/microwave devices.
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The original version of the in-house semiconductor device simulator neglected
temperature dependencies, which take place through a wide number of physical
parameters and models, such as doping activation, mobility, diffusivity, thermal
voltage, etc., and are especially relevant in the behavior of power devices, for
instance GaAs or GaN based HEMTs, and nanoscale devices, such as FinFETs
[20, 21]. The ideal choice to address this problem would be a self-consistent physics-
based electro-thermal model, coupling the Fourier equation to the electrical device
simulations, which however often represents a too demanding task for efficient and
fast simulations. On the other hand, when the intrinsic device can be considered
approximately isothermal at an equivalent lattice temperature T , electrical TCAD
simulations varying T as a position-independent free parameter, allow to identify a
T -dependent electrical device model. In the light of this consideration, the purpose
of my work has been to realize a temperature-dependent in-house solver through
the modification of already implemented physical models describing, for example,
the doping-dependent mobility, the high-field mobility and the thermionic emission
process, as well as the addition of new T -dependent physical models concerning the
band gap, the electron affinity, the phonon-scattering mobility, etc. Moreover, the
device heat dissipation process has been also accounted for in the implementation of
the self-heating equation, which further enhances the in-house solver allowing for
both parametric temperature variations and self-heating.

The treatment of temperature dependencies is not the only improvement of the
original in-house solver, which has been further enriched through the optimization
of pre-existing physical models and the introduction of new advanced models. With
this aim, the refinement of the thermionic emission model, particularly useful for the
simulation of possible conduction mechanisms characterizing heterojunction devices,
has been carried out. Furthermore, despite the full ionization of dopants is a common
practice in device modeling, it may introduce considerable errors in predicting the
semiconductor device behavior, leading to the need of implementing from scratch
the incomplete ionization model. Another key capability of the TCAD solver is the
possibility to investigate trapping/de-trapping mechanisms in both static and dynamic
conditions through the refinement of the trap rate equation, allowing the user to
define different types of traps, each one with a certain concentration, energy level,
lifetime and cross section. These advanced features make the TCAD solver very
profitable for the simulation of heterostructure and/or nitride-based semiconductor
devices. In conclusion, since the spontaneous and piezoelectric polarization charge
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assume a central role in the behavior of III-V semiconductor devices, the polarization
model has been implemented from scratch.

The following sections are focused on the physical description of all equations
and models included in the in-house simulator. Details on implementation techniques
will be provided in Chapter 3.

2.2 Poisson-drift-diffusion model

Semiconductor device simulation can be performed through the implementation
of several approaches based on a semiclassical foundation such as the Maxwell’s
equations of electromagnetism and the Boltzmann transport equation (BTE). The
most common simplified description of semiconductor device behavior is:

∇ · (ε∇φ) =−ρ (2.1a)

1
q

∇ ·Jn =
∂n
∂ t

+Un (2.1b)

−1
q

∇ ·Jp =
∂ p
∂ t

+Up (2.1c)

This system of equations is based on the assumption that the effect of self-
heating is neglected at present, therefore the lattice temperature T is considered
uniform in the device and equal to the heat sink temperature T0 (typically 300 K).
This assumption can be relaxed, as described later on, coupling the system to an
additional equation.

The Poisson equation (2.1a) depends on the electrical time-independent permit-
tivity ε , the electrostatic potential φ , which is related to the electric field E in (2.2),
and the space charge density ρ , expressed in (2.3). The space charge depends on the
electron elementary charge q, the electron and hole charge concentrations n and p,
the ionized donor and acceptor impurity densities ND and NA and the charge density
due to the presence of traps or fixed charges ρF .

E =−∇φ (2.2)

ρ = q · (p−n+ND −NA)+ρF (2.3)
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The electron and hole continuity equations (2.1b) and (2.1c) depend on the
carrier conduction current densities Jn and Jp, such that Jtot = Jn +Jp, and the net
recombination rates for each carrier Un and Up, expressed as the difference between
the recombination rate R and the generation rate G. The carrier current densities
depend on the average carrier velocities vn and vp:

Jn =−q n vn and Jp = q p vp (2.4)

They can be determined starting from the Boltzmann transport equation, which can
be reduced, after mathematical manipulations and simplifications, to the following
expressions:

Jn = qµnn E+qDn∇n =−qµnn ∇φ +qDn∇n (2.5a)

Jp = qµp p E−qDp∇p =−qµp p ∇φ −qDp∇p (2.5b)

where µn is the electron mobility, µp the hole mobility, Dn the electron diffusivity
and Dp the hole diffusivity. System (2.1), together with the current relations (2.5),
constitutes the Poisson-Drift-Diffusion system (PDD), first presented by Shockley
[22] and VanRoosbroeck [23]. The PDD formulation is the most useful form for
transport equations because it requires the solution of a single PDE for each carrier
type thanks to the fact that (2.5) are not PDEs, rather a closed-form for the current.
Therefore, the whole PDD model needs the solution of three PDEs if both electrons
and holes are considered in the simulation.

The PDD current density equations are the sum of a drift contribution, where the
motion of particles is induced by the electric field, and of a diffusion contribution, due
to a gradient of the carriers concentration. At thermodynamic equilibrium the drift
and diffusion components are equal and opposite, while out of equilibrium, carriers
are subjected to an external driving force, giving a net current density different from
zero. The drift involves the product between the electrical conductivity (σn = qµnn in
(2.5a) and σp = qµp p in (2.5b)) and the electric field E. The electrical conductivity
depends on the concentrations n and p and the carrier mobilities µn and µp, which
are expressed as follows:

µn =
qτp

meff,n
and µp =

qτp

meff,p
(2.6)

where τp is the average momentum relaxation time, while meff,n and meff,p are
the electron and hole effective masses, respectively. The diffusion term involves
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the gradient of the carrier concentrations and the diffusivities Dn and Dp, whose
expression is given by the Einstein relation:

Dn =
kBT

q︸︷︷︸
VT

µn =VTµn and Dp =
kBT

q︸︷︷︸
VT

µp =VTµp (2.7)

where kB is the Boltzmann constant, T the lattice temperature and VT the ther-
mal voltage. The Einstein relation links, at equilibrium or close to, the diffusion
phenomenon, ruled by the diffusivity, to the drift phenomenon, represented by the
mobility.

Hereafter, some important quantities involved in the PDD model are mentioned.
In the Poisson equation (2.1a) the electrostatic potential is defined apart from a
constant, hence it is possible to arbitrarily choose the reference potential. A typical
choice is:

EFi =−qφ (2.8)

where EFi is the intrinsic Fermi level, that is the energy level such that the electron
concentration at equilibrium is equal to the intrinsic concentration ni. Concerning
the continuity equations (2.1b) and (2.1c), at equilibrium electrons and holes are
defined by the Shockley’s equations:

n = ni exp

(
EF −EFi

kBT

)
and p = ni exp

(
EFi −EF

kBT

)
(2.9)

where EF is the Fermi level. Shockley’s equations quantify the carrier distributions in
a semiconductor which follow the Maxwell-Boltzmann statistics for a non-degenerate
semiconductor. The carrier densities expressed in terms of Boltzmann statistics are:

n ≃ NC exp

(
EF −EC

kBT

)
(2.10a)

p ≃ NV exp

(
EV −EF

kBT

)
(2.10b)
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where EC and EV are the conduction and valence band energies, while NC and NV

are the conduction and valence band densities of states, which can be written as [24]:

NC = 2

[
meff,n kBT

2πℏ2

] 3
2

and NV = 2

[
meff,p kBT

2πℏ2

] 3
2

(2.11)

where ℏ is the reduced Planck constant. For degenerate semiconductors, the Boltz-
mann statistics no longer applies and carriers follow the Fermi-Dirac distribution
[25]. A preliminary implementation of the Fermi-like in-house solver has been
carried out, but not exploited in this thesis, hence not reported in the discussion.
At thermodynamic equilibrium, for the Boltzmann statistics, the mass action law
np = n2

i is valid. The intrinsic concentration reads:

ni =
√

NCNVexp

(
−

Eg

2kBT

)
(2.12)

where Eg = EC −EV is the energy gap of a semiconductor. Starting from (2.10a)
and plugging in (2.12) and (2.8), one can write:

EC =−qφ +
Eg

2
+

kBT
2

ln

(
NC

NV

)
and EV = EC −Eg (2.13)

An alternative formulation of the drift-diffusion transport equations exploits the
concept of the quasi-Fermi levels EFn and EFp:

Jn = µnn ∇EFn (2.14a)

Jp = µp p ∇EFp (2.14b)

where EFn and EFp are obtained recalling the Boltzmann statistics:

n ≃ NC exp

(
EFn −EC

kBT

)
=⇒ EFn = EC + kBT ln

(
n

NC

)
(2.15a)

p ≃ NV exp

(
EV −EFp

kBT

)
=⇒ EFp = EV − kBT ln

(
p

NV

)
(2.15b)

Substituting (2.15) into (2.14), one finds (2.5).
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Fig. 2.1 Example of a typical heterojunction between two materials.

The final expression of the PDD system implemented in the in-house TCAD
simulator is:

∇ · (ε∇φ) =−ρ =−q · (p−n+ND −NA)−ρF

1
q

∇ ·Jn =
∂n
∂ t

+Un with Jn =−qµnn ∇φ +qDn∇n

−1
q

∇ ·Jp =
∂ p
∂ t

+Up with Jp =−qµp p ∇φ −qDp∇p

(2.16)

2.2.1 Treatment of heterostructures

The PDD model and all the related expressions are only valid in homostructures,
where there is a uniform material composition along the device, which can be char-
acterized by a different type of doping. Heterostructure devices include more than
one material and, since they are characterized by different physical properties, they
produce discontinuities in the band diagram. Let us consider a typical heterostructure
example, shown in Fig. 2.1, where it can be noticed that the conduction and valence
band discontinuities are related to different values of bandgap and affinity between
the two materials. At the interface between material 1 and material 2, the conduction
band discontinuity is given by the affinity rule:

∆EC,21 = EC2 −EC1 = (U0 −χ2)− (U0 −χ1) = χ1 −χ2 (2.17)

where U0 is the vacuum energy level and χ the electron affinity. Due to the energy
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band discontinuities, (2.13) can be modified in the following way:

EC =−qφ +
Eg

2
+

kBT
2

ln

(
NC

NV

)
+θC︸ ︷︷ ︸

∆EC

(2.18a)

EV = EC −Eg =−qφ +∆EC −Eg︸ ︷︷ ︸
∆EV

(2.18b)

where θC is defined as:
θC = qφr −qφr,const (2.19)

The term φr is the reference potential of (2.20), calculated from the vacuum level,
while the term φr,const is the so-called constant reference potential and can be obtained
evaluating φr in a reference material. Typically, the reference material is the one
with the smallest bandgap, for example in a single heterojunction AlGaAs/GaAs,
φr,const = φr(GaAs).

qφr =−qχ −
Eg

2
− kBT

2
ln

(
NC

NV

)
(2.20)

Plugging (2.18) into (2.15), quasi-Fermi levels can be re-written as:

EFn =−qφ +∆EC + kBT ln

(
n

NC

)
(2.21a)

EFp =−qφ +∆EV − kBT ln

(
p

NV

)
(2.21b)

Finally, (2.21) can be plugged into (2.14), leading to:

Jn = nµn∇EFn = qDn∇n−qnµn∇

[
φ −∆EC

q
+VTln(NC)︸ ︷︷ ︸
φhet,n

]

= qDn∇n−qnµn∇(φ +φhet,n) (2.22a)
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Jp = pµp∇EFp =−qDp∇p−qpµp∇

[
φ −∆EV

q
−VTln(NV)︸ ︷︷ ︸
φhet,p

]

=−qDp∇p−qpµp∇(φ +φhet,p) (2.22b)

2.2.2 Boundary conditions

The basic semiconductor equations are correctly solved in order to simulate the
device behavior, only once appropriate boundary conditions are defined in some
specific device regions. Each device is characterized by electrical contacts, needed
to bias it or, mathematically speaking, essential to make the problem well-posed.
As a consequence, the boundary conditions are enforced on the electrical contacts,
which can be of different types [26].

Ohmic contacts

Ohmics contacts require to enforce the charge neutrality, hence for the Boltzmann
statistics, one can obtain:

φ = vk +
kBT

q
asinh

(
ND −NA

2ni

)
(2.23)

n0 =

√
(ND −NA)

2

4
+n2

i +
ND −NA

2

p0 =

√
(ND −NA)

2

4
+n2

i −
ND −NA

2

(2.24)

with the assumption of full ionization of dopants (see later the incomplete ionization
model). Moreover, the terms n0 and p0 are the electron and hole concentrations at
equilibrium, while vk is the voltage applied to the k-th contact.
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Contacts on insulator

If the contact is put on an insulator (like the gate contact of MOSFET devices),
different boundary conditions are applied:

φ = vk −φMS (2.25)

n0 = p0 = 0 (2.26)

where φMS is the workfunction difference between the contact metal and the semi-
conductor. Notice that if an ohmic contact touches both a semiconductor and an
insulator, the potential is discontinuous and (2.23) prevails over (2.25).

Schottky contacts

For the Schottky contact, like the gate of an HEMT structure, there is the following
boundary condition:

φ = vk −φB +
kBT

q
ln

(
NC

ni

)
(2.27)

Jn ·n = qvn
th(n−nB

0 ) and Jp ·n =−qvp
th(p− pB

0 ) (2.28)

where φB is the Schottky barrier, i.e. the difference between the metal workfunction
and the semiconductor electron affinity, if the semiconductor is n-doped, or the
difference between the band gap and the barrier, if the semiconductor is p-doped.
Moreover, vn

th and vp
th are the thermionic emission velocities, while nB

0 and pB
0 are

the equilibrium concentrations, characterized by the following expression:

nB
0 = NC exp

(
−qφB

kBT

)
and pB

0 = NV exp

(
−Eg +qφB

kBT

)
(2.29)

2.3 External circuit equations for RF circuit modeling

Consider the typical microwave circuit of Fig. 2.2: the non-linear part is character-
ized by the device physical equations, e.g. the PDD model, while the linear part
consists of a set of equations relating currents and voltages to the ports connecting
the two sections, e.g. the passive circuit implementing the matching network of Fig.
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2.2. The in-house TCAD solver gives the possibility to couple the physics-based
model to External Circuit Equations (ECEs), describing the electrical network in
which the device is embedded. This leads to the so-called mixed-mode simulations,
where the solution of the PDD model is directly embedded into the solution of the
ECEs. In this way active devices can be described in terms of physical quantities,
such as electrostatic potential, carrier concentration, etc., but also in terms of their
performances into an electrical circuit. This has a great importance in the scenario
of power devices, such as HEMTs, HBTs or MOSFETs, which need the accuracy
of physics-based simulations and thus, can not be handled by pure compact models.
The in-house simulator was originally limited to the analysis of circuits including a
single device, but starting from [27], it has been extended to circuits with multiple
interacting devices, for example the Doherty power amplifier which is one of the
most promising circuits for the development of high efficiency power amplifiers.

The resulting PDD-ECE system might be solved in the time domain, where
voltages and currents are expressed as a function of time, or in the frequency do-
main, where the same quantities are expressed in terms of harmonic components,
exploiting the Fourier transform. Time-domain simulations are very time consuming
and particularly critical, since they need to integrate equations until the onset of
the steady-state regime. This point may be reached after a great number of time
steps and increases the computational burden of the simulation. On the contrary,
frequency-domain approaches are preferred for the analysis of the steady-state peri-
odic and quasi-periodic regime, since they are easier and more efficient in terms of
computational cost and numerical stability. One of the most used frequency-domain
techniques is the Harmonic Balance (HB) method [28], originally developed for
non-linear circuit analysis and then, extended to physics-based device analysis in
[29]. The HB formalism, reviewed in Appendix A, is exploited in the in-house
TCAD solver in order to solve, directly in the frequency domain, the PDD-ECE
system, whose HB numerical implementation will be explained in Chapter 3.

Purpose of this section is simply to introduce the circuit equations of the external
electrical network, already implemented in the original version of the in-house solver,
directly in a frequency-domain notation. Consider the the schematic representation
of the active device coupled to the external electrical network, as shown in Fig. 2.3:
the involved unknowns are the vectors of voltages and currents, namely respectively
v and i, defined at each device terminal k = (1,2, . . . ,K), where K is the total number
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Fig. 2.2 Schematic representation of a mixed-mode configuration characterized by solide-
state device connected to the input and output matching network.

Fig. 2.3 Schematic of the outer electrical network coupled to the active device in a mixed-
mode simulation.

of terminals:
v = (v1,v2, . . . ,vK) (2.30a)

i = (i1, i2, . . . , iK) (2.30b)

The first ECE is the voltage-controlled equation:

v+Z i = vapp (2.31)

where Z is the circuit impedance matrix, in the phasor domain, with size K ×K:

Z =

Z11 . . . Z1K
... . . . ...

ZK1 . . . ZKK

 (2.32)

The second external circuit expression is the current equation:

i =
∫

A
(Jn +Jp +JD) dA (2.33)

where A is the area of the terminal contact, while Jn, Jp and JD are the electron,
hole and displacement current, respectively. The displacement contribution arises in
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dynamic conditions only and its derivation comes from the Maxwell’s equations:

JD =
∂D
∂ t

= ε
∂E
∂ t

(2.34)

where D is the displacement vector, ε the permittivity and E the electric field.

The final PDD-ECE system is represented as follows:

∇ · (ε∇φ) =−q · (p−n+ND −NA)−ρF

1
q

∇ ·Jn =
∂n
∂ t

+Un with Jn =−qµnn ∇φ +qDn∇n

−1
q

∇ ·Jp =
∂ p
∂ t

+Up with Jp =−qµp p ∇φ −qDp∇p

v+Z i = vapp

i =
∫

A(Jn +Jp +JD) dA

(2.35)

2.4 Modeling of frequency dispersion phenomena

Frequency dispersion phenomena have a significant impact on the behavior and
performance of active devices, especially in analog RF and microwave applications.
One of the main dispersion mechanism is related to the thermal management, which
is becoming more and more important due to the shrinking of device dimension, the
worsening of the environmental conditions in which they operate and the deployment
of non-planar structures, as explained in Chapter 1. Another important dispersion
phenomena is related to trapping and de-trapping mechanisms occurring in III-V
semiconductors or in oxide materials. Nowadays, the investigation of trap signatures
has a central role in order to achieve good RF performances and an adequate device
reliability, especially if the combined effect of temperature and traps is considered in
the same structure.

The in-house simulator provides advanced capabilities to evaluate the influence
of both frequency dispersion effects on device performance. In fact, it allows to
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couple the PDD model to the Self-Heating (SH) equation for the prediction of
dynamic thermal effects and the Trap Rate Equation (TRE) for the investigation
of frequency-dependent trapping mechanisms. The SH equation was not present
in the original version of the TCAD solver, hence it has been implemented from
scratch. On the other hand, the TRE was partially available, hence its implementation
has been improved allowing the user to define different trap types with a certain
concentration and energy level.

2.4.1 Self-heating equation

The effect of self-heating can be analyzed from different points of view. At the mi-
croscopic level, carriers transfer a certain amount of energy to the lattice producing
vibrations, i.e. acoustic and optical phonons. The more the number of phonons, the
more the scattering process with carriers, whose kinetic energy increases the dissi-
pated power and fuels self-heating. At the macroscopic level, the dissipated power
is translated into heat, leading to a local temperature rise: the temperature increase
depends on the thermal resistance and heat capacitance associated to the device and
the surrounding materials, moreover it can be uniform or non-uniform, producing in
this case hot-spots inside the device [30]. Since the lattice temperature enters essen-
tially the analytical formulation of every physical model parameter, such as energy
gap, electron affinity, carrier mobility, etc., the temperature increase aggressively
degrades the active device performances, in both static and dynamic conditions, and
needs to be accounted for. To this aim, the Self-Heating (SH) equation has been
implemented in the in-house simulator: the PDD-ECE system is self-consistently
solved with the SH equation, forming the Self-Heating System (SHS). This point
represents a great advantage for the in-house solver, in fact TCAD commercial simu-
lators also give the possibility to account for the temperature increase, but with some
limitations. For instance, Synopsys TCAD Sentaurus implements a self-heating
model, restricted to static conditions only, able to calculate uniform temperature
variations by post-processing rather than self-consistently compute it with all other
solution variables.

In the PDD model, the device lattice temperature T is considered as a uniform
parameter throughout the device and equal to the heat sink temperature T0 (typically
300 K), as shown in the schematic of Fig. 2.4. If T0 is varied to a certain value, such
as 305 K, 320 K, 350 K, etc., the T parameter and all the temperature-dependent
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Fig. 2.4 Schematic of the active device in ab-
sence of a thermal impedance.

Fig. 2.5 Schematic of the active device coupled
to a thermal impedance.

physical quantities involved in the PDD model, such as mobility, diffusivity, velocity
saturation, etc., will follow that temperature variation. Therefore, this model is able
to predict the effect of parametric variations of the device temperature, avoiding
however a direct evaluation of device self-heating. If the effect of self-heating
is accounted for, the device is considered coupled to an external lumped thermal
impedance Zth through which heat is dissipated towards a heat sink at temperature T0,
as shown in Fig. 2.5. According to the classical theory for linear thermal behavior
[31], the temperature increase can be calculated in the frequency domain by the
so-called thermal impedance, akin to the electrical impedance. The formulation in
the frequency domain exploits phasors to represent the Fourier transform of both
temperature and dissipated power:

∆T = T −T0 = Zth Pdiss (2.36)

where T is the final temperature of the device and a new unknown of the problem, T0

is the heat sink temperature and Pdiss is the Fourier transform of the dissipated power.
The time-dependent expression of the dissipated power is given by the instantaneous
product of terminal voltages v0,k(t) and currents ik(t):

pdiss(t) = ∑
k

ik(t)v0,k(t) (2.37)

The term Zth corresponds to the thermal impedance, expressed in the phasor domain
and given by the parallel between a thermal resistance Rth and a thermal capacitance
Cth. This equation provides an increase of the lattice temperature and, consequently,
a uniform device self-heating.
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The final SHS system implemented in the TCAD solver is:

∇ · (ε∇φ) =−q · (p−n+ND −NA)−ρF

1
q

∇ ·Jn =
∂n
∂ t

+Un with Jn =−qµnn ∇φ +qDn∇n

−1
q

∇ ·Jp =
∂ p
∂ t

+Up with Jp =−qµp p ∇φ −qDp∇p

v+Z i = vapp

∆T = T −T0 = Zth Pdiss

i =
∫

A(Jn +Jp +JD) dA

(2.38)

2.4.2 Trap rate equation

III-V semiconductors, such as GaN, AlN and relative alloys, have an evergrowing
importance thanks to their superior characteristics with respect to more conventional
materials, such as wide band gap, high electron mobility, high saturation velocity and
high breakdown field. On the other hand, they are characterized by a high cost due
to the presence of non-intentional doping and the development of dislocations layers,
which may worsen their electrical and optical properties [18]. The deployment of
nitride-based semiconductors finds a match in HEMT devices: in the last years
several technological improvements have enabled GaN-based HEMT structures to
achieve a great relevance in high-power and high-frequency applications. Examples
can be the development of appropriate substrate materials [32], the improvement
of the material quality of epitaxial and passivation layers [33, 34], the use of field
plates [35], the optimization of some geometrical parameters, such as the barrier
thickness, the addition of a GaN cap layer, the reduction of the gate length [36].
Another goal has been the reduction of short-channel effects which strongly affect
nanoscale devices: one way to reduce them in GaN HEMTs is to make the GaN
buffer layer semi-insulating through intrinsic defects or extrinsic deep-level dopants,
such as Iron or Carbon [37]. Nonetheless, the superior performances of nitride-based
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HEMT devices are still degraded by trapping and de-trapping mechanisms due to
deep-level traps, which are present in the buffer layer, in the barrier or at the surface
[6].

Traps are mainly due to material defects, dislocations, lattice mismatch between
two materials or the presence of impurities in the crystal. These defects/dislocations
create a localized trap at a certain energy level inside the material bandgap. There are
mainly two different types of traps: a donor-like trap is considered neutral if occupied
by an electron and positive if empty, while an acceptor-like trap is neutral if empty and
negative if occupied by an electron. The different trapping mechanisms, whose nature
is not yet entirely clear, and traps localization inside the device have a key role to
determine RF performances and device reliability. In particular, traps are responsible
of the drain current collapse and the degradation of the dynamic device performance,
for example the low-frequency dispersion phenomenon characterizing Y-parameters
[6]. With the aim of optimizing the GaN-based HEMT device performance, the
in-house simulator implements the trap rate equation, coupled to the PDD-ECE
model, leading to the PDD-ECE-TRE system. This represents another key advantage
of the in-house TCAD solver with respect to commercial simulators: for example,
Synopsys TCAD Sentaurus is a flexible platform to compute the occupied trap
concentration with different spatial distributions and energy levels, but with some
limitations in frequency domain simulations.

The trap occupation probability in non-equilibrium conditions is:

∂ f n

∂ t
= ∑

i
rn

i where rn
i = (1− f n)cn

i − f nen
i (2.39)

where f n is the electron occupation, which is a number between 0 and 1, while cn
i

is the capture rate of an empty trap and en
i is the emission rate of a full trap. The

index i refers to a capture or an emission process from the conduction or valence
band, therefore the sum is over all capture and emission processes:

∂ f n

∂ t
= (1− f n)cn

C − f nen
C +(1− f n)ep

V − f ncp
V (2.40)

where cn
C and en

C are expressed in the electron picture, while cp
V and ep

V in the
hole picture, knowing that the capture and emission of an electron correspond,
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Fig. 2.6 Electron picture (left) and hole picture (right).

respectively, to the emission and capture of a hole (see Fig. 2.6):

cn
i = ep

i and en
i = cp

i (2.41)

In (2.40), one can distinguish four possible events (see Fig. 2.7):

a. The capture of an electron by an empty trap from the conduction band:

cn
C = σnvn

thn

b. The emission of an electron from the trap to the conduction band:

en
C = σnvn

thn1

c. The capture of a hole by an occupied trap from the valence band:

cp
V = σpvp

th p

d. The emission of a hole from the empty trap to the valence band:

ep
V = σpvp

th p1

where σn and σp are the trap cross sections, vn
th and vp

th the thermal velocities, while
n1 = NC exp[(Et −EC)/kBT ] and p1 = NV exp[(EV −Et)/kBT ], where Et is the trap
energy level. In the TCAD solver the equation is implemented expressing f n as the
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Fig. 2.7 Electron and hole capture/emission processes [6].

ratio between the number of occupied traps nt and the number of total traps Nt:

∂nt

∂ t
= Nt

(
1− nt

Nt

)
cn

C︸ ︷︷ ︸
Rn

− Nt
nt

Nt
en

C︸ ︷︷ ︸
Gn

−
[
Nt

nt

Nt
cp

V︸ ︷︷ ︸
Rp

− Nt

(
1− nt

Nt

)
ep

V︸ ︷︷ ︸
Gp

]

= Rn −Gn︸ ︷︷ ︸
Un

−(Rp −Gp︸ ︷︷ ︸
Up

) =Un −Up

(2.42)

where Gn,p and Rn,p are respectively the generation and recombination rates, while
Un,p is the net recombination rate. In static steady-state conditions, the TRE is
uncoupled from the PDD system, since the number of occupied traps is given by
(2.43), which corresponds to the SRH recombination model.

∂nt

∂ t
= 0 =⇒ nt = Nt

(
cn

C + ep
V

cn
C + en

C + cp
V + ep

V

)
(2.43)

In dynamic conditions, the TRE needs to be solved consistently with the PDD-ECE
model. First of all, the concentration of occupied traps nt must be included in the
space charge density and recalling (2.3), one can write:

ρF =−qnt (2.44)

Hence, the Poisson equation is modified:

∇ · (ε∇φ) =−q · (p−n+ND −NA −nt) (2.45)
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Moreover, the electron and hole recombination rates Un,p are also included in the
continuity equations (2.1b) and (2.1c).

The final PDD-ECE-TRE system implemented in the TCAD solver is:

∇ · (ε∇φ) =−q · (p−n+ND −NA −nt)

1
q

∇ ·Jn =
∂n
∂ t

+Un with Jn =−qµnn ∇φ +qDn∇n

−1
q

∇ ·Jp =
∂ p
∂ t

+Up with Jp =−qµp p ∇φ −qDp∇p

∂nt

∂ t
=Un −Up

v+Z i = vapp

i =
∫

A(Jn +Jp +JD) dA

(2.46)

A subcategory of traps is represented by the fixed charges, corresponding to traps
always completely occupied and, as a consequence, equal to the total concentration
Nt. In this case, the TRE is not coupled to the PDD-ECE system and only the space
charge density of the Poisson equation is modified:

ρF =−qnt =−qNt (2.47)

2.5 Semiconductor physical models

In order to solve the PDD model, all the physical parameters involved in the system
of PDEs, such as bandgap, electron affinity, density of states, mobility, etc, need to
be defined through a specific temperature-dependent model which determines their
behavior [26]. As shown in the following sections, each model involves a set of
coefficients depending on the selected material. The in-house simulator supports a
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library of semiconductor materials, including Si, GaAs, AlGaAs, Ge, InP, InGaAsP,
InGaAs, AlGaAs, GaN, AlGaN.

2.5.1 Band structure parameters

The band structure represents the most fundamental property of a semiconductor.
Realistic band structures are very complex, but in this work they are reduced to
bandgap and electron affinity, whose T -dependent models have been implemented in
the in-house code from scratch. The bandgap model is expressed as follow: [38]:

Eg(T ) = Eg(0)−
αT 2

T +β
(2.48)

where Eg(0) is the bandgap energy at 0 K, while α and β are coefficients depending
on the material. For each material Eg(0) = Eg,0 −δEg,0, where Eg,0 and δEg,0 are
adjustable parameters: the first one is fixed, while the second one depends on the
chosen bandgap model. The one considered in this work is the Bennet model, for
which δEg,0 is a constant equal to zero by default.

The electron affinity is the difference between the conduction band energy and
the vacuum level and shows the following temperature-dependence:

χ(T ) = χ0 −
αT 2

2(T +β )
(2.49)

where χ0 is an adjustable parameter depending on the material. Actually, χ(T ) also
depends on an additional quantity due to the bandgap narrowing, which is neglected
in this treatment.

2.5.2 Incomplete ionization model

Dopants are not always fully ionized at room temperature: if the impurity level
is sufficiently shallow the ionization is complete, otherwise incomplete ionization
should be considered. The incomplete ionization phenomenon is described by one



2.5 Semiconductor physical models 31

of the new-entry models of the in-house solver and takes the following expression:

ND =
ND,0

1+gD
n
n1

where n1 = NCexp

(
−∆ED

kBT

)
(2.50a)

NA =
NA,0

1+gA
p
p1

where p1 = NVexp

(
−∆EA

kBT

)
(2.50b)

where ND,0 and NA,0 are the donor and acceptor concentration, gD and gA are the
degeneracy factors, while ∆ED = EC−ED and ∆EA = EA−EV are the energy differ-
ences defined by the donor and acceptor ionization activation energies, respectively
ED and EA. The expressions for n1 and p1 are valid for the Boltzmann statistics.

2.5.3 Mobility models

The drift-diffusion model involves the mobility of electrons and holes through the
diffusivity terms Dn and Dp. As shown in (2.6) the mobility is related to the average
momentum relaxation time τp, which accounts for different scattering mechanisms:
phonon scattering due to thermal vibrations, impurity scattering and scattering
related to the electric field. The first one is described by the constant mobility model,
implemented from scratch in the TCAD solver, the last two phenomena are outlined,
respectively, by the doping dependence model and high-field saturation model, whose
implementation was already present in the in-house code without the treatment of
temperature dependencies.

Constant mobility model

In lightly doped semiconductors, the constant mobility model relates the mobility of
electrons and holes to the lattice temperature [39]:

µconst = µL

(
T

300 K

)−ζ

(2.51)

where µL is the mobility due to bulk phonon scattering. Both µL and ζ depends on
the material, for example for silicon they assume the values in Table 2.1.
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Table 2.1 Constant mobility parameters for silicon.

Symbol Electrons Holes Unit
µL 1417 470.5 cm2/Vs
ζ 2.5 2.2 1

Table 2.2 Silicon coefficients for Masetti model

.

Symbol Electrons Holes Unit
µmin1 52.2 44.9 cm2/Vs
µmin2 52.2 0 1

µ1 43.4 29 cm2/Vs
Pc 0 9.23·1016 cm−3

Cr 9.68·1016 2.23·1017 cm−3

Cs 3.43·1020 6.10·1020 cm−3

α 0.68 0.719 1
β 2 2 1

Doping dependence model

In a doped semiconductor, carrier mobility is degraded by the carrier scattering
with charged impurity ions. Depending on the material, the in-house TCAD solver
exploits different models: the Masetti model and the Arora model.

The Masetti model [7] describes the mobility behavior as a function of doping
concentration and constant mobility:

µdop = µmin1exp

(
−Pc

NA,0 +ND,0

)
+

µconst −µmin2

1+

(
NA,0 +ND,0

Cr

)α − µ1

1+

(
Cs

NA,0 +ND,0

)β

(2.52)

where µmin1, µmin2 and µ1 are the reference mobilities, while Pc, Cr and Cs are the
reference doping concentrations. All these parameters, including the exponents α

and β depend on the material. Table 2.2 reports the values used in the TCAD solver
for silicon, as an example. Moreover, Fig. 2.8 shows a comparison between the hole
mobility of a boron-doped silicon calculated through the analytical formula (2.52)
and the same quantity experimentally obtained.
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Fig. 2.8 Hole mobility in boron-doped silicon [7]. Solid line: computer fit obtained with
(2.52); full dots: experimental results; empty dots: Thurber et al. [8].

The Arora model [9] expresses the mobility behavior as a function of doping
concentration:

µdop = µmin +
µd

1+((NA,0 +ND,0)/N0)A∗ (2.53)

where

µmin = Amin ·

(
T

300 K

)αm

, µd = Ad ·

(
T

300 K

)αd

N0 = AN

(
T

300 K

)αN

, A∗ = Aa ·

(
T

300 K

)αa

(2.54)

The terms µmin, µd, N0 and A∗ depend on temperature and on a set of coefficients,
namely Amin, Ad, AN and Aa. Table 2.3 reports the default parameters used in the
TCAD simulator for silicon, as an example. Moreover, Fig. 2.9 demonstrates how
accurate is the Arora model applied to a phosphorous-doped silicon with respect
to the experimental results and, in addition, it shows that the electron mobility has
strong variations with temperature for lower values of doping.

High-field saturation model

Carriers can also be subject to high electric fields and accumulate enough energy to
undergo a scattering event. The carrier drift velocity is proportional to the electric
field, unless the field is high enough to let drift velocity saturate to a finite speed vsat.
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Table 2.3 Silicon coefficients for Arora model.

Symbol Electrons Holes Unit
Amin 88 54.3 cm2/Vs
αm -0.57 -0.57 1
Ad 1252 407 cm2/Vs
αd -2.33 -2.23 1
AN 1.25·1017 2.35 ·1017 cm−3

αN 2.4 2.4 1
Aa 0.88 0.88 1
αa -0.146 -0.146 1

Fig. 2.9 Electron mobility in a phosphorous-doped silicon at four temperatures [9]. Solid
lines: experimental values; dashed lines: corresponding values calculated with (2.53).
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Table 2.4 Silicon coefficients for Canali model.

Symbol Electrons Holes Unit
β0 1.109 1.213 1

βexp 0.66 0.17 1
α 0 0 1

The high-field saturation models includes three submodels [26]: the actual mobility
model, the velocity saturation model and the driving force model.

The actual mobility model implemented in the in-house simulator is called Canali
model: it originates from the Caughey-Thomas formula [40] and adds temperature-
dependencies to the mobility. The model has the following expression:

µ(F) =
(α +1)µlow

α +

[
1+

(
(α +1)µlowFhfs

vsat

)β]1/β
(2.55)

where µlow is the low-field mobility, vsat is the saturation velocity, Fhfs is the driving
force, α is a coefficient and β is a temperature-dependent exponent:

β = β0

(
T

300 K

)βexp

(2.56)

The low field mobility corresponds to the constant mobility (2.51) or to the doping-
dependent mobility (2.52) and (2.53). Table 2.4 reports the parameter values used
in the TCAD solver for silicon, as an example. The carrier drift velocity is related
to the electric field through the equation v = µE, as shown in Fig. 2.10. For
sufficiently large electric field values, the velocity saturates to a finite value vsat,
described by different models. The in-house solver supports two velocity saturation
models: the first one in (2.57) is recommended for silicon, the second one in (2.58)
is recommended for GaAs.

vsat = vsat,0

(
300 K

T

)vsat,exp

(2.57)
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(a) Velocity-field curve in lightly-doped silicon [41].

(b) Velocity-field curve for electrons in lightly-doped GaAs [42].

Fig. 2.10 Velocity-field curve at 300 K using typical parameter values.

vsat =


Avsat −Bvsat

(
T

300 K

)
vsat > vsat,min

vsat,min otherwise

(2.58)

The last quantity under analysis is the driving force for the electron and hole mobility
models, which is usually modeled considering the electric field component parallel
to the current density:

Fhfs,n = E · Jn

Jn
and Fhfs,p = E ·

Jp

Jp
(2.59)

which corresponds to take the x or y component of E. This model is physically
correct, even if it can suffer from numeric instability when the current values are
very small.
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2.5.4 Generation-Recombination processes

Generation-Recombination processes consist of the exchange of carriers between
conduction and valence band. These mechanisms can be direct, such as the spon-
taneous emission process, or indirect, such as the trap-assisted phenomenon. The
latter is due to the presence of impurities in the semiconductor, which leads to the
formation of energy levels in the bandgap. The energy levels Et are described in
terms of traps, responsible of capture/emission processes, which follow the Shockley-
Read-Hole (SRH) recombination model and are described as the combination of four
distinct events:

a. Generation of a hole (Gp): hole emission in the valence band.

b. Generation of an electron (Gn): electron emission in the conduction band.

c. Recombination of a hole (Rp): hole capture from the valence band.

d. Recombination of an electron (Rn): electron capture from the conduction
band.

The net recombination rate for electrons and holes is Uα = Rα −Gα , where α = n, p.
Since the net rates are independent and equal at the same time, the net recombination
rate USRH is:

USRH =
np−n2

i
τp(n+n1)+ τn(p+ p1)

(2.60)

where n1 = niexp(Et/kBT ) and p1 = niexp(−Et/kBT ). The terms τn and τp are the
electron and hole lifetimes:

τn =
1

Ntσnvn
th

and τp =
1

Ntσpvp
th

(2.61)

where σn and σp are the trap cross sections, vn
th and vp

th are the thermal velocities and
Nt the trap concentration. This model is valid only in static conditions, whereas no
time dependencies are considered, while dynamic effects can be accounted through
the trap rate equation, explained in the previous section.
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2.5.5 Thermionic emission model

The thermionic emission phenomenon in heterostructure devices, such as high
electron mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs),
is one of the most important conduction mechanisms involving the transport of
carriers across the heterojunction. The PDD model is not very adequate to describe
the behavior of abrupt heterointerfaces, since it neglects carrier transport across the
heterojunctions. Therefore, a physical model describing the thermionic emission
currents needs to be implemented.

Consider an heterointerface between material 1 and material 2, where the con-
duction band energy variation ∆EC = EC2 −EC1 is higher than zero and, as a conse-
quence, χ1 > χ2. The interface condition is [26, 43]:

Jn,2 = Jn,1 and Jn,2 = anq

[
vn,2

th n2 −
meff,n,2

meff,n,1
vn,1

th n1exp

(
−∆EC

kBT

)]
(2.62a)

Jp,2 = Jp,1 and Jp,2 =−apq

[
vp,2

th p2 −
meff,p,2

meff,p,1
vp,1

th p1exp

(
−∆EV

kBT

)]
(2.62b)

where the terms meff,n,i and meff,p,i are the effective masses, the coefficients an and
ap are equal to 2, while the emission velocities vn,i

th and vp,i
th are expressed as follows:

vn,i
th =

√
kBT

2πmeff,n,i
and vp,i

th =

√
kBT

2πmeff,p,i
(2.63)

The thermionic emission current Jn,2 is the electron current density entering material
2, while Jn,1 is the electron current density leaving material 1, as shown in the
AlGaAs/GaAs heterostructure of Fig. 2.11. The same mechanism can be repeated
for the hole current densities.

2.5.6 Piezoelectric polarization model

In III-V semiconductors, such as Gallium Nitride (GaN) and Aluminum Nitride
(AlN), the crystal structure and the type of symmetry play an important role in
the definition of their electronic properties. In particular, the band gap is strictly
related to the lattice constant of the crystal structure, while the hexagonal symmetry
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Fig. 2.11 Thermionic emission current of a general heterojunction interface [10].

affects the polarization effect, which is the sum of two components: spontaneous
polarization and piezoelectric polarization.

In an unstrained III-V semiconductor, the relative movement of cations and
anions with respect to their ideal position produces a spontaneous polarization,
which results aligned along the <0001> direction, known also as the C-direction.
If a mechanical strain is applied, a relative shift of anion and cation sub-lattices
produces a piezoelectric polarization effect, which is summed to the spontaneous
component, giving a total polarization vector P. The polarization vector follows the
so-called simplified strain model by Ambacher et al. [44]:

P =

 0
0

Psp
z +Ppe

z

=

 0
0

Psp
z +Pstrain

 (2.64)

Notice that the x and y components are null, therefore along the C-axis, the spon-
taneous polarization charges cover the whole crystal, but the sum of the internal
components is null, hence the remaining charge is distributed on the opposite faces
of the semiconductor [18], as shown in Fig. 2.12. Furthermore, the term Psp

z is a
constant coefficient depending on the material and Pstrain is expressed by:

Pstrain = 2 · a−a0

a0
·
(

e31 −
c13

c33
e33

)
(2.65)

where ci j are the stiffness constants, ei j are the strain-charge piezoelectric coefficients,
a0 is the strained lattice constant and a is the unstrained lattice constant. Table 2.5
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Fig. 2.12 GaN crystal structure (left) and polarization distribution along the C-axis (right).

Table 2.5 Default coefficients for spontaneous and piezoelectric polarization.

GaN AlN InN
a [Å] 3.189 3.111 3.544

Psp
z [C/m2] -0.029 -0.081 -0.032

e31 [C/m2] -0.35 -0.5 -0.48
e33 [C/m2] 1.27 1.79 1.06
c13 [Pa] 1.06 ·1011 1.08 ·1011 9.2 ·1010

c33 [Pa] 3.98 ·1011 3.73 ·1011 2.24 ·1011

reports the default coefficients used in the in-house simulator for different nitride-
based materials.

The vector polarization charge qPE is added to the right-hand side of the Poisson
equation, leading to:

∇ · (ε∇φ) =−q · (p−n+ND −NA)−qPE (2.66)

where
qPE =−activation∇ ·P (2.67)

Notice that the activation coefficient is a positive real calibration parameter. Let
us denote as volumic polarization charge the term qPE and as surface polarization
charge the term P.



Chapter 3

Discretization techniques and
numerical implementation

3.1 Introduction

Purpose of this chapter is to give details on how the in-house physics-based sim-
ulator is implemented. The solver has been implemented in MATLAB® and it is
composed of two main parts: the structure and grid generation and the device phys-
ical simulation. The first one allows to define an initial structural description of
a device in terms of geometrical dimensions, materials, doping concentration and
types of contacts. Moreover, it gives the possibility to generate a spatial grid in the
input structure, which can be finer or coarser depending on the device regions. The
second part is dedicated to the physical simulation, hence it gives the possibility to
select the system of equations to be solved and define the operating condition of the
device under analysis. For instance, in static conditions, one can solve the system at
thermodynamic equilibrium or at certain voltages, while in dynamic conditions, one
can define not only a static working point, but also the device operating frequency
and external periodic sources.

The PDD model is characterized by a system of partial differential equations
(PDEs): computers are hardly able to understand PDEs, nevertheless there are
different environments like MATLAB®, which are suited to deal with matrices.
To this aim, PDEs need to be discretized, hence translated into a set of algebraic
equations. Notice that the PDD model also involves time dependencies: in static
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conditions, time derivatives are equal to zero and a spatial discretization is sufficient
to assemble the PDEs in the TCAD simulator; in dynamic conditions, there are
non-zero time derivatives, which again are hardly handled by computers, therefore
temporal discretization is also required. Furthermore, since PDEs are non-linear, it
is not possible to find a rigorous analytical expression of the discretized unknowns,
therefore a numerical solution is needed and requires the use of iterative techniques,
such as Newton’s method.

The following sections are focused on a more detailed description of spatial and
temporal discretization techniques exploited in the in-house solver. Moreover, a
brief overview on solution techniques is proposed in order to understand how the
discretized physics-based equations are assembled to allow for their solution.

3.2 Spatial discretization: finite-boxes scheme

The PDD model (2.16) is a set of time-dependent PDEs characterized by three
unknowns depending on time and space:

φ(x,y, t) n(x,y, t) p(x,y, t) (3.1)

where the space coordinates are here x and y only. As anticipated, since computers are
not well suited to handle differential operators, they need to be discretized, namely
the overall domain in which they are defined must be divided into a set of discrete
points, called mesh or grid points, in order to sample and compute the solution of the
system of PDEs only at those discrete points. In this section, the discussion is only
focused on spatial discretization techniques, while temporal discretization methods
will be analysed later on.

The main discretization techniques are divided in two categories [11, 45]: the
finite difference method and the finite element method (FEM). Both methods consist
in establishing a set of algebraic equations, whose solution is defined at each discrete
point, hence their difference lies in the way the differential operators are treated and
how the algebraic expressions are obtained. The finite difference method approxi-
mates the differential operator with an incremental ratio, which is obtained from the
Taylor expansion around the point of interest truncated at the first-order. Consider
the generic function f (z) and a set of non-uniformly distributed points (z1,z2, . . . ,zn),
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Fig. 3.1 Generic function f (z) along a set of non-uniformly spaced grid points.

as shown in Fig. 3.1, the first derivative at point zi can be written as:

d f
dz

∣∣∣∣
z=zi

=
f (zi+1)− f (zi−1)

zi+1 − zi−1
(3.2)

This approximation strongly relies on the number of grid points: the larger the
number, the higher the computational cost and the better the accuracy. On the other
hand, in the finite element method, the unknowns of the problem are approximated
by known polynomial functions, called basis functions and, since the differentiation
of the basis function can be computed analytically, the application of the differential
operator is simple. These two descriptions have different similarities, for example
in terms of local errors (see [11] for details), but finite element discretizations are
more limited in the treatment of parabolic or hyperbolic PDE components, leading
to numerical instability issues. These problems are included in a broad category
of numerical problems, called advection-diffusion-reaction problems [46], and they
have no evidence in the discretization of Poisson equation, but rather in the transport
equations. The finite difference method is the preferred technique used for the
discretization of the physics-based equations. In the in-house solver a particular
methodology based on finite differences, namely finite-boxes discretization scheme,
is exploited. Nowadays, this discretization scheme is considered a standard technique,
well established and widespread in commercial TCAD simulators.

Before describing the formulation of the finite-boxes discretization applied to
PDD system, it is important to give some details on the definition of the grid points
and how they are connected one to the other [11]. First of all, the points must
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Fig. 3.2 Example of grid points distribution along the x-and-y axes in a pn diode.

be distributed on the overall domain in such a way that all the physical quantities
involved in the system are accurately approximated. Consider for example the two-
dimensional pn junction, shown in Fig. 3.2. Along the y-axis, physical quantities
like electrostatic potential, carrier concentrations, doping concentration, etc. remain
approximately constant, therefore the space between the grid points can be fairly
large. Along the x-axis, in the active region around the junction, where a depletion
region is formed, there are important changes of the main physical parameters,
therefore a finer mesh is necessary to correctly describe them. The second aspect
to consider concerns the connectivity between grid points [11]: the connection of
two or more mesh points forms a subspace. In one dimensional problems, two
adjacent nodes form a segment, in two dimensions they form polygons (triangles
or rectangles) and in three dimensions polyedra (tetrahedron, hexahedron or prism).
Depending on the type of subspace, there are different possible grid structures, with
uniform or non-uniform mesh points distribution, as shown in Fig. 3.3 for a 2D case.
In the in-house solver, the finite-boxes discretization exploits a two-dimensional
non-uniform mesh structure with triangular subspaces. The starting point to obtain
this grid representation is a non-uniform rectangular mesh, corresponding to a tensor-
product grid. As shown in Fig. 3.4 (left), a set of mesh points are distributed in a
non-uniform pattern along the x-and-y axes and from their intersection, rectangles
are formed. The diagonal of each rectangle allows to pass from this configuration to
the one of Fig. 3.4 (right), characterized by right triangles (see [11] for details). The
finite difference discretization scheme applied to triangular (or rectangular) grids is
based on the two-dimensional Gauss’s Law [47], which ensures the conservation of
carriers and charge, and takes the name of generalized box discretization [48, 49].
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(a) (b) (c)

Fig. 3.3 Examples of 2D and 3D grid structures [11]: (a) uniform rectangular, (b) non-
uniform rectangular (general tensor-product), (c) general triangular.

Fig. 3.4 Two-dimensional non-uniform mesh representation with different subspaces: rectan-
gles (left) and right triangles (right).
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Fig. 3.5 Control area associated to node i
for the application of Gauss’s Law [11].

Fig. 3.6 Partitioning of a triangular sub-
space by perpedicular bisectors [11].

Consider the DD model of (2.16) in compact form:

∇ ·F =
∂ f
∂ t

+u (3.3)

where F and f are the unknown vector and scalar functions, respectively, while u is
the known scalar source term. Gauss’s Law is applied to the control area Ai:∫

Ai

∇ ·F dx dy =
∫

Ci

F ·n dS =
∂

∂ t

∫ ∫
Ai

f dx dy+
∫ ∫

Ai

u dx dy (3.4)

where Ai is the area associated to node i, known as the Vornoi area and delimited by
the dashed bounding line Ci, while n is the unit normal vector to Ci (see Fig. 3.5).
The bounding line Ci is obtained dividing each triangle t into three subregions defined
by its perpendicular bisectors ht

i′ , ht
j′ and ht

k′ , whose intersection point is the center
of the circumscribed circle of the triangle (see Fig. 3.6). In case of a right-triangles
grid structure, there are two perpendicular bisectors distributed as shown in Fig. 3.7
and their intersection leads to the formation of boxes, hence the name finite-boxes
scheme. Notice that each triangle angle must be lower than 90° due to the fact that
the circumscribed circle of obtuse triangles lies outside the triangle itself. Moreover,
the area Ai should be as close as possible to node i and, for each node, it is possible
to define the total area Ai as Ai = ∑t At

i, where the term At
i is the area delimited by

the perpendicular bisectors in a single triangle t and associated to node i.
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Fig. 3.7 Finite-boxes partitioning in a grid structure based on right triangles.

3.2.1 Discretization of the PDD model

Let us apply the finite-box discretization procedure to the PDD model. Each equation
of the system, i.e. the Poisson equation and the continuity equations for electrons
and holes, are defined on a 2D non-uniform grid structure of nn nodes with triangular
subspaces.

Poisson equation

Consider the Poisson equation (2.1a) and apply Gauss’s Law at each triangle t:

∑
t

[∫
Ct

i

ε∇φ ·n dSt +
∫ ∫

At
i

ρ dAt

]
(3.5)

In the first integral, the product ∇φ ·n is expressed through finite differences, since
the unit vectors nt

j′ , nt
k′ and nt

i′ are parallel to the edges dt
j′ , dt

k′ and dt
i′:

∇φ ·nt
j′ =

φi −φk

dt
j′

(3.6a)

∇φ ·nt
k′ =

φ j −φi

dt
k′

(3.6b)

∇φ ·nt
i′ =

φk −φ j

dt
i′

(3.6c)
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where dt
j′ , dt

k′ and dt
i′ are the lengths of the edges j′, k′ and i′, as shown in Fig. 3.6.

Dielectric permittivity and electric field are assumed constant along each segment
ht

j′ , ht
k′ and ht

i′ , hence the first integral becomes:

∫
Ct

i

ε
t
∇φ ·n dSt = ε

t
k′ ∇φ ·nt

k′ ht
k′ − ε

t
j′ ∇φ ·nt

j′ ht
j′ − ε

t
i′ ∇φ ·nt

i′ ht
i′

= ε
t
k′ (φ j −φi)

ht
k′

dt
k′

− ε
t
j′ (φi −φk)

ht
j′

dt
j′
− ε

t
i′ (φk −φ j)

ht
i′

dt
i′

(3.7)

The second integral is now taken into account: since the space charge is constant on
At

i, it is approximated by ρ t
i At

i, where all the quantities involved in ρ t
i are defined at

node i for each triangle t. The final discretized form for Poisson equation is:

∑
t

[
ε

t
k′(φ j −φi)

ht
k′

dt
k′
+ ε

t
j′(φk −φi)

ht
j′

dt
j′
+ ε

t
i′(φ j −φk)

ht
i′

dt
i′

+[q · (pi −ni +NDi −NAi)+ρFi] At
i = 0

] (3.8)

which is a linear expression as a function of electrostatic potential and carrier
concentrations. The fixed charge and the net doping concentration are independent
from the solution unless the incomplete ionization of dopants is considered. In this
case, NDi −NAi are functions of ni and pi, respectively, as indicated in (2.50).

An interesting point is the discretization procedure adopted for the spontaneous
and piezoelectric charge, characterizing nitride-based semiconductors, since it en-
ters the space charge concentration. The in-house solver provides two possible
implementations for the polarization charge, which can be treated as a volumic or a
surface charge distribution. Consider the heterostructure AlGaN/GaN of Fig. 3.8:
the volumic polarization charge qPE is a vector defined for each mesh node i, with
all zero elements except for the ones lying on the heterointerface (indicated in red).
This implementation allows the user to directly define the amount of net polarization
charge at the interface between the two materials, as shown in Fig. 3.9, where
qPE,int = 16 C cm−3. Therefore, the vector qPE is added to the space charge density
of the Poisson equation, as indicated in (2.66). On the other hand, the polarization
charge P is a piecewise constant vector defined for each mesh node i, following the
simplified strain model explained in Chapter 2. This implementation allows the user
to define the amount of surface polarization charge of each material, as shown in Fig.
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Fig. 3.8 Example of heterostructure AlGaN/GaN.

Fig. 3.9 Volumic polarization distribution. Fig. 3.10 Surface polarization distribution.

3.10, while the volumic vector qPE is indirectly obtained using (2.67), hence adding
the divergence of P to the Poisson equation. Fig. 3.11a shows the conduction band
energy of the AlGaN/GaN heterojunction at thermodynamic equilibrium obtained
for a grid structure of 500 nodes: due to the coarse mesh, both the results do not
exhibit a great precision. Doubling the number of grid points, the conduction band
presents the typical 2DEG channel, that characterizes nitride-based heterostructures,
in both the implementations, as shown in Fig. 3.11b.
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(a) Coarse grid structure. (b) Fine grid structure.

Fig. 3.11 Comparison between the conduction band energy at thermodynamic equilibrium
obtained in the AlGaN/GaN heterostructure with the two implementation methods.

Continuity equations

Consider the continuity equation for electrons (2.1b) and apply Gauss’s Law at each
triangle t:

∑
t

[∫
Ct

i

Jn ·n dSt −
∫ ∫

At
i

(
∂n
∂ t

+Un

)
dAt

]
(3.9)

Let us start from the second integral: since the integrand function is considered
constant on At

i, it is approximated by:

∫ ∫
At

i

(
∂n
∂ t

+Un

)
dAt ≈

(
∂ni

∂ t
+U t

ni

)
At

i (3.10)

Concerning the first integral, it is treated similarly to the Poisson equation, therefore
the current density is considered constant along each segment ht

j′ , ht
k′ and ht

i′:∫
Ct

i

Jn ·n dSt = Jn ·nt
k′ ht

k′ − Jn ·nt
j′ ht

j′ − Jn ·nt
i′ ht

i′ (3.11)

The application of a pure finite difference discretization scheme on (3.11) leads to
numerical instability problems due to the fact that they include convective-diffusive
terms. Therefore, the Scharfetter-Gummel approach [50] is introduced in order to
provide a stable discretization of the drift-diffusion constitutive relations. Recalling
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(2.5a), the term Jn ·nt
k′ can be written along the edge k′ going from node i to node j:

Jn ·nt
k′ = qµn

(
−n∇φ ·nt

k′ +
Dn

µn

dn
dx

)
=⇒

Jn ·nt
k′

qµnk′
+n ∇φ ·nt

k′ (3.12)

where mobility, diffusivity and temperature are assumed constant along each edge.
Integrating (3.12) between xi and x j and expressing ∇φ through finite differences,
one can obtain:

Jn ·nt
k′ =

qDnk′

dt
k′

[
n jB

(
∆φi j

VT

)
−niB

(
−

∆φi j

VT

)]
(3.13)

where ∆φi j = φ j −φi and B(x) is the Bernoulli function, which is defined as:

B(x) =
x

exp(x)−1
(3.14)

The same procedure is repeated for Jn ·nt
j′ and Jn ·nt

i′ , leading to the final discretized
form of the electron continuity equation:

∑
t

[
ht

k′

dt
k′

It
nk′ −

ht
j′

dt
j′

It
n j′ −

ht
i′

dt
i′

It
ni′ −

(
∂ni

∂ t
+U t

ni

)
At

i

]
= 0 (3.15)

where

It
nk′ = qDnk′

[
n jB

(
∆φi j

VT

)
−niB

(
−

∆φi j

VT

)]
(3.16a)

It
n j′ = qDn j′

[
niB

(
∆φki

VT

)
−nkB

(
−∆φki

VT

)]
(3.16b)

It
ni′ = qDni′

[
nkB

(
∆φ jk

VT

)
−n jB

(
−

∆φ jk

VT

)]
(3.16c)

The Scharfetter-Gummel discretization procedure can be also applied to the hole
continuity equation, whose discretized form is:

∑
t

[
ht

k′

dt
k′

It
pk′ −

ht
j′

dt
j′

It
p j′ −

ht
i′

dt
i′

It
pi′ +

(
∂ pi

∂ t
+U t

pi

)
At

i

]
= 0 (3.17)
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Fig. 3.12 Representation of a peripheral bonding line [11].

where

It
pk′ = qDpk′

[
p jB

(
∆φi j

VT

)
− piB

(
−

∆φi j

VT

)]
(3.18a)

It
p j′ = qDp j′

[
piB

(
∆φki

VT

)
− pkB

(
−∆φki

VT

)]
(3.18b)

It
pi′ = qDpi′

[
pkB

(
∆φ jk

VT

)
−n jB

(
−

∆φ jk

VT

)]
(3.18c)

Boundary conditions

The finite-boxes discretization can be applied to each mesh point included in the
device domain, except for nodes lying on peripheral device edges or interfaces
between two different materials (for example electrical contact nodes). Consider
a bonding line Ci characterized by two components (see Fig. 3.12): CΩ

i inside the
device and C∂Ω

i on the boundary. Applying Gauss’s Law to (3.3), one can obtain
[11]: ∫

CΩ
i

F ·n dS =
∫ ∫

Ai

u dx dy =−
∫

C∂Ω
i

F ·n dS (3.19)

where F is the flux, i.e. E, Jn or Jp. The left-hand side involves the mesh nodes inside
the device, while the right-hand side only considers the grid points on the boundary.
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Concerning the boundary nodes lying on peripheral device edges, homogeneous
Neumann boundary conditions (F · n = 0) are enforced to (3.19), since no flux
passes through the boundary edges. One can find that the discretized expressions for
peripheral nodes are equal to (3.8), (3.15) and (3.17). Concerning the nodes lying on
electrical terminals, the boundary condition depends on the type of contact. Dirichlet
boundary conditions are enforced when the value of φ , n and p is fixed. They
can be applied to ohmic contacts, leading to (2.23) and (2.24), whose discretized
expressions are:

φic −

[
vk +

kBT
q

asinh

(
ND −NA

2ni

)]
= 0 (3.20a)

nic −n0 = 0 (3.20b)

pic − p0 = 0 (3.20c)

where ic indicates the contact node. Dirichlet boundary conditions are also applied
to "contacts on insulators", leading to (2.25) and (2.26), whose discretized form is:

φic − (vk −φMS) = 0 (3.21a)

nic = pic = 0 (3.21b)

Non-homogeneous Neumann boundary conditions are instead enforced on Schottky
contacts, when the external flux depends on internal quantities, such as potential
or carrier concentration. Hence, (2.27) and (2.28) assume the following discretized
expression:

φic −

[
vk −φB +

kBT
q

ln

(
NC

ni

)]
= 0 (3.22a)

Jn ·n−qvth,n(nic −nB
0 )di′c = 0 (3.22b)

Jp ·n+qvth,p(pic − pB
0 )di′c = 0 (3.22c)

where Jn ·n and Jn ·n are discretized as shown in (3.15) and (3.17).
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3.2.2 Discretization of external circuit equations

In order to perform mixed-mode simulations, the PDD model can be coupled to
external circuit equations, whose unknowns are expressed as follows:

vk(t) ik(t) (3.23)

The voltage-controlled equation (2.31) involves time-varying quantities defined on
each device terminal k, therefore no spatial discretization is needed. The current equa-
tion (2.33) involves the term ik, which is defined on the k terminal, and the electron,
hole and displacement current densities, following the finite-boxes discretization
scheme, previously described.

3.3 Temporal discretization: the HB formulation

As anticipated in (3.1), the PDD model involves time-dependent unknowns, for
instance the time derivative of the carrier concentrations ∂n

∂ t and ∂ p
∂ t . In static con-

ditions, the time derivatives are equal to zero and the discretized model becomes a
system of non-linear algebraic equations. In dynamic conditions, these are non-zero
derivatives, which are treated in different ways according to the type of device
operating condition. For example, the Small-Signal (SS) operation implies a small
time-varying perturbation around the DC working point and the discretized PDD
model can be linearized founding the solution directly in the frequency domain. Peri-
odic or quasi-periodic1 Large-Signal (LS) operating conditions are treated exploiting
the Harmonic Balance (HB) technique [51, 29], suited for LS non-linear circuit
simulations [28, 52]. Finally, transient conditions require time-stepping algorithms
to be solved, but they are not implemented in the in-house solver, therefore their
treatment is out of the scope of this work. Moreover, there are also less conventional
type of analyses, namely the sensitivity [53, 54] and noise analysis [13]: the first
one involves a small variation of a device parameter in DC, SS or LS conditions,
while the second one can be a SS noise or a LS noise analysis. These are imple-
mented in the in-house code, as explained in Chapter 4. As anticipated in Chapter 2,
time-dependencies can be described in time-domain or frequency-domain regimes:

1A quasi-periodic function of time is the superposition of periodic waveforms, whose periods are
incommensurate [28].
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time-domain techniques do not perform efficiently, therefore frequency-domain
approaches are preferred, whenever applicable, because they are easier and more
efficient solutions especially for periodic or quasi-periodic operation regimes. As
anticipated in Chapter 2, one of the most used frequency-domain techniques suited
for non-linear networks is the HB method.

Purpose of this section is to apply the HB formalism, described in Appendix A,
to the PDD model equations, restricting the treatment to the periodic LS regime,
therefore only single-tone time-varying signals are taken into account. Recalling
(3.1), the unknowns of the PDD model can be sampled, recalling (A.4), into nH =

2NH +1 equispaced times:

φ(t)⇐⇒ [φ(t1),φ(t2), ...,φ(t2NH+1)]
T = φ

T (3.24a)

n(t)⇐⇒ [n(t1),n(t2), ...,n(t2NH+1)]
T = nT (3.24b)

p(t)⇐⇒ [p(t1), p(t2), ..., p(t2NH+1)]
T = pT (3.24c)

The time-sampled vector can be translated in the frequency domain using the ΓΓΓ

matrix defined in (A.7) and (A.8), which implement a discretized Fourier transform:

φH =ΓΓΓ ·φ where φ
T
H = [φ0,φc1,φs1,φc2,φs2, ...,φcNH ,φsNH ]

T (3.25a)

nH =ΓΓΓ ·n where nT
H = [n0,nc1,ns1,nc2,ns2, ...,ncNH ,nsNH ]

T (3.25b)

pH =ΓΓΓ · p where pT
H = [p0, pc1, ps1, pc2, ps2, ..., pcNH, psNH ]

T (3.25c)

Notice that, in case of single-tone time-dependent signals, the HB technique is
applied in a real Fourier representation. Moreover, the PDD also involves the time
derivatives of the carrier concentrations in the transport equations (2.5) and recalling
(A.12), they can be written as:

∂n(t)
∂ t

⇐⇒ n′H =ΩΩΩ ·nH =ΩΩΩ ·ΓΓΓ ·n (3.26a)

∂ p(t)
∂ t

⇐⇒ p′H =ΩΩΩ · pH =ΩΩΩ ·ΓΓΓ · p (3.26b)

Concerning the ECEs, time-varying unknowns are also treated following the HB
technique, therefore the frequency-domain representation of terminal voltages and
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currents reads:

vkH =ΓΓΓ · vk where vT
kH = [vk0,vkc1,vks1,vkc2,vks2, ...,vkcNH ,vksNH]

T (3.27a)

ikH =ΓΓΓ · ik where iTkH = [ik0, ikc1, iks1, ikc2, iks2, ..., ikcNH , iksNH ]
T (3.27b)

The circuit impedance Z of the voltage-controlled equation (2.31) is already ex-
pressed in the phasor domain: each element of Z is expanded on nH harmonics,
hence its size increases up to (K ·nH)× (K ·nH):

ZH =

Z11,H . . . Z1K,H
... . . . ...

ZK1,H . . . ZKK,H

 (3.28)

Moreover, the current equation (2.33) involves the time derivative of the electric
field through the displacement current contribution of (2.34). Its HB representation
follows (A.12).

3.4 Numerical implementation

The partial differential equations involved in the TCAD solver are non-linear, as a
consequence their solution is not straightforward and requires the development of
ad-hoc numerical methods, the one used in this case is Newton’s method [55]. A
generalized version of Newton’s method is exploited in the in-house TCAD simulator.
Consider the basic discretized PDD model equations in compact form:

F(α)(u) = 0 (3.29)

with α,u = (φ ,n, p), where the α index represents a specific equation of the system,
for example α = φ corresponds to the Poisson equation, and the u index refers the
vector of unknown nodal samples, such as the electrostatic potential or the carrier
concentrations [45]. The first-order Taylor expansion at the k-th iteration step is:

F(uk)︸ ︷︷ ︸
rk

+F′(uk)︸ ︷︷ ︸
Jk

(uk+1 −uk)︸ ︷︷ ︸
∆uk+1

= 0 =⇒ Jk ·∆uk+1 =−rk (3.30)
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where J is the Jacobian matrix, containing the derivatives of each equation F(φ), F(n)

and F(p) with respect to the unknowns φ , n and p, while ∆u is the vector of unknown
variations with respect to the previous step and r is the residual vector, containing the
discretized physical equations of the system, which are the Poisson equation F(φ), the
electron continuity equation F(n) and the hole continuity equation F(p). Therefore, at
the (k+1)-step, the solution vector u can be updated to uk+1 = uk +∆uk+1. Notice
that the Taylor expansion is a local approximation, since it is evaluated starting from
an initial guess and it is very important to start from a reasonably good guess in
order to reach convergence. This is the reason why the thermodynamic equilibrium
simulation is the first step of the drift-diffusion solver, since it provides the initial
guess necessary for the simulation of the full drift-diffusion model out of equilibrium.
Equation (3.30) can be written as:Jφφ Jφn Jφ p

Jnφ Jnn Jnp

Jpφ Jpn Jpp

 ·

∆φ

∆n
∆p

=−

rφ

rn

rp

 (3.31)

while the residual vector is expressed as the sum of two parts:

r = K ·u+ t =⇒

rφ

rn

rp

=

Kφφ Kφn Kφ p

Knφ Knn Knp

Kpφ Kpn Kpp

 ·

φ

n
p

+

tφ
tn
tp

 (3.32)

where matrix K and t are the linear and non-linear components, respectively, of the
discretized physical equations.

Let us take into account the PDD model in static conditions and assume the
incomplete ionization of dopants. Linear and non-linear components of the residual
vector can be identified in the discretized PDD equations (3.8), (3.15) and (3.17),
where time dependencies are neglected, and their boundary conditions in (3.20),
(3.21) and (3.22). The residual vector and the Jacobian matrix can be written as:

r = r(0) = K(0) ·u+ t (3.33a)

J = K(0)+ J(0) (3.33b)
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where

K(0) =

K(0)
φφ

K(0)
φn K(0)

φ p

0 K(0)
nn 0

0 0 K(0)
pp

 , J(0) =


0 J(0)

φn J(0)
φ p

J(0)nφ
J(0)nn J(0)np

J(0)pφ
J(0)pn J(0)pp

 , t =

tφ
tn
tp

 (3.34)

where the superscritp (0) refers to the static components of the residual vector since
time dependencies are not considered. Concerning the Jacobian matrix, it is the sum
of two different parts: a static linear part K(0) and a static non-linear part J(0). The
terms J(0)

φn and J(0)
φ p come from the incomplete ionization of dopants (2.50), where ND

and NA depend on the electron and hole concentrations, therefore the derivatives of
tφ with respect to the carrier concentrations must be added to the Jacobian matrix.
Concerning the system’s size, let us consider a device with a grid structure of nn

nodes, hence each equation of the PDD model is defined on a number of points equal
to nn. Since the system includes three equations, its dimension is 3nn ×3nn.

The analysis can be extended to the dynamic case, in particular to the periodic
LS operating condition, where two aspects must be taken into account. First of all,
time dependencies of the discretized PDD model add a dynamic matrix component,
namely K(1), to both the residual vector and the Jacobian matrix. This matrix
represents the contribution of the time derivatives of electrons and holes in the
continuity equations and it is expressed as follows:

K(1) =

0 0 0

0 K(1)
nn 0

0 0 K(1)
pp

 (3.35)

Furthermore, all the matrices are assembled in the time-domain and then translated
in the frequency-domain using the real notation of the HB formalism [29]. Defining
a number of harmonics equal to nH = 2NH +1, the system becomes:

rH = (K(0)
H +K(1)

H )︸ ︷︷ ︸
KH

∆uH + tH = K(0)
H ∆uH + tH︸ ︷︷ ︸

r(0)H

+K(1)
H ∆uH︸ ︷︷ ︸

r(1)H

(3.36a)

JH = KH + J(0)H (3.36b)
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where the terms ∆uH, tH, K(0)
H , K(1)

H and J(1)H are converted in the frequency-domain
through ΓΓΓ, ΓΓΓ−1 and ΩΩΩ. Each equation of the PDD model is discretized on a grid
structure of nn nodes: on each node i, a number of harmonics equal to nH is defined.
Therefore, taking as an example the electron continuity equation, the frequency-
domain conversion is performed as follows:

∆niH =ΓΓΓ ∆ni, tniH
=ΓΓΓ tφi (3.37a)

K(0)
niHniH =ΓΓΓ K(0)

nini ΓΓΓ
−1, K(1)

niHniH =ΩΩΩ ΓΓΓ K(1)
nini ΓΓΓ

−1, J(0)niHniH =ΓΓΓ J(0)nini ΓΓΓ
−1 (3.37b)

In LS operating conditions the dimension of the system increases to 3Nn × 3Nn,
where Nn = nn ·nH.

If the PDD model is coupled to the ECEs, forming the PDD-ECE system, the
residual vector and the Jacobian matrix are modified. In particular, in the voltage-
controlled equation (2.31), one can identify two blocks: the right-hand side enters
in vector t, while in the left-hand side the terminal voltage enters in K(0) and the
circuit impedance is an element of K(2)

H . Concerning the current equation (2.33), in
the left-hand side the terminal current contributes to K(0), while the right-hand side
enters in K(0), K(1) and J(0), since it involves the electron, hole and displacement
currents. The system becomes:

rH = r(0)H + r(1)H + r(2)H where r(2)H = K(2)
H ∆uH (3.38a)

JH = KH + J(0)H where KH = K(0)
H +K(1)

H +K(2)
H (3.38b)

In this case, the size of the system increases: each equation is defined on nc active
terminals (not grounded) and nH harmonics. Since Nc = nc ·nH, the dimension of
the system becomes (3Nn +2Nc)× (3Nn +2Nc).

3.5 Treatment of self-heating

As anticipated in Chapter 2, one of the main advanced capabilities of the in-house
TCAD solver is the possibility to evaluate the heat dissipation through the device,
exploiting the self-heating equation. This section is focused on the spatial and
temporal discretization of the SH equation (2.36) and its numerical implementation
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into the SHS system (2.38). To this purpose, (2.36) is re-written as follows:

Yth(T −T0) = Pdiss (3.39)

where the left-hand side is characterized by the lattice temperature T and the ther-
mal admittance Yth, while the right-hand side term corresponds to the FFT of the
dissipated power.

Let us start from the spatial discretization procedure: the SH equation is de-
fined on a 2D non-uniform grid structure of nn nodes with triangular subspaces.
The dissipated power in (2.37) is given by the product of time-varying voltages
and currents, which are only defined on the device terminals, therefore the spatial
discretization only concerns the lattice temperature T (x,y, t). This term assumes
the same value in all the grid nodes, providing a uniform heat dissipation inside the
device. Nevertheless, it is not treated as a parameter, but rather as a vector defined
on each node i. This choice has no obvious immediate advantages in the current
code, but it will allow for an easier implementation of the heat-flow equation, when
more accurate and advanced device analyses will be required. As a consequence, the
discretized form of the SH equation is:

∑
t

[
(Ti −T0)

]
Yth −Pdiss = 0 (3.40)

Concerning the temporal discretization, let us apply the HB formalism to the
involved time-domain quantities, i.e. the lattice temperature and the dissipated power,
which are divided into nH = 2NH +1 equispaced times:

T (t)⇐⇒ [T (t1),T (t2), ...,T (t2NH+1)]
T = T T (3.41a)

pdiss(t)⇐⇒ [pdiss(t1), pdiss(t2), ..., pdiss(t2NH+1)]
T = pT

diss (3.41b)

The time-sampled vectors are translated in the frequency domain using the ΓΓΓ matrix
defined in (A.7) and (A.8), which implement a discretized Fourier transform:

TH =ΓΓΓ ·T where T T
H = [T0,Tc1,Ts1,Tc2,Ts2, ...,TcNH,TsNH]

T (3.42a)

PdissH =ΓΓΓ · pdiss where PT
dissH

= [Pdiss0 ,Pdissc1 , ...,PdisscNH
,PdisssNH

]T (3.42b)
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Moreover, the SH equation involves the thermal admittance Yth, which is already
designed in the phasor domain as an RC thermal circuit (see Fig. 2.5). The HB
representation follows (A.12):

Yth =
1

Rth
+ΩΩΩ Cth (3.43)

The numerical implementation of the SHS system consists of applying Newton’s
method to (3.40): the left-hand side involves the term Yth, which enters into the
matrix K(2)

H , while the dissipated power on the right-hand side contributes to J(0).
In conclusion, the SH discretized equation is defined on Nn = nn · nH elements,
where nn is the number of grid nodes and nHJ the number of harmonics. As a
consequence, the size of the SHS system increases from (3Nn +2Nc)× (3Nn +2Nc)

to (4Nn +2Nc)× (4Nn +2Nc).

3.6 Treatment of the trap rate equation

Another advanced capability of the in-house TCAD simulator is the possibility to
simulate trapping and de-trapping mechanisms, coupling the PDD-ECE system to the
trap rate equation. This section is focused on the spatial and temporal discretization of
the TRE equation (2.42) and its numerical implementation into the PDD-ECE-TRE
system (2.46).

Let us start from the spatial discretization and consider the TRE equation defined
on a grid structure of nn nodes. The involved physical quantities of (2.42), i.e.
electrons n(x,y, t), holes p(x,y, t) and traps concentrations nt(x,y, t) depend on the
grid structure, hence:

∑
t

[
∂nti
∂ t

− (Uni −Upi)

]
= 0 (3.44)

where nti is the occupied trap concentration at each node i, while Uni and Upi are
functions of ni and pi, respectively. As a consequence, the space charge involved in
the discretized Poisson equation is modified as follows:

ρ
t
i = q · (pi −ni +NDi −NAi −nti) (3.45)
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Concerning the temporal discretization, let us apply the HB formalism on the in-
volved time-domain quantities, i.e. electrons, holes and traps concentrations, which
are divided into nH = 2NH +1 equispaced times:

n(t)⇐⇒ [n(t1),n(t2), ...,n(t2NH+1)]
T = nT (3.46a)

p(t)⇐⇒ [p(t1), p(t2), ..., p(t2NH+1)]
T = pT (3.46b)

nt(t)⇐⇒ [nt(t1),nt(t2), ...,nt(t2NH+1)]
T = nT

t (3.46c)

The time-sampled vectors are translated in the frequency domain using the ΓΓΓ matrix:

nH =ΓΓΓ ·n where nT
H = [n0,nc1,ns1,nc2,ns2, ...,ncNH ,nsNH]

T (3.47a)

pH =ΓΓΓ · p where pT
H = [p0, pc1, ps1, pc2, ps2, ..., pcNH, psNH ]

T (3.47b)

ntH =ΓΓΓ ·nt where nT
tH = [nt0,ntc1,nts1,ntc2 ,nts2 , ...,ntcNH

,ntsNH
]T (3.47c)

Since the TRE also involves the time derivative of the occupied trap concentration,
the latter is translated in the frequency-domain representation exploiting (A.12):

∂nt(t)
∂ t

⇐⇒ n′tH =ΩΩΩ ·ntH =ΩΩΩ ·ΓΓΓ ·nt (3.48)

The numerical implementation of the PDD-ECE-TRE system consists of applying
Newton’s method to (3.44): the time derivative of the trap concentration on the left-
hand side is an element of the K(1) matrix, while the right-hand side adds new
elements to the t vector and the J(0) matrix. The size of the PDD-ECE-TRE system
increases, since the discretized TRE is defined on a grid structure of Nn = nn ·NH

elements, where nn is the number of grid points and nH the number of harmonics.
Moreover, the trap rate equation is solved for each trap type included in the final
system, therefore it is overall defined on Ntraps = ntraps ·Nn elements, where ntraps is
the number of traps included. As a consequence, the system’s size increases from
(3Nn +2Nc)× (3Nn +2Nc) to (Ntraps +3Nn +2Nc)× (Ntraps +3Nn +2Nc).



Chapter 4

Device modeling capabilities based on
the Green’s Function approach

4.1 Introduction

Nowadays, device variability has a central role in the fabrication process, not only
in aggressively scaled technologies, such as FinFETs, UTB-SOI, but also in non-
mature ones, such as GaN-based HEMTs. As explained in Chapter 1, there are
different phenomena affecting the overall uncertainty of the device performance,
such as process variations, related to gate length or gate thickness, the inherent
spread of physical parameters, such as mobility or work function, the crystal strain
and the thermal stress. The thermal management is another important consequence
of extremely scaled technologies, especially in non-planar structures where heat
dissipation through the substrate is a critical issue. Therefore, the electron device
performances are heavily affected by the significant technological variability and the
difficult thermal management, especially in analog RF and microwave applications.
An efficient way to account for device performance spread is the sensitivity analysis,
which can be performed, from the TCAD standpoint, through the linearization of the
device model equations around a nominal parameter value. The proposed modeling
approach is based on the so-called Green’s Function technique (GF), well known
for device noise [19, 56–58] and parametric variability analysis [17, 59], and aimed
at assessing the device response to the (small) deterministic or random variation of
a technological or physical parameter. In order to describe the GF approach, it is
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Fig. 4.1 Equivalent voltage and current noise generators applied to the terminals of a two-port
noiseless device [12].

necessary to understand how the Green’s functions are evaluated. The numerical
estimation of the GFs is available in some commercial TCAD simulators (e.g. [26])
when the operating condition is time-invariant (DC), hence allowing only for a
small-signal noise or DC variability analysis. On the other hand, the GF-based
analysis in the LS dynamic case is not yet available at the commercial level, but can
be performed in the in-house solver, where the numerical implementation is based
on the so-called Generalized Adjoint Method.

This chapter presents the Green’s Functions technique through a discussion on
linear and non-linear noise analyses. In particular, the numerical implementation
adopted in the in-house solver, to efficiently calculate the relevant GFs, is reported.
Finally, a discussion on how the GF-based approach is applied to sensitivity analysis
in both static and dynamic conditions is presented.

4.2 Linear noise analysis

Physics-based noise analysis consists of exciting the device through the so-called
microscopic noise sources, representing the physical processes responsible for elec-
tronic noise. They are expressed in terms of fluctuations of carrier velocity, called
diffusion noise, and carrier number, corresponding to GR noise [57, 60]. Microscopic
noise sources occur inside the device, propagate to the contacts and produce current
and voltage fluctuations to the device ports, which can not be neglected in circuit
operation. At circuit level the overall effect of noise sources can be represented by
external noise voltage or current generators applied to the terminals of a noiseless
device, as shown in Fig. 4.1. They introduce fluctuations with respect to a nominal
DC steady-state (small-signal noise) or with respect to a LS steady-state (large-signal
noise). This section is focused on the small-signal noise analysis only. If a micro-



4.2 Linear noise analysis 65

scopic noise fluctuation is sufficiently small, it is considered as a small perturbation
around the DC working point. In this case, the device acts in linearity and the noise
analysis can be carried out through the linearization of the device operation around
the DC bias point, hence the name linear noise analysis. Since the SS noise analysis
is a kind of small-signal analysis in presence of random excitation, a brief review of
the TCAD approach to SS analysis is hereafter presented.

4.2.1 Small-signal analysis

Consider the compact form of of the PDD system:

F(α)(β , β̇ ) = 0 (4.1)

with α,β = (φ ,n, p), where the α index represents a specific equation of the system,
for example α = φ corresponds to the Poisson equation, the β index refers the
vector of unknown nodal samples, such as the electrostatic potential or the carrier
concentrations, and the term β̇ is the time derivative of β (it is null in memory-less
equations, such as Poisson equation α = ϕ). The external voltage source vector sext

sets the operating regime of the device, either static or dynamic. If the device operates
in small-signal conditions, an external source with small amplitude sss

ext(t) is added
to a DC working point sext,0, and the input source becomes sext(t) = sext,0 + sss

ext(t).
Therefore, the unknowns are expressed as β (t) = β 0 + β

ss(t). Due to the small
amplitude of the input signal, the device equations can be linearized around the DC
working point. The linearized expression can be directly evaluated in the frequency
domain, where no harmonics are generated, since the signal amplitude is small
enough to have a linear response:

β
ss(t) = β̃

ss
exp(jωt) (4.2)

where β̃
ss

are the peak amplitude of the time-domain (sinusoidal) signals. The
frequency-domain linearized equation is:

∂F
∂φ

∣∣∣∣
0
φ̃

ss +
∂F
∂n

∣∣∣∣
0
ñss +

∂F
∂ p

∣∣∣∣
0
p̃ss + jω

∂F
∂ ṅ

∣∣∣∣
0
ñss + jω

∂F
∂ ṗ

∣∣∣∣
0
p̃ss = 0 (4.3)
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Applying the discretization procedure to the system of equations (4.3) on a grid
structure of nn nodes, one obtains the following frequency-domain system:

JH · ũss = sss
ext (4.4)

where ũss = (φ̃ ss, ñss, p̃ss)T . The Jacobian matrix, as explained in Chapter 3, is equal
to:

JH = K(0)
H +K(1)

H + J(0)H = K(0)+ jω K(1)+ J(0) (4.5)

This expression is valid since, in case of linear response, no harmonics are generated
(NH = 0 and nH = 1), hence ΓΓΓ and ΓΓΓ−1 are equal to 1 and the frequency dependence is
only given by the term jω . Matrices are expressed as if they were in static conditions
[61], in particular K(0) and J(0) assume the form of (3.34) and K(1) is equal to (3.35).
As a consequence, the size of the system is 3nn ×3nn.

4.2.2 Small-signal noise analysis: the Langevin approach

Physics-based modeling of linear noise analysis consists of adding microscopic
noise sources to the PDEs of the noiseless device in DC steady-state condition and
obtaining Langevin equation [62]. Consider the compact form of the PDD model
and apply the noise sources s to the right-hand side of the system, producing a
perturbation of the DC solution:

F(α)(β , β̇ ) = s (4.6)

where the source s is not added to the boundary conditions. If the noise sources are
sufficiently small, the device is in small-signal noise conditions and the system of
PDEs can be linearized around a DC noiseless steady-state, leading to:

∂F
∂φ

∣∣∣∣
0
δφ +

∂F
∂n

∣∣∣∣
0
δn+

∂F
∂ p

∣∣∣∣
0
δ p+

∂F
∂ ṅ

∣∣∣∣
0
δ ṅ+

∂F
∂ ṗ

∣∣∣∣
0
δ ṗ = s (4.7)

(4.7) is the Langevin equation, which can be solved exploiting the Green’s Function
(GF) approach. One can define the Green’s function as Gα,β (r,r1; t, t1) (α,β =

φ ,n, p) for equation α and input variable β as the response in α to a unit source
δ (r− r1)δ (t − t1) injected in β . The Green’s theorem calculates the fluctuation δα
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induced by the source s:

δα(r, t) = ∑
β=φ ,n,p

∫
Ω

∫ t

−∞

Gα,β (r,r1; t, t1)sβ (r1, t1)dt1dr1 (4.8)

where Ω is the device volume. The device working point is a DC steady-state,
therefore Gα,β (r,r1; t, t1) = Gα,β (r,r1; t − t1). Since this is a time-invariant linear
system, a frequency-domain analysis is possible and, through the Fourier transform,
(4.8) becomes:

δ α̃(r,ω) = ∑
β=φ ,n,p

∫
Ω

G̃α,β (r,r1;ω)s̃β (r1,ω)dr1 (4.9)

Notice that, in the following sections, the spatial convolution integral of (4.9) will
be translated and applied in discrete form. In order to apply the GF approach to the
PDD model, let us consider a noiseless device with nc +1 contacts (nc not grounded,
one grounded), where nc active terminals are connected to external noise generators,
which can be short-circuit (s.c.) noise current sources or open-circuit (o.c.) noise
voltage sources. External noise sources are translated into extra equations to be added
as boundary conditions of (4.7): the small-signal short-circuit condition and the
small-signal open-circuit condition. (4.10a) is satisfied if a noise current generator
is applied to the terminal i, therefore no potential fluctuations are allowed. This
corresponds to couple the linearized PDD model to the voltage-controlled equation
(2.31) in s.c. conditions. Equation (4.10b) corresponds to put a noise voltage
generator to the terminal k, hence there are no current fluctuations (δ ĩ includes
electron, hole and displacement currents). This corresponds to couple the linearized
PDD model to the current equation (2.33) in o.c. conditions.

δ ṽ = 0 (4.10a)

δ ĩ = 0 (4.10b)

In conclusion, there are nc + 1 boundary conditions: nc equations correspond to
the s.c. or the o.c. conditions applied to the active contacts and the last equation
enforce one terminal to be grounded. In this discussion, (4.10a) is enforced on the
linearized PDD system in order to evaluate the s.c. Green’s Functions. With the aim
of numerically evaluating them, the linearized PDD model can be discretized on a
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grid structure of nn mesh nodes, obtaining the following frequency-domain system:

JH ·δ ũ = s (4.11)

Since the system response is linear, no harmonics are generated (nH = 1), the
Jacobian matrix assumes the same form of the SS analysis and the size of the system
is 3nn ×3nn. One way to solve this system is the so-called direct approach, aimed
at evaluating the o.c. potential fluctuations due to a unit current injection into each
internal device node. This approach is computationally inefficient since the unit
source is injected on one mesh node (observation node) at a time. This procedure
implies to solve 2nn complex linear systems (since the analysis is in the frequency-
domain) of dimension 3nn × 3nn, even though the relevant unknowns are on the
contacts, hence 2nc. In order to efficiently evaluate the Green’s functions, there
are several techniques. The most general one is Branin’s method [63]: originally
developed for network small-change sensitivity and noise analysis, this approach can
be applied to systems of discretized equations for physics-based noise analysis and
represents a generalization of the Adjoint method [64, 65]. An approach suitable for
any kind of discretized DD model is called Generalized Adjoint Approach (GAA)
and was developed by Bonani et al. in 1995 [57, 66, 67].

4.2.3 The Generalized Adjoint Approach

The Generalized Adjoint Approach has different formulations according to the
numerical implementation. The one adopted in the in-house TCAD code is aimed at
evaluating the s.c. Green’s functions concurrent with the small-signal admittance
matrix [12].

Consider the linearized PDD system and the s.c. boundary condition (4.10a).
The discretization procedure on a grid structure of nn nodes leads to: Jc Bx 0

0 I 0
AT

x Dx −I


x

v
i

=

si

sc

0

 (4.12)

where x, v and i are vectors of unknowns, where x corresponds to potential, electron
and hole concentrations fluctuations in all the nodes, while v and i are the terminal
voltages and currents, respectively. Then, there are several matrices: Jc is the
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Jacobian matrix (3nn × 3nn), Bx is a part of the Jacobian to be multiplied times v
(3nn ×nc), I is the identity matrix to be multiplied times i (nc ×nc) and, to conclude,
AT

x and Dx are parts of the linearization to be multiplied times x and v and with
dimensions nc ×3nn and nc ×nc, respectively.

The unit source terms are si and sc: si is a vector of dimension 3nn with all the
elements equal to zero except for the i-th node, which is equal to one. This source
term corresponds to a unit charge density for the Poisson equation and to a unit
current for the continuity equations; sc is the contact voltages vector of dimension nc

with all zero elements except for the k-th contact, which is equal to 1 V. Therefore,
two possible source terms are involved in the system of equations (4.12), but only
one at a time can be considered in order to solve it. As a consequence, two different
cases can also be distinguished in the formulation of the s.c. Green’s functions.
When the unit source si is applied to the internal nodes, the term sc is necessarily
equal to zero, hence the second set of equations becomes v = 0 and the solution of
the system leads to the calculation of the s.c. noise contact currents due to a unit
source injection at the internal nodes. On the other side, if no internal fluctuations
are considered, the source term si is equal to zero, while the vector of unit contact
voltages sc is involved in the system. In this case, the solution corresponds to the
ratio between terminal current and voltage fluctuations, or in other words, to the
small-signal admittance matrix YSS.

To efficiently evaluate both the s.c Green’s functions and the small-signal admit-
tance matrix, it is convenient to solve the transposed system:

JT
ex y = Aex (4.13)

where

Jex =

[
Jc Bx

0 I

]
, Aex =

[
AT

x

Dx

]
(4.14)

Equation (4.13) represents the final system implemented in the in-house TCAD
solver, whose solution, shown in (4.15), includes the term y0, corresponding to the
s.c. Green’s functions and the term y1, corresponding to the SS admittance matrix.

y =

[
y0

y1

]
=

[
AT

x J−1
c

Dx − yT
0 Bx

]
(4.15)
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The transposed system of size (3nn +nc)× (3nn +nc) is slightly bigger than (4.11),
but needs to be solved nc times instead of 2nn, in order to simultaneously provide
small-signal and linear noise analysis, leading to a strong advantage in terms of
computational cost.

Treatment of self-heating

In the previous sections the numerical implementation based on the GAA approach
has been applied to the linearized PDD model providing the s.c. Green’s Functions
of the Poisson equation and the continuity equations for electrons and holes, namely
respectively G(φ)

k , G(n)
k and G(p)

k . If the PDD model is also coupled to the SH
equation, the device temperature T becomes a new unknown of (4.12) and, since it is
defined on a number of mesh nodes equal to nn, the size of the system is modified. In
particular, the vector of unknowns x is composed of potential fluctuations, electron
and hole concentrations fluctuations and temperature fluctuations in all the nodes nn,
hence its dimension increases from 3nn to 4nn. As a consequence, the size of Jc, Bx

and AT
x increases, respectively, to 4nn ×4nn, 4nn ×nc and nc ×4nn. The solution of

the new system provides an additional information, i.e. the Green’s Function of the
self-heating equation, namely G(T )

k .

Treatment of the trap rate equation

A similar treatment can be repeated if the PDD model is coupled to the TRE equation:
the occupied trap concentration nt becomes a new unknown of (4.12) and, since
each trap is defined on a number of mesh nodes equal to nn, the size of the system
is modified. In particular, the vector of unknowns x is composed of potential
fluctuations and electron, hole and traps concentrations fluctuations in all the nodes
nn. Its dimension increases from 3nn to ntraps ·nn+3nn, where ntraps is the number of
involved traps. As a consequence, the size of Jc, Bx and AT

x becomes, respectively,
(ntraps ·nn+3nn)× (ntraps ·nn+3nn), (ntraps ·nn+3nn)× (nc) and (nc)× (ntraps ·nn+

3nn). The solution of the new system provides an additional information, i.e. the
Green’s Function of the trap rate equation, namely G(nt)

k .
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4.3 Non-linear noise analysis

The large-signal noise analysis is described as a small microscopic perturbation,
expressed in terms of diffusion noise and GR noise, around the LS steady-state.
Since the perturbation is small, the linearization of the device operation around the
LS steady-state working point can be carried out. The LS noise analysis can be
viewed as a kind of Small-Signal-Large-Signal (SSLS) analysis, which is a particular
case of the two-tone LS analysis, in presence of microscopic excitations. Therefore,
a review of SSLS operating condition is hereafter presented.

4.3.1 Small-Signal-Large-Signal analysis

LS periodic or quasi-periodic operation is a device condition in which the peak-
amplitude of time-varying signals is large enough to generate harmonic components
or tones. Therefore, the device linearization around a DC working point is no longer
valid and a complete time-varying device analysis is required. Large-signal inputs
can be composed of one or two tones plus a DC working point. The input signal is
strictly periodic when it is characterized by a single-tone at fundamental frequency
ω0 and all the generated harmonic frequencies are expressed as follows:

ωn = nω0 n = 0,±1,±2, ...; (4.16)

On the other hand, a two-tone LS excitation is characterized by two frequencies ω1

and ω2, related as follows:

ωnm = nω1 +mω2 n,m = 0,±1,±2, ...; nm = |n|+ |m| (4.17)

The operation regime is called quasi-periodic, when the input frequencies are incom-
mensurate, i.e. their ratio is not a rational number. One particular case of (4.17) is
the Small-Signal-Large-Signal (SSLS) regime [28], characterized by a generic LS
excitation x(t) (strong signal) at fundamental frequency ω0 and a small-amplitude
tone xss(t) (weak signal) at ω̃ , which is further applied to the LS input and acts as a
linear perturbation of the LS steady-state. In SSLS operating condition, the analysis
is performed in two steps: first, the LS operating point x(t) is calculated in order to
understand the non-linear behavior of the strong signal only, then, the weak signal
xss(t) is added to the LS input and the non-linear system can be linearized around
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Fig. 4.2 Frequency conversion in a non-linear system characterized by a single-tone LS
excitation plus a small-amplitude signal.

Fig. 4.3 Output spectrum of a non-linear system characterized by an input SSLS excitation.

the periodic LS steady-state. The final frequency spectrum can be written as follows:

ω̃
±
n = nω0 ± ω̃ = ωn ± ω̃ n = 0,±1,±2, ... (4.18)

where ωn is the LS tone and ω̃ is the displacement frequency. Looking at Fig. 4.2,
the input displacement frequency ω̃ is converted into a set of output frequencies
nω0 + ω̃ and nω0 − ω̃ , called sideband frequencies, represented in Fig. 4.3. The
strong signal of the SSLS input is expressed in the frequency domain using the
HB formalism with the real Fourier notation (using the ΓΓΓ matrix, implementing the
discrete Fourier transform), therefore the spectral content is represented by (A.1). On
the contrary, the weak signal is expressed through the HB technique with the more
convenient complex Fourier representation (using the Γ̃ΓΓ matrix) [52, 28, 68, 69],
reviewed in Appendix A. One can notice that in the complex notation, (4.18) is
redundant and the only upper sideband frequencies are sufficient to describe the
whole spectrum:

ω̃
+
n = nω0 + ω̃ n = 0,±1,±2, ... (4.19)

Recalling (A.13), the frequency-domain expression of xss(t) becomes:

xss(t) =
NH

∑
n=−NH

X̃ ss,+
n exp(jω̃+

n t) (4.20)
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where X̃ ss,+
n is the complex amplitude of the upper sideband phasor, such that

X̃ ss,−
−n = (X̃ ss,+

n )
∗

and X̃ ss,−
n = (X̃ ss,+

−n )
∗

for any n. Let us recall the non-linear system
of Fig. 4.2: thanks to linearity, there is a linear relationship between input and output
sideband amplitudes, corresponding to the so-called conversion matrix [28]. Since
there is frequency conversion between input and output sidebands, this matrix is not
diagonal. Therefore, exploiting the complex HB notation just described, one can
write:

Ỹ ss,+ =C(ω̃) · X̃ ss,+ (4.21)

where C(ω̃) is the conversion matrix of the upper sideband complex amplitudes1.

In order to introduce the numerical implementation of the SSLS analysis in
the TCAD simulations, let us consider the compact form of the PDD system (4.1):
each model unknown can be expressed by x(t) = x0(t)+ xss(t), where x0(t) is the
unperturbed LS steady-state solution and xss(t) is a small perturbation. First, the
discretized PDD model is solved in LS conditions following (3.36) and (3.37), as
already explained in Chapter 3. Then, the linearization of the resulting system
is performed around the LS steady-state leading to a generalization of (4.3) and,
consequently, the discretization procedure on a grid structure of nn mesh nodes gives
system (4.4). The difference with respect to the SS system lies in the generation
of harmonics: each unknown of ũss is expanded in the complex frequency domain
following (4.20) and each submatrix of the Jacobian is expressed following (4.21)
and leading to a conversion matrix formulation:

CJ ·Ũ ss,+ = S̃ss,+
ext (4.22)

For example, the submatrix Jφφ is converted as follows:(
CJφφ

)
q,n

=
(

Jφφ

)
q−n

(4.23)

where q,n are the sideband indices and CJφφ
becomes a matrix of matrices, as shown

in Fig. 4.4. Equation (4.23) implies that the conversion matrix is arranged as a
Toeplitz matrix [12]. Moreover, the elements of the Jacobian matrix involving time
derivatives, previously expressed as jω , are now treated following (A.25). The

1A similar expression can be written for the lower sideband amplitudes: Ỹ ss,− =C−(ω̃) · X̃ ss,−,
where C−(ω̃) =C(−ω̃).
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Fig. 4.4 Representation of matrix expansion in frequency-domain [13].

system’s size of the SSLS system is 3Nn × 3Nn, hence the one found for the SS
analysis multiplied by a factor nH = 2NH +1. In fact Nn = nH ·nn and Nc = nH ·nc.

4.3.2 Large-Signal noise analysis

LS noise analysis or non-linear analysis consists of exciting the noiseless device
through microscopic fluctuations, expressed in terms of carrier number or carrier
velocity, when it operates in LS conditions. The adopted approach is an extension of
the linear noise analysis, described in the previous section, to the frequency-domain
and implies the application of the conversion matrix formalism, introduced for the
SSLS noiseless analysis.

The efficient numerical implementation based on the GAA and formulated for
the linear noise analysis, can be extended to the non-linear case. To this purpose, the
solution of the transposed system allows to simultaneously perform both SSLS and
non-linear noise analysis: when a unit source is injected into the internal nodes, the
s.c. Conversion Green’s functions are calculated, while when a unit voltage source
is applied to the terminals, the small-signal-large-signal admittance matrix YSSLS

is obtained. In order to evaluate these quantities, the transposed system (4.13) is
extended to the non-linear case: each unknown is expanded with the complex HB
notation following (4.20) and each submatrix of the Jacobian is treated as shown in
(4.23). The resulting system is:

CJT
ex
= Ỹss,+ CAex =⇒

[
CJc 0
CBx I

]
=

[
Ỹ0

ss,+

Ỹ1
ss,+

][
CAT

x

CDx

]
(4.24)
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whose solution is:

y =

[
Ỹ0

ss,+

Ỹ1
ss,+

]
=

[
CAT

x
CJ−1

c

CDx − Ỹ0
ss,+ CBx

]
(4.25)

where Ỹ0
ss,+ corresponds to the s.c. Conversion Green’s functions and Ỹ1

ss,+

corresponds to the small-signal-large signal admittance matrix. The system’s size
becomes (3Nn +Nc)× (3Nn +Nc) where Nn = nH · nn and Nc = nH · nc, and the
number of back-substitutions (i.e. the number of times the transposed system must
be solved) becomes 2Nc.

Treatment of self-heating

The SSLS and non-linear noise analysis applied to the linearized PDD model provides
the s.c. Conversion Green’s Functions of the Poisson equation and the continuity
equations for electrons and holes, namely respectively G̃(φ)

k , G̃(n)
k and G̃(p)

k . Coupling
the PDD model to the SH equation, the device temperature T becomes a new
unknown of (4.24) and, since it is defined on nn mesh nodes and nH harmonics, its
dimension is equal to Nn = nH ·nn. As a consequence, the size of each vector/matrix
involved in the system increases: the vector of unknowns x has dimension 4Nn,
while the size of Jc, Bx and AT

x increases, respectively, to 4Nn ×4Nn, 4Nn ×Nc and
Nc ×4Nn. The solution of the new system provides an additional information, i.e.
the Conversion Green’s Function of the self-heating equation, namely G̃(T )

k .

Treatment of the trap rate equation

If the PDD model is coupled to the TRE equation, the occupied trap concentration
nt becomes a new unknown of (4.24): each trap is defined on nn grid points and
nH harmonics, vector nt has dimension ntraps ·Nn, where ntraps is the number of
involved traps. Therefore, the size of the system is modified: the vector of unknowns
x, composed of potential fluctuations and electron, hole and traps concentrations
fluctuations, increases from 3Nn to ntraps ·Nn +3Nn, while the size of Jc, Bx and AT

x

becomes, respectively, (ntraps ·Nn + 3Nn)× (ntraps ·Nn + 3Nn), (ntraps ·Nn + 3Nn)×
(Nc) and (Nc)× (ntraps ·Nn + 3Nn). The solution of the new system provides the
Conversion Green’s Function of the trap rate equation, namely G̃(nt)

k .
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4.4 GF approach to sensitivity analysis

The GF technique, largely used for device noise analysis, can be exploited to calculate
the parametric sensitivity, i.e. the device response to a (small) variation of physical
or technological parameters from a nominal condition. The approach allows to
calculate the current variation at terminals and, consequently, to extract the local
sensitivity, showing the parts of the device where the varied physical/technological
parameter influences most the device behavior and contributes more to the final
terminal current variation. Another important characteristic of the GF technique
is the possibility to calculate those terminal currents without repeated simulations,
leading to an important advantage from the computational point of view.

In this thesis, the GF-based sensitivity analysis has been implemented, exploiting
the in-house TCAD solver, in both static and dynamic regimes, in particular in DC,
AC and LS conditions. The parametric sensitivity has been performed to account for
temperature variations [70]: T is considered a model parameter, in case of parametric
temperature variations, and a model unknown, in case of heat dissipation due to the
presence of a thermal impedance. The latter case implies the solution of the SHS
system, where the device is coupled to an external thermal circuit for self-heating.
Furthermore, the GF technique is also exploited to compute the sensitivity of trap
physical parameters, e.g. the trap concentration, trap energy and trap cross section.

The following sections report a detailed discussion of the parametric sensitiv-
ity analysis in different operating conditions. Concerning the temperature, the
T -dependent analysis is presented in DC and LS conditions, while the self-heating
analysis is, at present, introduced in DC conditions. Regarding the sensitivity analysis
in presence of traps, it is presented in both DC and AC regimes.

4.4.1 T -dependent sensitivity analysis

The T -dependent sensitivity analysis is presented in both static (DC) and LS con-
ditions, exploiting the GF-based technique. In this discussion, T is assumed to be
uniform at the device and equal to the lattice temperature (see Fig. 2.4). Hence, T is
not a model unknown, but rather a model parameter.
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DC analysis

Let us consider a bipolar device physics-based model expressed and re-write the
discretized PDE system (4.1) in the following way:

F(α)(β ,vext;T ) = D(α)
β̇ . (4.26)

with α,β = (φ ,n, p,nt). The term α represents a specific equation of the system,
while β the vector of unknown nodal samples. For each discretized equation α , one
can distinguish a time-invariant part F(α)(β ,vext;T ) and a time-varying (memory)
part, proportional to β̇ (the time derivative of β ) through the block diagonal matrix
D(α) (notice that D(α) is null for memory-less equations, such as Poisson equation
α = ϕ). The external voltage source2 vector vext sets the operating regime of the
device, either static or dynamic.

In the static case the external voltage is constant (DC bias), and thus D(α) = 0.
The “cold” solution β 0 is found solving (4.26) for each DC bias at the nominal lattice
temperature T0. When the temperature undergoes a variation ∆T = T −T0 with fixed
electrical excitation, (4.26) is linearized around the nominal solution, yielding for
the perturbation ∆β = β −β 0:

J(α)(β 0,vext;T0)∆β +
∂F(α)

∂T

∣∣∣∣∣
(β 0,vext;T0)

∆T = 0 (4.27)

where J(α) is the Jacobian matrix of F(α) evaluated at the nominal solution (β 0,vext;T0).
Let us define the equivalent source:

s(α)
0 (β 0,vext;T0,T ) =− ∂F(α)

∂T

∣∣∣∣∣
(β 0,vext;T0)

∆T (4.28)

which depends on both the nominal and varied temperature and represents a dis-
tributed perturbation for the linearized equation α , depending on the position inside
the device through β 0 and T . Therefore, (4.27) can be re-written as:

J(α)(β 0,vext;T0)∆β − s(α)
0 (β 0,vext;T0,T ) = 0 (4.29)

2Here the case of a voltage-driven device is considered. The extension to current driven terminals
is obvious.
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(a) GF of the Poisson equation. (b) GF of the electron continuity equation.

Fig. 4.5 Green’s Function at drain contact at VD = 1 V and VG = 1 V.

The equivalent source gives rise to a current variation ∆iTk = ik(T )− ik(T0) at the
k-th terminal that can be efficiently computed via the GF approach by the discretized
spatial convolution integral obtained from (4.9):

∆iTk = ∑
α

G(α)
k (β 0,vext;T0)s(α)

0 (β 0,vext;T0,T )ΩΩΩ (4.30)

where the row vector of the Green’s Function nodal values G(α)
k (β 0,vext;T0) relates

the observation variable iTk to a unit source in each mesh node of equation α , while
ΩΩΩ is a diagonal matrix containing the nodal Vornoi volumes. Fig. 4.5 shows two
examples of Green’s function distributions at drain contact associated to electrostatic
potential (Fig. 4.5a) and electron concentration (Fig. 4.5b). GFs are evaluated from
DC simulations performed at T0 = 300 K on a 54 nm Si FinFET device at VD = 1 V
and VG = 1 V.

The estimation of the source term (4.28) requires to compute the derivatives
of the discretized physical equations with respect to T . This procedure is quite
complicated, as lattice temperature enters essentially in the analytical formulation
of every physical model parameter and in the Bernoulli functions of the Scharfetter-
Gummel discretization scheme of the current continuity equations, as already seen
in Chapter 2 and 3. Therefore, the analytical Jacobian in (4.28) is approximated
through finite differences as:

s(α)
0 (β 0,vext;T0,T )≃−F(α)(β 0,vext;T )+

���������:0
F(α)(β 0,vext;T0) (4.31)
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where the last term is null in the nominal solution. This corresponds to evaluate the
residual function F(α) at the varied temperature T . The computation is very fast, no
matrix storage is required and the accuracy is good if T is not too far from T0.

The GF approach opens the way to device optimization through the analysis of
the so-called local variations and of the device thermal sensitivity. The nodal local
variation source allows to identify which regions of the device are most affected by
the equivalent source and corresponds to the integrand function of (4.30), associated
to equation α at the k-th terminal, and

LS(α)
k = G(α)

k (β 0,vext;T0)s(α)
0 (β 0,vext;T0,T ) (4.32)

In addition, the device thermal sensitivity in the DC case is defined as:

ST
ik =

∂ iTk
∂T

≈ ∆iTk
∣∣
T=T0+1 K (4.33)

Dynamic, periodically time-varying analysis

In the dynamic case, time derivatives in (4.26) must be taken into account, thus
making (4.26) a dynamical system. Consider a periodic or quasi-periodic external
source vext(t), so that the system steady-state becomes periodically time-varying and
treated exploiting the HB technique. Let us denote with β̃ and F̃(α) the vector of the
Fourier (harmonic) amplitudes of the time-varying functions β and F(α), truncated
to the harmonic order nH. The Fourier-transformed system (4.26) reads [19]:

F̃(α)(β̃ , ṽext;T ) =ΩΩΩ
(α)

β̃ . (4.34)

where ΩΩΩ(α) is a block-diagonal matrix of (A.12) including the dependence on the
fundamental frequency ω0 and on its harmonics ωn = nω0 (n = 1,2, . . . ,nH) and ṽext

is the Fourier transform of vext(t). The solution of the above algebraic system yields
the Fourier coefficients β̃ 0 of the LS steady-state periodic solution β 0, with nominal
temperature T0.

When the temperature undergoes a variation, (4.26) must be linearized around
(β 0,vext;T0), giving rise to a linear periodically time-varying (LPTV) system. LPTV
systems can be analyzed in the frequency domain with the sideband frequency con-
version analysis [28]: the variation is in general characterized by a set of sidebands
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of the LS harmonics ω̃n = ωn ± ω̃ , as discussed in Section 4.3, but in the particular
case of a time-invariant perturbation the sidebands collapse onto the unperturbed
frequencies, therefore ω̃ = 0 and ω̃n = ωn. In this case the lattice temperature is,
thus, considered a static perturbation of the LS state, hence it is characterized by
the same set of frequencies as the unperturbed solution. With this assumption, the
frequency-domain linearized system is [19]:

J̃(α)(β̃ 0, ṽext;T0)∆β̃ −ΩΩΩ
(α)

∆β̃ = s̃(α)
0 (β̃ 0, ṽext;T0,T ) (4.35)

where: ∆β̃ = β̃ − β̃ 0 is the effect of the temperature variation ∆T ; J̃(α) is the Jacobian
conversion matrix, built with the Fourier coefficients of the time-periodic function
J(α)(β 0,vext;T0) = ∂F(α)/∂β calculated in the periodic solution β 0 and at T0. The
source term s̃(α)

0 collects the Fourier coefficients of:

s(α)
0 (β 0,vext;T0,T ) =−∂F(α)(β ,vext;T )

∂T
∆T (4.36)

extending (4.28) to the periodic case. As in the static case, a finite difference
approximation avoids the explicit calculation of the temperature derivatives:

s̃(α)
0 (β̃ 0, ṽext;T0,T )≃−F̃(α)(β̃ 0, ṽext;T ) (4.37)

The temperature variation ∆T induces a perturbation of the terminal current at
each device contact k, with spectral amplitudes ∆ĨT

k = Ĩk(T )− Ĩk(T0). The Con-
version Green’s Functions of the linearized system (4.35), matrices denoted as
G̃(α)

k (β̃ 0, ṽext;T0), allow to compute such current variations extending (4.30) to the
large-signal case:

∆ĨT
k = ∑

α

G̃(α)
k (β̃ 0, ṽext;T0) s̃(α)

0 (β̃ 0, ṽext;T0,T )Ω̃ΩΩ (4.38)

where Ω̃ΩΩ is a block diagonal matrix containing the Vornoi volumes. Figs. 4.6 and
4.7 show two examples of Conversion Green’s function distributions at drain contact
associated to the third harmonic of electrostatic potential and electron concentration,
respectively. CGFs are calculated from LS simulations performed at T0 = 300 K
on a 54 nm Si FinFET Class A power amplifier with 70 GHz operating frequency,
NH = 10 harmonics and Pav =−3 dBm available power. Furthermore, the integrand
function of (4.38) defines the nodal local variation source of equation α at the k-th
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(a) Real part of (G̃(φ)
D )(3,3). (b) Imaginary part of (G̃(φ)

D )(3,3).

Fig. 4.6 Green’s Function of the Poisson equation for the drain contact at the third harmonic
input/output in a 54 nm Si FinFET power amplifier. DC bias: VD = 0.6 V and VG = 0.675 V.

(a) Real part of (G̃(n)
D )(3,3). (b) Imaginary part of (G̃(n)

D )(3,3).

Fig. 4.7 Green’s Function of the electron continuity equation for the drain contact at the third
harmonic input/output in a 54 nm Si FinFET power amplifier. DC bias: VD = 0.6 V and
VG = 0.675 V.
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(a) Real part of L̃S(n)
D . (b) Imaginary part of L̃S(n)

D .

Fig. 4.8 Distributed local variation source of the third harmonic of the electron continuity
equation at drain contact in a 54 nm Si FinFET power amplifier. DC bias: VD = 0.6 V and
VG = 0.675 V.

terminal:
L̃S(α)

k = G̃(α)
k (β̃ 0, ṽext;T0) s̃(α)

0 (β̃ 0, ṽext;T0,T ) (4.39)

Fig. 4.8 shows an example of real and imaginary parts of the distributed local source
calculated for a temperature variation of 5 K (T0 = 300 K and T = 305 K) on the Si
FinFET power amplifier simulated in the same conditions.

In conclusion, the device thermal sensitivity is a generalization of (4.33) using
(4.38).

4.4.2 Self-heating sensitivity analysis

Let us now consider the device embedded into an external structure, through which
heat is dissipated towards a heat sink at temperature T0 [71]. The lattice temperature
T is considered a model unknown and, as explained in Chapter 2, the device is
isothermal and the heat dissipation process can be represented by a lumped thermal
impedance (see Fig. 2.5).

The self-heating sensitivity analysis is aimed at evaluating the device temperature
increase through the same GFs exploited for the T -dependent analysis. In this
discussion, let us consider the static case only: the thermal capacitance is null and
only the effect of the thermal resistance Rth is taken into account.
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DC analysis

With a DC external voltage v0,k at terminal k, the device self-heating leads to a
temperature increase ∆T , which can be expressed re-writing (2.36):

∆T = T −T0 = Rth Pdiss = Rth ∑
k

ik(T0,T )v0,k (4.40)

where the k-th terminal current is dependent on both T0 and T and can be
approximated by a first order Taylor expansion around the “cold” condition (T = T0,
Rth = 0, ik = i0,k):

ik (T0,T ) = ik (T0,T0 +∆T )≃ i0,k(T0)+ST
ik (T −T0) (4.41)

where ST
ik is the thermal sensitivity (4.33). Plugging this expression into (2.36):

ik (T0,T )≈ i0,k(T0)+ST
ikRth ∑

j
i j (T0,T )v0, j (4.42)

which represents a linear system of equations allowing to extract ik at all terminals.
In the simpler case where v0, j = 0 or i0, j = 0 for j ̸= k (a relevant example is the case
of FETs where, neglecting gate leakage, the only dissipation is through the drain),
the current ik (T0,T ) becomes:

ik (T0,T ) =
i0,k(T0)

1−ST
ikRthv0,k

(4.43)

If T0 is not simply the heat sink temperature, but rather a reference temperature
conveniently selected to evaluate the thermal resistance (e.g., the temperature of the
foot of the fin in a FinFET device), it can be in turn subject to fluctuations, either
deterministic or statistical. To account for a variation ∆T0, the “cold" current i0,k is
further linearized with respect to T0, exploiting again the thermal sensitivity (4.33):

i0,k(T0 +∆T0)≃ i0,k(T0)+ST
ik∆T0 (4.44)

Substituting into (4.43), the final expression is:

ik (T0 +∆T0,T ) =
i0,k(T0)

1−ST
ikRthv0,k

+
ST

ik∆T0

1−ST
ikRthv0,k

(4.45)
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Therefore, both self-heating and reference T variations only require the computation
of the device currents and of their thermal sensitivities at the “cold” temperature T0.

4.4.3 Trap-based sensitivity analysis

The GF-based sensitivity analysis in presence of traps consists of varying a trap
model parameter σ , such as trap energy, cross section, total concentration. In this
discussion, let us consider both the DC and the AC regimes.

DC analysis

Consider the discretized PDD-TRE system in compact form:

F(α)(β ,vext;σ) = D(α)
β̇ . (4.46)

with α,β = (φ ,n, p,nt). The term α represents a specific equation of the system,
while β the vector of unknown nodal samples. For each discretized equation α , one
can distinguish a time-invariant part F(α)(β ,vext;σ) and a memory part, proportional
to β̇ through the block diagonal matrix D(α). The discretized model equations
depend explicitly on the external voltage vext and the static trap model parameter σ .

In case of DC external voltage vext, D(α) = 0 and the nominal solution β 0 is
found solving (4.46) for each DC bias at σ0. When σ undergoes a time-independent
variation ∆σ = σ −σ0, (4.46) is linearized around the nominal solution, yielding for
the perturbation ∆β = β −β 0:

J(α)(β 0,vext;σ0)∆β = s(α)
0 (β 0,vext;σ0,σ) (4.47)

where J(α) = ∂F(α)/∂β is the Jacobian matrix of F(α) evaluated at the nominal
solution (β 0,vext;σ0). Let us define the equivalent source:

s(α)
0 (β 0,vext;σ0,σ) =− ∂F(α)

∂σ

∣∣∣∣∣
(β 0,vext;σ0)

∆σ (4.48)

which depends on both the nominal and varied trap model parameter and represents
a distributed perturbation for the linearized equation α , depending on the position
inside the device through β 0 and σ . As for the T -dependent sensitivity analysis, a
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finite difference approximation avoids the explicit calculation of the σ derivatives:

s(α)
0 (β 0,vext;σ0,σ)≃−F(α)(β 0,vext;σ) (4.49)

The equivalent source gives rise to a current variation ∆iσk = ik(σ)− ik(σ0) at the
k-th terminal that can be efficiently computed via the GF approach by the discretized
spatial convolution integral obtained from (4.9):

∆iσk = ∑
α

G(α)
k (β 0,vext;σ0)s(α)

0 (β 0,vext;σ0,σ)ΩΩΩ (4.50)

where the row vector of the Green’s Function nodal values G(α)
k (β 0,vext;σ0) relates

the observation variable iσk to a unit source in each mesh node of equation α , while
ΩΩΩ is a diagonal matrix containing the nodal Vornoi volumes.

AC analysis

Consider the discretized PDD-TRE system in compact Fourier-transformed form:

F̃(α)(β̃ , ṽext;σ) =ΩΩΩ
(α)

β̃ . (4.51)

with α,β = (φ ,n, p,nt). As previously explained, β̃ and F̃(α) are the vectors of the
Fourier (harmonic) amplitudes of the time-varying functions β and F(α), truncated
to the harmonic order NH. There is an explicit dependence of the collection of
external sources ṽext, corresponding to the Fourier transform of vext(t), which is the
sum of a DC component and a single-tone time-varying amplitude of fundamental
frequency ω0. In this treatment, the input amplitude is small enough to have a linear
response of the device, so that the Fourier expansion of each involved quantity can
be truncated at NH = 1, hence the only harmonic is ω1 = ω0. The external source is
recursively applied to each terminal r, therefore the solution of (4.51) can be found
without any linearization procedure, yielding the current Ĩk at the q terminal, whose
DC component is Ĩ0,k and the unique harmonic is Ĩ1,k. This allows to build the AC
admittance matrix:

Yk,r =
Ĩ1,k

Ṽ1,r
(4.52)

This procedure has the advantage of enabling the evaluation of the variability of the
AC parameters as a consequence of a (time-independent) perturbation ∆σ = σ −σ0
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by means of the numerically efficient GF technique. In fact, when the trap parameter
undergoes a variation, (4.51) can be linearized around (β 0,vext;σ0), giving rise to
a LPTV system. Performing the analysis in the frequency domain, one obtains
ω̃1 = ω1± ω̃ = ω1, where ω̃ = 0 since the trap model parameter is time-independent.
With these assumptions, the linearized system becomes:

J̃(α)(β̃ 0, ṽext;σ0)∆β̃ −ΩΩΩ
(α)

∆β̃ = s̃(α)
0 (β̃ 0, ṽext;σ0,σ) (4.53)

where J(α)(β 0,vext;σ0) = ∂ F(α)/∂β is calculated in the periodic solution β 0 and at
σ0, while the source term is approximated by finite differences. The CGFs of the
linearized system, denoted as G̃(α)

k (β̃ 0, ṽext;σ0), allow to compute the DC and the
harmonic current variation at terminal k due to ∆σ :

∆Ĩσ
0,k = ∑

α

(
G̃(α)

k (β̃ 0, ṽext;σ0)
)
(0,0)

s̃(α)
0 (β̃ 0, ṽext;σ0,σ)Ω̃ΩΩ (4.54a)

∆Ĩσ
1,k = ∑

α

(
G̃(α)

k (β̃ 0, ṽext;σ0)
)
(1,1)

s̃(α)
0 (β̃ 0, ṽext;σ0,σ)Ω̃ΩΩ (4.54b)

where Ω̃ΩΩ is a block diagonal matrix containing the Vornoi volumes. The subscripts
(0,0) and (1,1) denote the portion of the CGF linking, respectively, the DC and the
first harmonic of the distributed source s̃(α)

0 (β̃ 0, ṽext;σ0,σ). Fig. 4.9 reports the
Conversion Green’s function distributions at drain contact associated to the occupied
trap concentration of the fundamental frequency. In this case, CGFs are calculated
from AC simulations performed on a 0.15 µm AlGaN/GaN HEMT device with
Fe-doped buffer traps with 2 kHz operating frequency, NH = 1 harmonic and an
input tone of 1 mV applied to the drain contact. The local variation source, defined
as the integrand function of (4.54b), reads:

L̃S(α)
k =

(
G̃(α)

k (β̃ 0, ṽext;σ0)
)
(1,1)

s̃(α)
0 (β̃ 0, ṽext;σ0,σ) (4.55)

From (4.52) and (4.54b), the AC admittance matrix due ∆σ can be calculated:

Yσ
k,r = Yk,r +∆Yσ

k,r = Yk,r +
∆Ĩσ

1,k

Ṽ1,r
(4.56)
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(a) Real part of (G̃(nt)
D )(1,1). (b) Imaginary part of (G̃(nt)

D )(1,1).

Fig. 4.9 Green’s Function of the electron continuity equation for the drain contact at the
first harmonic input/output in a 0.15 µm GaN HEMT device. DC bias: VD = 10 V and
VG =−2.22 V.

4.4.4 Advantages of the GF approach

The sensitivity analysis, addressed by the GF-based approach in both static and
dynamic conditions, allows to calculate the terminal current variations through a
convolution integral, involving the microscopic source of variation and the GFs
themselves. Both these quantities allow for a simple and direct way to inspect the
response of each harmonic, including DC component, to a structure, material or
technological parameter variation with respect to a nominal value. Therefore, the GF
approach gives a unique insight into the device operating conditions, highlighting
which parts of the device are most affected by the parameter variations or contribute
more to the terminal variations. Moreover, the linearized technique provides a
computational advantage over repeated T -dependent or σ -dependent analyses. In
fact, the Generalized Adjoint Approach enables the estimation of the relevant GFs
with a negligible overhead with respect to the computation of the nominal solution.
Thus, the simulation time is reduced roughly by a factor n(T,σ) compared to n(T,σ)

repeated simulations. This advantage is especially appealing when the numerical
burden of each individual solution is very high, such as for 3D simulations or in the
LS analysis, where the number of equations to be solved is increased with respect
to DC by a factor 2NH +1 (usually NH ≥ 10 for highly nonlinear RF applications).
Another advantage of the proposed method is its compatibility with other simulations
exploiting the same GFs. For example, it is possible to carry out, with virtually no
extra numerical burden, concurrent temperature and variability analyses. The latter
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involves technological and physical parameters, nevertheless also load variations
represent an important source of variability in nonlinear stages [72], as it will be
shown in Chapter 5.



Chapter 5

Efficient TCAD thermal analysis of a
FinFET power amplifier

5.1 Introduction

In the previous chapter, a comprehensive framework to efficiently calculate the
device response to temperature variations with respect to a nominal (“cold”) thermal
status has been presented. The modeling approach, based on the linearization of
the physical model around the “cold” temperature, exploits the Green’s Functions
technique, which can be calculated efficiently from the numerical standpoint. The
GF-based approach is, thus, based on TCAD physical simulations, which are by
far the best environment to link the electrical characteristics to the technological
process and accurately describe the active device T -dependent material properties
and transport parameters. The numerical burden of TCAD simulations is very high,
in particular for non-linear device modeling, nevertheless the proposed technique
only requires one simulation at nominal temperature and the computational advantage
scales with the number of temperatures or thermal resistances to be analyzed.

This chapter is aimed at demonstrating the advantage of GF-based approach
in T -dependent device simulations, including the self-heating analysis in varying
embedding thermal circuits [70]. Furthermore, concurrent temperature and variability
analyses can be carried out with virtually no extra numerical burden [73, 74]. As a
testbed to demonstrate the TCAD capability, the FinFET technology is targeted for
possible applications in medium power stages where temperature becomes critical.
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All the simulations, fully based on the proposed efficient TCAD analysis, are, thus,
performed on a FinFET-based RF medium power amplifier.

FinFET technology, primarly developed for digital applications, is being actively
investigated for its possible applications in analog stages thanks to FinFETs excellent
performance in terms of cutoff and maximum oscillation frequencies, inherited by the
nanometric size. Although limited to a few milliwatts of power, they are promising
in view of millimeter-wave (mmW) phased arrays for 5G/6G, being the natural
evolution of the RF CMOS technology [75, 76]. However the peculiar structure
of FinFETs also brings along several issues that must be addressed to make the
technology a viable candidate for telecommunication systems, where successful
integration of RF and digital circuits could represent a disruptive advantage. The
FinFET 3D geometry, together with the need of resorting to multi-finger or stacked
structures to achieve the required output power [77, 78], leads to higher parasitic
effects, more pronounced impact of technological variability and a very difficult
thermal management due to the presence of low-thermal-conductivity materials
[79]. As a consequence, accurate device electro-thermal modeling is required for
an effective design of RF circuits, such as power amplifiers (PAs), where device
self-heating must be carefully described.

5.2 Thermal DC analysis

For the validation of the proposed thermal analysis in the static case, a 54 nm Silicon
FinFET structure with fin height of 25 nm, whose 2D cross section is shown in
Fig. 5.1, is considered [70]. First, the in-house TCAD solver, including the Poisson
equation and the continuity equations for electrons and holes, is exploited to perform
a DC analysis at different temperatures in the range T ∈ [310−350] K in order to
find a reference solution (incremental method, INC). The INC solution is used to
validate the GF-based analysis: GFs are extracted in DC conditions at T0 = 300 K
and exploited to calculate the drain current variation with temperature according
to (4.30). Fig. 5.2 shows that the GF approach has an excellent agreement against
the reference solution, which is especially evident above the threshold voltage,
where there is higher thermal sensitivity due to mobility degradation. For analog
applications, unlike the digital case, both the saturation current and knee voltage,
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Fig. 5.1 Double Gate structure used for the validation of the in-house code for T -dependent
static and dynamic analysis and DC self-heating analysis.

which characterize the device behavior above threshold, have more relevance with
respect to the subthreshold behavior.

Then, the in-house simulator is exploited to perform a DC self-heating anal-
ysis with different thermal resistances Rth = 0.3 K/µW and Rth = 1 K/µW. The
estimation of the thermal resistances follows the calculations of Fig. 5.3, based
on the fin shape and the silicon thermal conductivity. The SHS system (2.38) is
self-consistently solved in order to find a reference solution (incremental method,
INC). The drain current obtained from the INC method is used to validate the GF-
based self-heating approach: GFs are extracted at T0 = 300 K with Rth = 0, as for
the T -dependent DC analysis, and exploited to calculate the drain current due to
self-heating, following (4.45). Fig. 5.4 reports the device output characteristics when
the heat sink temperature is T0 = 300 K, showing a reduction of the current up to
17% due to self-heating. The effect of temperature increase can be traced in the
negative slope of the saturation current, which is more pronounced with a higher
thermal resistance. The analysis is repeated with T0 raised to 320 K as shown in
Fig. 5.5: the higher knee voltage and the negative slope of the saturation current
are due to the presence of the thermal resistance and to the increase of the heat sink
temperature. With T0 = 320 K and Rth = 1 K/µW, the device temperature is as high
as 390 K for the largest dissipation (see Fig. 5.6). All simulations demonstrate that
the GF approach, requiring a single simulation of the “cold” device with T0 = 300 K
and Rth = 0, compares very well with the reference simulations, that require instead
multiple solutions with varying Rth and T0.

5.3 Temperature-dependent LS analysis

The GF-based technique is now validated in dynamic conditions [70]. The in-house
code, solving the PDD-ECE system (2.35), is used to perform a T -dependent LS
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Fig. 5.2 FinFET output characteristics with VG = [0.6, 0.7, 0.8, 0.9, 1] V with varying T .

Fig. 5.3 FinFET structure used for the fin thermal resistance calculation: ρTH,Si is the silicon
thermal conductivity.

Fig. 5.4 FinFET output characteristics with VG = [0.6, 0.7, 0.8, 0.9, 1] V with varying Rth.
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Fig. 5.5 FinFET output characteristics with
VG = [0.6, 0.7, 0.8, 0.9, 1] V at T0 = 320 K.

Fig. 5.6 Device temperature with T0 = 320 K
and Rth = 1 K/µW.

analysis on the same FinFET structure of Fig. 5.1, with fin height of 25 nm. The
device is simulated as a Class A power amplifier (PA) operating at a frequency of
70 GHz and assuming a multifinger structure (see Fig. 5.7), composed of 10 fingers
of 30 fins each and corresponding to a total gate periphery of 15 µm. Since this is
a 2D analysis, the only two lateral channels for each fin are considered, but this is
not a severe limit since the third channel current is much lower. The DC bias of
the Class A PA is selected at VG = 0.675 V and VD = 0.6 V. The real part of the
optimum load has been calculated according to the load-line approach [80], while the
imaginary part tunes out the output admittance at the bias point and at the nominal
temperature T0 = 300 K. The optimum load turns out to be Zopt = 53+ j6 Ω, while
the drain current harmonics are shunted by ideal tuners. The input port has been left
unmatched and terminated with a 50 Ω/mm impedance. The LS analysis has been
carried out with NH = 10 harmonics, increasing the input power driving the amplifier
from back-off to approximately 2 dB gain compression. At each input power, the
CGFs are calculated at T0 = 300 K and the variation of the drain current harmonics
with T is evaluated according to (4.38) for 5 temperatures (T ∈ [310− 350] K).
GF results are compared to repeated LS analyses with temperature varying in the
same range (INC method), always obtaining an excellent agreement between the
two methods. Notice that the simulation time for each power sweep is roughly 4
hours, hence the GF method time saving is of about 20 hours computation time.
Fig. 5.8 shows the dynamic load lines (DLL) in the output characteristics plane both
in back-off and compression conditions. With increasing temperature, the drain
current exhibits a reduced swing with respect to the “cold” device, especially evident
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Fig. 5.7 Schematic representation of a multifinger FinFET PA layout.

at 2 dB gain compression (see Fig. 5.8b). This effect is essentially due to mobility
degradation and the consequent increase of the knee voltage, suggesting that the
output power is decreasing with T . Figs. 5.9a and 5.9b show the output power and
gain of the power cell with increasing temperature. The power performance exhibits
a noticeable degradation, with up to 1 dB less output power and gain at T = 350 K.
The thermal sensitivity is higher in back-off and limited in compression: in fact, the
variation of the output power above the 1 dB compression point is dominated by the
knee voltage walk-out with temperature, which is in any case quite limited (see also
Fig. 5.8b). Fig. 5.10 shows the stage efficiency and its variation with respect to the
“cold” case as a function of the input power. The thermal sensitivity depends again
on the input power having a maximum value at 1 dB compression, but a significant
efficiency reduction is found in a wide range of output power, roughly from −10
dBm to saturation. This needs to be taken carefully into account in the design of
quasi-linear stages, often operated with modulated signals whose average value is
well in back-off. While the temperature sensitivity of the fundamental tone decreases
at higher power, the harmonics are instead sharply increasing. Harmonics are also
found to be affected by the highest variation with T , see Fig. 5.11. The harmonic
variations can be up to 10% with just 20 K of temperature increase. Notice that the
linearized GF approach is always delivering a fast and accurate thermal analysis of
the power stage.

5.4 T -dependent, load-dependent LS analysis

A T -dependent LS analysis with concurrent load variations is now performed to
show the accuracy of the GF approach with an additional variability source due to the
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(a) Back-off conditions (Pav =−8 dBm).

(b) Compression conditions (Pav =−3 dBm).

Fig. 5.8 Dynamic load lines as a function of T .
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(a) Output power of the Class A PA. (b) Trasduction gain of the Class A PA.

Fig. 5.9 Output power and gain of the FinFET PA as a function of temperature.

(a) Efficiency of the Class A PA. (b) Efficiency variation of the Class A PA.

Fig. 5.10 Efficiency and its variation of the FinFET PA as a function of temperature.

(a) Magnitude thermal sensitivity of the class
A PA harmonics.

(b) Phase thermal sensitivity of the class A PA
harmonics.

Fig. 5.11 Percentage variation per unit temperature of the magnitude and phase of the class
A PA harmonics vs. input drive.
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external circuit. The aim is to assess the overall power stage robustness against the
concurrent variations of temperature and load termination (e.g. due to the variability
of the matching network, see [72]). To this aim, the GF-based approach discussed
in Section 4.4.1 needs to be extended, since it only takes into account temperature
variations [73].

Consider an active device with N-ports connected to an N-port external load, as
shown in Fig. 5.12 (left). The discretized PDD model is coupled to the ECEs, here
represented by the equivalent load and power sources [81]. The device and circuit
constitutive equations form a coupled system:

iD = f (vD,T ) (5.1a)

vL = ZLiL + vZ (5.1b)

where (D) stand for the device and (L) for the circuit (load) terminal variables. All
variables of system (5.1) are described in the frequency domain by the corresponding
set of harmonic amplitudes (phasors), one for each of the harmonics included in the
LS simulation (including the DC component). The nominal solution of (5.1), corre-
sponding to the PA LS working point, is found by the TCAD solver in mixed-mode
configuration, hence solving the PDD-ECE system at nominal ”cold” temperature T0

and nominal load ZL. The system is linearized around the LS steady-state to account
for a temperature variation ∆T in the physical model concurrent with a load variation
∆ZL, yielding:

∆iD =
∂ f (vD,T )

∂vD

∣∣∣∣
0

∆vD +
∂ f (vD,T )

∂T

∣∣∣∣
0

∆T = YSSLS ∆vD +∆iT (5.2a)

∆vL = ZL ∆iL +∆ZL iL|0 = ZL ∆iL +∆vZ (5.2b)

The subscript ’0’ refers to the LS working point, while YSSLS is the SSLS device ad-
mittance matrix, efficiently computed from SSLS TCAD analysis [82] concurrently
with CGFs, solving system (4.24). As explained in Section 4.4.1, the lattice tem-
perature is considered a time-invariant perturbation, hence the sideband frequency
ω̃ collapses onto the unperturbed frequencies ωn and both the admittance matrix
and the CGFs are calculated at ω̃n = ωn. Equation (5.2) is a linear system where
the impressed generators ∆iT and ∆vZ collectively represent the equivalent terminal
effect of ∆T and ∆ZL. The linearized model allows for the representation in Fig. 5.12
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Fig. 5.12 Schematic representation of the linearized device including temperature induced
and load-induced variations.

(right) and with ∆vL = ∆vD and ∆iL =−∆iD, (5.2) leads to:

∆iD = (I+YSSLSZL)
−1 (∆iT +YSSLS∆vZ) (5.3)

where ∆iD is the total current due concurrent temperature and load variations. Gener-
ators ∆vZ are directly computed from the nominal LS solution using (5.2b), while
impressed generators ∆iT, only due to temperature, are computed exploiting the GF
approach following (4.38).

For comparison, a TCAD analysis of the same FinFET-based power amplifier
(PA) is carried out in LS conditions as a function of both temperature and load
variations. Repeated simulations are performed solving system (2.35) at 5 temper-
atures (T ∈ [310−350] K) and for 2 load variations (±5 % of the real part of the
load) in order to find a reference solution (incremental method, INC). On the other
hand, the CGFs are calculated at T0 = 300 K and the variation of the drain current
harmonics with T and ZL is evaluated according to (5.3). For example, varying the
real part of the optimum load by ±5 % with respect to the nominal case, doubles the
simulation time for the INC approach, while the GF analysis following (5.3) requires
a negligible time overhead.
Fig. 5.13 shows the dynamic load lines of the FinFET PA, assuming the multifinger
structure of Fig. 5.7, both in back-off and compression conditions. The accuracy of
the DLL shows that the harmonics are also well reproduced by the proposed GF T -
dependent LS analysis. Moreover, Fig. 5.13b shows that, at 2 dB gain compression,
the device is driven more harshly into compression by the increasing load, whereas
the compression is lower in the opposite case, but the output swing is in any case
reduced by the T -induced knee voltage increase. Figs. 5.14 and 5.15 show that,
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with a higher value of ZL, both the output power and PAE degrade with increasing
temperature, retaining a good agreement between INC and GF solution. Moreover,
Fig. 5.16 highlights the different Pout trend for two values of the available power:
at Pav =−8 dBm the output power increases with the load, while it decreases with
an increasing ZL at Pav =−3 dBm. This confirms the behavior of the DLL of Fig.
5.13b, where the device is more compressed by an increasing load. Turning to the
relative importance of the two variations, Fig. 5.17 reports the Pout and PAE variation
with respect to their nominal value (i.e., T0 = 300 K and nominal load). In this
figure, lines represent the variations due to temperature only, while the error bars
represent the extra spread expected because of the ±5% load variations. Noticeably,
the detailed variations depend on the input power: for example, at each T , with larger
load (+5%), Pout increases in back-off, while in compression conditions it exhibits an
opposite behavior, confirming the trend of Fig. 5.16. Furthermore the load sensitivity
is lower in compression, again due to the reduced effect of the load termination at
the knee. PAE has the highest load sensitivity close to the onset of gain compression
(here around −7 dBm), but variations with temperature are in any case dominating,
leading to a significant PAE reduction in a wide range of output power, roughly from
−10 dBm to saturation. All these intermixed effects are correctly reproduced by
the GF analysis. Overall, the stage exhibits a spread of roughly 1 dB for Pout and 5
percentage points for PAE.

5.5 T -dependent, doping-dependent LS analysis

Purpose of this section is to assess how the PA performance will be affected by the
concurrent effect of heating and doping variability: the attention is focused on the
variations of the source and drain doping, especially affecting the device parasitic
resistance and, as a result, the PA efficiency. Here, deterministic doping variations are
considered, to selectively understand their effect concurrently with the temperature
in a LS analysis. As in the previous section, the GF-based technique accounts for
temperature variations only, therefore it needs to be extended [74].

Consider an active device with N-ports connected to an N-port external load, as
in Fig. 5.18 (left), where the device constitutive equations f (vD,T,σ) collectively
represent a discretized physics-based model, in this case the PDD-ECE system. Sym-
bols T and σ are two parameters influencing the active device operation: respectively,



100 Efficient TCAD thermal analysis of a FinFET power amplifier

(a) Back-off conditions (Pav =−8 dBm).

(b) Compression conditions (Pav =−3 dBm).

Fig. 5.13 Dynamic load lines T = 350 K and varying the load condition.
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Fig. 5.14 Pout with varied load at different T . Fig. 5.15 PAE with varied load at different T .

(a) Output power in back-off region. (b) Output power in compression region.

Fig. 5.16 Output power as a function of the load variation at different temperatures.

(a) Output power variation. (b) PAE variation.

Fig. 5.17 Expected spread of Pout and PAE due to ±5 variation of Re(ZL) with concurrent T
variations. Error bars: INC analysis; symbols: GF analysis.
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temperature, and one physical parameter, in this case the doping. The device and
circuit equations form a coupled system:

iD = f (vD,T,σ) (5.4a)

vL = ZLiL + v0 (5.4b)

where (D) stand for the device and (L) for the circuit (load) terminal variables evalu-
ated in the PA LS working point. To efficiently account for a temperature variation
∆T and any parameter variation ∆σ , the system is then linearized around the LS
steady-state (nominal value σ0 of the parameter and at nominal ”cold” temperature
T0). Imposing the constitutive equations iD = −iL and vD = vL and assuming the
two variations in first place uncorrelated, one obtains:

∆iD =
∂ f (vD,T,σ)

∂vD

∣∣∣∣
0

∆vD +
∂ f (vD,T,σ)

∂T

∣∣∣∣
0

∆T

+
∂ f (vD,T,σ)

∂σ

∣∣∣∣
0

∆σ = YSSLS ∆vD +∆iT +∆iσ (5.5a)

∆vD =−ZL ∆iD (5.5b)

The subscript ’0’ refers to the LS working point, while YSSLS is the SSLS device ad-
mittance matrix, efficiently computed from SSLS TCAD analysis concurrently with
CGFs, solving system (4.24). As in the previous case, since the lattice temperature
is considered a time-invariant perturbation, the sideband frequency collapses into
the unperturbed frequencies, hence ω̃ = 0 and ω̃n = ωn. Moreover, ∆iT and ∆iσ are
interpreted as impressed generators, collectively representing the equivalent terminal
effect of ∆T and ∆σ , see Fig. 5.18 (right). The impressed generator ∆iσ is computed
using the in-house TCAD simulator by means of the CGF, with negligible numerical
overhead with respect to the computation of the nominal device LS working point
[17]. Using linear superposition, the effect of concurrent T and σ variations is
extracted inverting the perturbed system (5.5):

∆iD = (I+YSSLSZL)
−1 (∆iT +∆iσ ) (5.6)

where ∆iD is the total current due concurrent temperature and doping variations.
Impressed generators ∆iT only due to temperature are computed exploiting the GF
approach following (4.38). Notice that the extension of the GF technique to the
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Fig. 5.18 Schematic representation of the linearized device including temperature and
parameter variations (e.g. doping).

analysis of concurrent multiple parameters and temperature variations is obvious,
because superposition applies in the linearized approach.

Let us apply this technique to the analysis of a FinFET-based power amplifier
as a function of both temperature and doping variations. The device under analysis,
shown in Fig 5.19, is slightly different from the previous one, but simulated in
the same operating conditions. Repeated simulations are carried out, solving the
PDD-ECE system (2.35), at 5 temperatures (T ∈ [310−350] K) with a concurrent
±15 % doping spread, in the source/drain regions, in order to find the reference
solution (incremental method, INC). On the other hand, the CGFs are calculated
at T0 = 300 K and the variation of the drain current harmonics with T and σ is
evaluated according to (5.6). Fig. 5.20 shows the output power of the PA cell with
increasing T . The gain with concurrent 20 K T increase and ±15% doping spread is
reported in Fig. 5.21. The power performance exhibits more than 1 dB output power
loss with 50 K temperature increase. In fact, with increasing temperature, the output
power degradation is driven by the mobility reduction and increased source/drain
parasitic resistance. The doping variations further affect the same resistances both
through mobility degradation and the carrier density spread: hence with higher
doping the PA degradation with temperature is milder. The impact of doping is
especially significant when the device enters compression: Fig. 5.21 shows a 1 dB
gain compression point at Pav =−7.24 dBm at T = 320 K and nominal doping. At
this input power, gain has around 0.3 dB spread due to doping variations. The 1 dB
compression point, instead, exhibits about 1 dB Pav spread with doping, with respect
to the T = 320 K case. The variation of the output power and gain above the 1 dB
compression point is mainly due to the knee voltage walk-out with T and doping
[83], see the dynamic load lines of Fig. 5.22 with concurrent T and doping spread.
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Fig. 5.19 Double Gate structure cross-section of each fin of the PA. ND = 1020 cm−3; NDE =
7.5 · 1018 cm−3; oxide equivalent thickness 1 nm.

Fig. 5.20 Output power for the Class A PA
at different temperatures.

Fig. 5.21 Transduction Gain for the class A PA
vs. concurrent T and doping variations.

Notice that the lower the doping, the more the device undergoes early compression,
corresponding to lower gain and output power. Both T and the resistive loss in the
source and drain regions affect the stage efficiency considerably. Fig. 5.23a shows
the PA efficiency as a function of the input power: with increasing temperature the
efficiency is always less than in the “cold” device due to the combined effect of T
degradation and larger parasitic resistances. Doping variations affect efficiency in a
more limited way. To highlight their effect, Fig. 5.23b reports the efficiency variation
with respect to the reference solution (i.e., the T0 = 300 K case and nominal doping):
at moderate compression (i.e. with [−14,−8] dBm input power), the stage with
lower doping is pushed more into compression (see again Fig. 5.22) and exhibits a
higher efficiency with respect to the device with higher doping, which is still in back-
off. With increasing compression, though, the stage with lower doping eventually
shows an even worse efficiency than the stage with nominal doping due to the higher
parasitic resistance.
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Fig. 5.22 DLL as a function of T at 2 dB gain compression (Pav =−3 dBm). Concurrent T
and doping variations from reference T0 = 300 K solution. DC curves are at T = 320 K.

(a) Efficiency for the class A PA. (b) Efficiency variation for the class A PA.

Fig. 5.23 Efficiency and its variation for the PA vs. concurrent T and doping variations.
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5.6 Conclusions

In this chapter, a novel TCAD approach for an efficient T -dependent sensitivity
analysis, based on the GF-based approach, is validated in a FinFET-based power
amplifier in both the DC regime, including self-heating, and LS conditions. The
GF approach is capable to accurately reproduce the device behavior in all operating
conditions up to 50 K temperature increase, showing a large advantage in terms
of computational cost. The DC drain current exhibits a strong degradation with
increasing temperature, especially in presence of a thermal resistance. Moreover,
the LS stage is characterized by an overall thermal degradation, leading to more
than 1 dB output power loss and PAE reduction from 28% to 23%. The proposed
technique extends, with negligible numerical overhead, the GF-based approach to
concurrent temperature and physical/technological parameter variations. In fact, the
LS T -dependent analysis is performed with concurrent load variations, showing that,
despite thermal sensitivity dominates over load sensitivity, the latter is stronger in
back-off conditions. Furthermore, the LS device response is also evaluated with
concurrent temperature and doping variations of the channel contact regions. Doping
variations further affect the PA 1 dB compression point with a 1 dB input power
spread. In conclusion, the GF-based technique demonstrates that LS TCAD analysis
is mature enough for the assessment of nonlinear circuits and represents a first step
towards the development of physically sound, temperature dependent, LS circuit
models.



Chapter 6

Thermal modeling of a FinFET power
amplifier through X-parameters

6.1 Introduction

The previous chapter is aimed at demonstrating that the in-house TCAD simulator,
implementing both the LS and SSLS analyses with the HB technique [82], represents
a flexible platform to simulate the active device in the operating conditions typical
of actual microwave applications, e.g. class B power amplifiers or mixers [76].
Despite TCAD physical simulations accurately describe the device behavior in
terms of material properties and transport parameters, their numerical burden is very
high. This problem is especially relevant in non-linear device modeling, where LS
simulations through the HB technique require a large number of harmonics. The
TCAD computational cost suggests that it cannot be used routinely for circuit design
but it is likely prone to be the basis to extract accurate, computationally efficient
circuit-level device models. Behavioral models, usually derived from measurements,
have been recently proposed as the ideal framework to translate TCAD simulations
(that can be regarded as virtual device measurements) into EDA tools for circuit
design [84]. As demonstrated in [85], X-parameters (Xpars) [86] are an effective
behavioral model that can be used to retain the accuracy of TCAD analysis and
the link to the fabrication process (e.g. device doping or temperature). Moreover,
they can be directly extracted from the in-house TCAD simulator, as fully explained
in [85, 87]. The Xpar model can be extended, including an explicit dependence
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on the device lattice temperature, leading to a T -dependent Xpar model (T -Xpar).
The T -Xpar model assumes the lattice temperature uniform throughout the device
and hence identified with its junction temperature. It can be directly included into
Keysight ADS [88] using a dedicated port for the junction temperature that allows
for the device simulation with varying ambient temperature, but also to couple an
external thermal impedance to model device self-heating in dynamic LS conditions.
Therefore, while the Xpar electrical model does not include any thermal memory
effect, the T -Xpar model can be regarded as a first step towards the development of
a nonlinear dynamic electro-thermal behavioral model [14, 21].

In this chapter, the T -Xpar model of a 54 nm Si FinFET presented in Chapter 5
is extracted from the in-house TCAD solver and exploited to implement a complete
dynamic electro-thermal device model into Keysight ADS. First, a brief explanation
of X-parameters is reported, following there is a description of how the T -Xpar
model is extracted and implemented in ADS, showing both T -dependent and self-
heating simulations in LS conditions [89, 90]. Finally, to demonstrate the importance
of the dynamic self-heating analysis, the Xpar-based technique is applied to a FinFET
PA under pulsed operation, sweeping the bias conditions from class A to class B
[91].

6.2 T -dependent X-parameter model

The Xpar model extends the concept of multiport S-parameters to the nonlinear case.
The reflected wave bpk at port p and harmonic k resulting from the incident waves
aql can be expressed as [86]:

bpk(|a11|,ω) = XF
pk(|a11|,ω,T ) +∑

q
∑

l=1,...N
XS

pq,kl(|a11|,ω,T )Pk−laql

+∑
q

∑
l=1,...N

XT
pq,kl(|a11|,ω,T )Pk−la∗ql (6.1)

Functions XF, XS and XT, depending on the input large signal incident wave |a11|,
fully identify the model: XF relates to the AM-AM/AM-PM curves with a perfectly
matched port impedance (typically 50 Ω), while XS and XT are sensitivity terms
accounting for the device response to a (small) load mismatch. Sampling the Xpar
model over a prescribed input power interval, a look up table model (black box



6.2 T -dependent X-parameter model 109

model) suited for circuit level analysis is generated. In this work, the proprietary
ADS .xnp file format is adopted with the corresponding Xpar schematic component
[88]. Equation (6.1) explicitly assumes that the Xpar model is extracted at any given
temperature [92]: from the modeling standpoint this means that the model can be
regarded as parametrically dependent on the (constant) device lattice temperature T .
Therefore, the .xnp file must also be parametrized in terms of T and the schematic
component must reflect this temperature dependency.

To demonstrate the procedure, in-house TCAD simulations, implementing the
Harmonic Balance LS and SSLS analyses, are used to extract the T -Xpar model,
namely XF from the LS working point and XS and XT from the admittance conversion
matrix. The active device under analysis is a 54 nm Si FinFET with fin height of
25 nm, corresponding to the same case study analyzed in Chapter 5, simulated as a
multifinger unit cell (see Fig. 5.7). The two gates are considered as a unique gate
contact making the FinFET globally a 2-port. First, the FinFET TCAD LS analysis
has been carried out exploiting the in-house TCAD device simulator with NH = 10
harmonics and increasing input power from back-off to approximately 2 dB gain
compression. The device is terminated on 50 Ω load. At each input power, T -Xpars
have been then extracted, with a 50 Ω reference port impedance, at three extraction
temperatures, i.e. T = 300 K, 340 K, 380 K, and collected into a single .xnp file.
The Xpar schematic component has an extra DC port, as shown in Fig. 6.1, with
null current and a fictitious voltage used to select the device operating temperature
spanning the data stored in the .xnp file. ADS interpolates among the available data
in the .xnp file, allowing for simulations with continuously varying T . A certain
degree of extrapolation beyond the interval of the extraction temperatures is also
allowed by cubic spline interpolation. Fig. 6.2 shows an example of XS and XT

obtained from TCAD analysis. The selected parameters account for the mismatch of
the output load with respect to 50 Ω. While

∣∣XS
∣∣ shows a significant temperature

spread with increasing input power,
∣∣XT
∣∣ is nearly constant, consistently with the

results in [88]. A non monotonous behavior is observed for the phase, with up to
10◦ variation of the XT phase with temperature.
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Fig. 6.1 Top: cross-section of the single fin double gate device used for the TCAD simulations.
Bottom: Xpar model used in ADS, showing the extra temperature port.

(a) Magnitude and phase of XS
22,11. (b) Magnitude and phase of XT

22,11.

Fig. 6.2 Temperature dependency of XS and XT extracted from TCAD analysis.
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Fig. 6.3 Dynamic load lines at 2 dB gain compression and varying temperatures.

6.3 T -dependent LS analysis through T-Xpars

A temperature-dependent analysis of a low-power Class A FinFET PA operating at
70 GHz is performed with NH = 10 harmonics. The DC bias is VG = 0.675 V and
VD = 0.6 V, the input port is here unmatched and terminated with the same 50 Ω

impedance used to extract the Xpars, the drain port is loaded with Zopt = 53+ j6 Ω,
which differs from the 50 Ω used for the Xpar extraction, and harmonics are shunted
by ideal tuners, hence they also differ from the termination used for the Xpar
extraction. The T -Xpar model in ADS is validated against TCAD simulations for a
set of temperatures different from the ones used for the model extraction in the range
[310-390] K [89].

Fig. 6.3 shows the DLLs on Zopt at T = 300 K, 350 K and 390 K. The agreement
between TCAD and ADS simulations is always satisfactory, despite the operating
condition differs from the model extraction condition both for the load and the
temperature. The DLLs show a significant thermal knee walk-out, which is in line
with the results of Chapter 5. Moreover, a global reduction of the overall drain
current is reported due to the mobility degradation, hence the optimum load extracted
at room temperature will be sub-optimal at higher temperatures. Fig. 6.4 shows
that the output power diminishes as a function of T . The stage non-linearity is
clearly reflected by the different behavior in back-off and at saturation: there is a
mild reduction of thermal sensitivity at higher input power due to the knee voltage
walk-out and an opposite behavior at lower input power (see Fig. 6.4b). In Fig. 6.5,
the available gain confirms these considerations. Moreover, as shown in Fig. 6.6,
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(a) Pout vs. available power at different T . (b) Pout variation vs. T at different Pav.

Fig. 6.4 Output power and its variation for the Class A PA.

Fig. 6.5 Gain at different T . Fig. 6.6 DC consumption at different T .

the DC power consumption decreases with T , but increases in compression due
to the drain current waveform clipping. Once the T -Xpar model is validated with
TCAD simulations over selected conditions, it can be exploited to provide the global
trend of several quantities, i.e. output power, efficiency, PAE. For example, the
PAE behavior is quite complex: Fig. 6.7 shows an overall reduction of efficiency
with increasing T . Interestingly, the most significant spread occurs around 4 dB
to 6 dB of output power back-off, where it is close to 10 percentage points, while
in compression it is more limited (around 5 points). Finally, the T -Xpar model
allows also to evaluate the device input impedance reported in Fig. 6.8: it turns out
to strongly depend on T in back-off and less in compression, opening the way to
the identification of drive/back-off conditions where the PA input matching is less
sensitive to self-heating.
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(a) PAE of the Class A PA. (b) PAE variation of the Class A PA.

Fig. 6.7 PAE and its variation as a function of temperature and available power.

Fig. 6.8 Input impedance as a function of temperature and available power.
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6.4 Self-heating LS analysis through T-Xpars

The LS analysis is repeated to account for self-heating effects in the FinFET power
amplifier [90], hence the ADS implemented model is slightly different from the
previous one. From the simulation standpoint, when a time-varying temperature
is present on the Temp terminal in Fig. 6.1, the model predicts an instantaneous
variation of the device electrical characteristics, which is of course not physical since
it does not include thermal dynamics, low-frequency dispersion, etc. To account
for thermal dynamics and self-heating, instead, an external lumped RC thermal
network is coupled to the T -Xpar model as shown in Fig. 6.9 [92]. The instantaneous
dissipated power in the device is calculated through an SDD (Symbolically Defined
Device of ADS) block, exploiting current probes in the circuit as controlling currents
at selected ports. The instantaneous power is then fed as the current flowing through
the RC thermal impedance block, yielding the junction temperature. The latter is
applied to the Temp terminal of the T -Xpar model, dynamically selecting the values
of the X-parameters as a function of the time-varying temperature. In this example,
the thermal resistance is varied from 0.33 to 1 K/µW (calculated as already shown
in Section 5.2, Fig. 5.3), while the thermal capacitance is sized so as to yield a
first-order thermal cut-off frequency of 10 kHz. Notice that from the electrical
standpoint, Xpars represent a quasi-memoryless model, hence the slow thermal
dynamic is here entirely due to the thermal impedance. The ADS Xpar model is
validated through self-heating LS simulations performed by the in-house TCAD
code, which solves self-consistently the SHS system (2.38). Fig. 6.10 shows that
the ADS model correctly predicts the FinFET self-heating: as expected in a class-A
stage, the junction temperature decreases as a function of the input power, while in
back-off the thermal dissipation is larger due to the DC power consumption and the
lower PA efficiency.

6.4.1 SH analysis with pulsed input power

To highlight the capability of the implemented self-consistent dynamic electrothermal
model, the FinFET PA is tested under pulsed RF operation [93, 94]. In this analysis,
the thermal resistance is set to 1 K/µW and the carrier frequency is equal to 70 GHz,
which is the operating frequency of the designed stage. The input power is switched
‘ON’ (Pav =−2 dBm) and ‘OFF’ (Pav = 0 dBm) with 50% duty cycle. Rise and fall
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Fig. 6.9 Circuit implementation of the dynamic self-consistent thermal model. An SDD is
used to compute the instantaneous power of the device, which is fed to the thermal impedance
to evaluate the dynamic temperature value used as a parameter for the T-Xpar model. This
implementation follows [14].

Fig. 6.10 Comparison of the FinFET junction temperature predicted, respectively by the
self-consistent TCAD simulations and the ADS model.
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Fig. 6.11 Example of pulsed input voltage.
The time range is normalized to 4 periods.

Fig. 6.12 Circuit implementation of the
pulsed thermal self-heating analysis.

time are set equal to 5% of the pulse duration. The resulting modulated input voltage,
shown in Fig. 6.11, is obtained at circuit level using the PtRF_Pulse component of
ADS and Envelope simulations necessary to model the slow thermal dynamics of the
stage. As shown in Fig. 6.12, the PtRF_Pulse component allows to create a pulse
modulated RF carrier with a frequency defined by the ‘Freq’ parameter, i.e. 70 GHz.
Concerning the pulse amplitude, the ‘OffRatio’ defines the low state of the pulse (0
dBm) relative to the high state, defined by ‘P’ (-2 dBm). The input power source is
represented by an envelope signal characterized by a pulse duration ‘t_pulse’ with a
certain ‘Rise’ and ‘Fall’ time (5%t_pulse) and a duty cycle defined by the the ‘Width’
parameter (50%t_pulse). The Envelope component of ADS, which is used since the
pulse duration is much lower than the RF carrier duration, is basically defined by
fundamental frequency (70 GHz) and the maximum number of harmonics, namely
‘Order’ (10 harmonics).

Three different pulse durations are exploited, namely 5 ms, 50 µs and 0.5 µs.
Given the thermal cut-off frequency of 10 kHz (thermal time constant of 15 µs) we
expect that the FinFET temperature follows the time-varying power envelope in
the slower pulse case, exhibits a noticeable delay (rise/fall times) with respect to
the power pulses in the intermediate case and is essentially insensitive to power
variations in the last, faster pulse, case. Fig. 6.13a shows the temperature baseband
envelope in the three cases, confirming the expectations. Notice from Fig. 6.10
that the selected input power (−2 dBm) induces a temperature decrease of about
5 K. Therefore if the pulse duration is long enough the device exhibits thermal
cooling. Fig. 6.13b confirm the results showing the phase difference between the
temperature baseband envelope and the output power fundamental envelope. In the
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slower case, temperature and power envelopes are in phase, while in the faster pulse
case the temperature variations are essentially null over the entire pulse cycle. The
hysteresis, typical of the thermal dynamic behavior [14], is significant for a pulse
duration close to the thermal time constant (intermediate case). Fig. 6.14 shows the
fundamental envelope of the PA available and output power in the three cases. Since
the output power is about 2 mW and the available power 0.3 mW, the gain of the
stage is about 8 dB. When the pulse is ‘ON’, the temperature and, consequently,
the output power assume a constant value over the pulse duration, which is equal
to 2 mW in the slower case and 1.95 mW in the faster case (see again Fig. 6.13b).
Moreover, as highlighted in the inset, the pulsed power is modulated by thermal
effects, producing in the intermediate case a non constant temperature over the pulse
duration, as already shown in Fig. 6.13a, and a non constant output power, leading
to the hysteresis behavior of Fig. 6.13b.

6.4.2 Comparison between Class A and Class B stages

The self-heating LS analysis in pulsed operating conditions is repeated for a Class
B FinFET PA since this stage is expected to operate differently from the Class A
when thermal dynamics is present. To this aim, the T -Xpar model is extracted
changing the gate voltage from 0.675 V, corresponding to class A stage, to 0.5 V,
corresponding to class B stage. TCAD LS simulations are repeated for the extraction
of the X-parameters with no differences with respect to the previous case. The
T -Xpar for the Class B stage is imported in Keysight ADS, where the simulation
setup is the same of Figs. 6.9 and 6.12.

In Fig. 6.15 the analysis of the pulsed power amplifier is reported: in order to
compensate the lower class B gain, the available input power is adapted to keep
the same output power in both Class A and Class B stages. Fig. 6.15a shows the
predicted temperature as a function of the output power for 3 different pulse lengths,
the same used in the previous case, while Fig. 6.15b shows the temperature variation
as a function of time. There is an expected opposite behavior of the class A and B
stages: the former is hotter when the pulse is ‘OFF’, while the latter gets cooler. The
thermal shunt, though, makes temperature variations to be quenched by increasing
the pulse speed, in fact temperature is almost constant in the faster case. Fig. 6.16
reports the output power variation as a function of the (normalized) time, highlighting
the capability of the T -Xpar model of predicting the Pout thermal dispersion. From
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(a) Dynamic temperature variation over the pulse cycle.

(b) Dynamic temperature variation as a function of the output power over the pulse cycle.

Fig. 6.13 Results of the pulsed mode analysis of the matched FinFET in class A for the 3
different pulse durations.
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Fig. 6.14 Variation of the PA output power as a function of time (normalized over 4 periods)
for three different pulse durations. The green curve represents the input power pulse envelope.
The right figure shows the details of the output power envelope time-dependency during the
on state.

the zoom of Fig. 6.16b the opposite behavior of the two stages is further highlighted:
the output power is constant during the ‘ON’ state of the slower and faster cases,
and reaches a maximum value at 5 ms for the Class A and at 0.5 µs for the Class
B. The intermediate case is characterized by a non constant output power, passing
from a maximum to a minimum value in the Class A stage and from a minimum to a
maximum in the Class B one. Finally, Fig. 6.17 shows results obtained for a pulse
length of 0.5 µs sweeping the gate voltage from 0.5 V, corresponding to the Class B
stage, to 0.675 V, corresponding to the Class A stage. In particular, the temperature
at baseband linearly increases with respect to the gate voltage, going from 310 K to
350 K. On the other hand, the output power decreases from 1.8 mW at 0.5 V to about
1.7 mW at 0.62 V, where it starts to increase up to 1.8 mW at 0.675 V. This analysis
demonstrates that the implemented model can continuously interpolate among the
Xpar data both in terms of temperature and gate bias.

6.5 Conclusions

In this chapter, an efficient implementation of a dynamic electro-thermal model
for a 54 nm FinFET device is directly extracted from LS TCAD simulations via
T -dependent Xpars in a 50 Ω environment at three different temperatures: 300 K,
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(a) Dynamic temperature variation over the pulse cycle.

(b) Dynamic temperature variation as a function of the output power over the pulse cycle.

Fig. 6.15 Results of the pulsed mode analysis of the matched FinFET in class A and class B
for the 3 different pulse durations.
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(a)

(b)

Fig. 6.16 Results of the pulsed mode analysis of the matched FinFET: (a) output power
variation over the cycle in class A (dashed lines) and class B (solid lines) and (b) detailed
view of the output power behavior in the ‘ON’ state for the 3 different pulse durations.
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Fig. 6.17 Results of the pulsed mode analysis of the matched FinFET: (left) temperature at
baseband and (right) output power at the RF envelope at different gate bias voltages, from
class A to class B, for a pulse length of 0.5 µs.

340 K, 380 K. The model is validated against LS TCAD analysis, including self-
heating, by simulating a class A power amplifier with a single tone excitation in the
range [310-390] K. In particular, T -dependent LS simulations confirm the thermal
degradation of the FinFET PA in terms of output power, gain, efficiency, etc., in all
operating conditions. As an example, the PAE shows a significant spread in back-off
region, reaching a variation of 10 percentage points. Moreover, the self-heating LS
analysis is performed for two different thermal impedances with cut-off frequency
of 10 KHz and exhibits a reduction of the junction temperature as a function of
the input power up to 5 K for Rth = 1 K/µW. Then, the ADS envelope analysis is
exploited to demonstrate the effect of PA self-heating in pulsed operating conditions:
three different pulse durations are selected to highlight the role of thermal memory
in the behavior of both temperature and output power. It can be noticed that if the
pulse duration is long enough, the device exhibits thermal cooling. The envelope
analysis is repeated for a Class B PA, showing an opposite behavior with respect to
the Class A stage: during the ‘OFF’ state, the latter is hotter and the Class B stage is
cooler. The proposed approach represents an efficient way to evaluate the impact
of temperature dynamics on PA performance and it is worth noticing that the same
analysis is not possible adopting a mere Xpar model at 300 K.



Chapter 7

TCAD analysis of GaN HEMT
dynamics through the trap rate
equation

GaN HEMT devices are a sufficiently mature technology in high-power and high-
frequency applications and they are widely exploited in communication and space
power applications. Nonetheless, nitride-based materials are characterized by trap-
ping mechanisms, which limit the RF device performances and need to be deeply
studied. Various characterization techniques have been proposed to identify the
trap dynamic behavior, linking the trap occupation to the gate/drain current delay in
terms e.g. of rise/fall time in the response to specific stimuli such as voltage steps
or pulses [95, 96]. Pulsed S-parameters and noise measurements are used to assess
the trap-related dispersion of AC and RF parameters [97]. In fact, the peculiar low
frequency dispersion of the device Y parameters has become a standard method to
characterize the trap dynamics [5]. Since characterizations typically provide only the
device terminal current dynamics, TCAD analysis represents a unique opportunity
to investigate the effect of the trap localization, especially when trap density varies
in the device volume.

In this chapter, a TCAD sensitivity analysis of a Fe-doped AlGaN/GaN HEMT
device in DC and AC conditions is presented. The simulations are performed solving
the PDD-ECE-TRE system (2.46), introduced in Chapter 2, in order to provide an
accurate insight into the impact of trap dynamics in the GaN-based structure. The



124 TCAD analysis of GaN HEMT dynamics through the trap rate equation

TCAD sensitivity analysis is carried out exploiting the GF-based approach through
the variation of selected trap model parameters, such as the trap concentration and the
trap energy. The proposed technique provides a more relevant application example of
the GF approach, allowing for fast and accurate investigation of trap effects in GaN
HEMT devices, which are continuously evolving, e.g. by introducing Fe doping.

7.1 Device under analysis

A HEMT structure of 0.150 µm gate length, whose dimensions are set in line with
the up-to-date technologies [98], is considered in Fig. 7.1. The AlGaN barrier layer
is 15 nm thick with 25% Al mole fraction, while the GaN layer is divided into a 5 nm
thick channel region and a 2 µm deep buffer region, both with residual donor doping
of 1015 cm−3. The buffer region is characterized by a Fe-induced deep acceptor-like
trap concentration Nt = 1018 cm−3 with nominal energy ECt = EC − 0.45 eV and
electron and hole capture cross-sections σn = σp = 3×10−16 cm2. Fig. 7.1 shows
the details of the HEMT structure, including the source and drain doped regions and
the S/D contacts. The TCAD analysis is carried out including the GaN spontaneous
polarization and both the AlGaN spontaneous and piezoelectric polarization, cor-
responding to −2.9 ·10−6 C/cm2 and −5.04 ·10−6 C/cm2, respectively, following
Table 2.5. The resulting net polarization charge at the AlGaN/GaN interface is
qPE = 2.14×10−6 C/cm2 with 90% activation, hence σpol = 1.2×1013 cm−2. On
the other hand, the polarization charge at the interface with contacts and passivation
layers is exactly compensated. The polarization model implemented in the in-house
software is the Synopsys Simplified strain model [26]. Furthermore, a fixed in-
terface negative charge σint =−2×1012 cm−2 is also added at the barrier/passivation
interface. The electron mobility includes dependency on lattice temperature and
doping, while velocity saturation is modelled with the Caughey-Thomas model
with vn,sat = 2.5×107 cm/s for both AlGaN and GaN. Fe doping acts like a deep
acceptor-like trap with trap energy Et = EC − 0.45eV (being EC the conduction
band edge) and electron and hole capture cross-sections σn = σp = 3×10−16 cm2

[5]. Finally, a contact resistance of 0.4 Ω mm is considered at the source and drain
terminals.



7.2 DC sensitivity analysis 125

Fig. 7.1 Simulated HEMT structure.

7.2 DC sensitivity analysis

The DC simulation of the Fe-doped GaN HEMT is performed at different drain and
gate voltages. Figs. 7.2a and 7.2b show, respectively, the device output characteris-
tics and transcharacteristics, which exhibit a saturation current ID,ss of 1.15 A/mm
and a threshold voltage of −2.5 V. The occupied trap concentration nt reaches a
maximum value of 1018 cm−3 in the buffer region immediately below the channel,
then decreases moving away from the channel down to 1015 cm−3 (see Fig. 7.3).
Static performance of GaN-based HEMTs are strongly influenced by the type of
traps and their localization [99], as well as by the device geometrical dimensions,
e.g. through the variation of access region length [100] and barrier thickness [36] or
the addition of a GaN cap layer [101]. As shown in Fig. 7.4, the threshold voltage
is insensitive to the increased gate-source length from 0.8 to 1.2 µm, while the
saturation current is reduced by the greater access resistance and the presence of
barrier/passivation traps along a higher LGS. Moreover, Fig. 7.5 shows that a lower
AlGaN barrier thickness of 12 nm not only reduces the value of ID,ss, but leads also
to a higher threshold voltage. Finally, the presence of a GaN cap layer (see Fig. 7.6)
leads to a slightly greater 2DEG density, a consequent shift of the threshold voltage
towards negative values and a significant increase of the drain saturation current,
with no effects on the output resistance, as shown in Fig. 7.7. This choice reduces
the current collapse due to gate-lag and drian-lag and improves the cut-off frequency
[101].

As anticipated, the presence of traps significantly affects the device performance
in DC conditions: as shown in Fig. 7.8, Fe-doped buffer traps lead to a clear
reduction of the output conductance, a strong degradation of the saturation current
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(a) HEMT output characteristics. (b) HEMT transcharacteristic at VD = 10 V.

Fig. 7.2 DC drain current of the GaN HEMT device in presence of traps.

(a) 3D distribution in linear scale. (b) 2D distribution in logarithmic scale.

Fig. 7.3 Spatial distribution of the occupied trap concentration at VD = 10 V and VG = 0 V.

(a) HEMT output characteristic at VG = 0 V for
different LGS.

(b) HEMT transcharacteristic at VD = 10 V: the
inset is a zoom in logarithmic scale.

Fig. 7.4 DC drain current for two different LGS.
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(a) HEMT output characteristic at VG = 0 V. (b) HEMT transcharacteristic at VD = 10 V.

Fig. 7.5 DC drain current for two different AlGaN barrier thicknesses.

Fig. 7.6 HEMT structure with GaN cap layer.

(a) HEMT output characteristic at VG = 0 V. (b) HEMT transcharacteristic at VD = 10 V.

Fig. 7.7 DC drain current for two different AlGaN barrier thicknesses.
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Fig. 7.8 HEMT output characteristics at VG = 0 V with and without traps.

and a consequent increase of the threshold voltage. Their effect is dependent on both
the localization inside the device and on the trap model parameters, i.e. concentration,
energy level, cross section, etc. In this scenario, a complete DC sensitivity analysis is
useful to understand the impact of traps with respect to the variation of a trap model
parameter: the analysis can be carried out by repeated TCAD simulations, but the GF-
based approach is exploited, as in the previous chapters, since it provides significant
numerical advantage. First, the DC sensitivity analysis is performed varying the
trap concentration Nt, solving the PDD-ECE-TRE system (2.46), varying Nt by
[±5%,±10%,±15%] with respect to the nominal case in order to find a reference
solution (incremental method, INC). The INC solution is used to validate the GF-
based analysis: GFs are extracted in DC conditions at nominal Nt and exploited to
calculate the drain current variation according to (4.50). As shown in Fig. 7.9, the
larger is the trap concentration, the higher the number of occupied traps and the lower
the drain current [5]. In fact, Fe-doped traps are acceptor-like traps responsible of the
capture/emission of electrons from/to the conduction band, therefore with a higher
Nt, more electrons can be captured from the channel region leading to the increase
of nt and the reduction of the drain current. Then, the analysis is repeated taking
into account the trap energy Et as model parameter to be varied: this corresponds to
vary the energy difference ECt = EC −Et in the range [0.4−0.5] eV with respect to
the nominal value ECt = 0.45 eV. Moving Et away from EC, the electron emission
rate to the conduction band decreases, hence the number of occupied traps increases
reducing the electrons of the channel region and leading to a lower drain current,
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(a) Drain current variation with varying trap con-
centration at VG = 0 V.

(b) Drain current as a function of the trap concen-
tration at VG = 0 V and VD = 10 V.

Fig. 7.9 DC drain current and its variation with varying trap concentration.

(a) Drain current variation with varying trap energy
at VG = 0 V.

(b) Drain current as a function of the trap energy
at VG = 0 V and VD = 10 V.

Fig. 7.10 DC drain current and its variation with varying trap energy.

as shown in Fig. 7.10. Both the sensitivity analyses demonstrate a good agreement
between the GF approach and the INC method, which is more numerically intensive.

7.3 AC sensitivity analysis

The effect of Fe-doped traps with respect to a trap parameter variation is now
investigated in AC conditions through the extraction of the GaN HEMT Y parameters.
The analysis is carried out taking as DC bias point VD = 10 V and VG = −2.22 V,
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corresponding to 10%ID,ss, in the perspective of investigating the trap effects on
the typical bias condition for power amplifiers. The problem is addressed with
the AC sensitivity analysis, at different trap energy levels, performed solving the
PDD-ECE-TRE system (2.46) with NH = 1, an input tone of 1 mV amplitude
recursively applied to each terminal and a tone frequency in the range between
10 Hz to 1 MHz. At each frequency, repeated AC simulations for two different
trap energies ECt = [0.445,0.455] eV are performed to find the HEMT Y-matrix
following (4.52), corresponding to the reference solution (incremental method, INC).
While the reference solution is estimated with repeated AC simulations at different
trap energies, the GF-based analysis only requires one simulation at nominal ECt,
giving a great advantage in terms of computational cost and an excellent agreement
with the INC solution. In fact, CGFs are calculated with nominal Fe trap energy Et,
such that ECt = 0.45 eV. Then, the current variation with varying ECt is obtained
through (4.54b), and hence the Y parameters are evaluated according to (4.56).

The Y22 and Y21 components as a function of frequency are hereafter reported
[6, 5]. The real part of Y22, shown in Fig. 7.11a, is characterized by two corner
frequencies, which are slightly shifted towards negative values with increasing ECt:
the lower one is at around 464 Hz and the upper one at 20 kHz. In the imaginary
part of Y22, shown in Fig. 7.11b, Fe-doped traps are responsible of a positive
peak at fpeak ≈ 2.15 kHz in Imag{Y22}. With decreasing ECt, the peak is shifted
towards higher frequency values and the imaginary part of Y22 slightly increases.
This TCAD technique allows for unique opportunities for a further insight on these
results through the investigation of the local variation sources L̃S(α)

k , according
to (4.55). In particular, L̃S(α)

k highlights which parts of the device contribute to
∆Y22: the dominant contribution is found to be the local variation source of the trap
rate equation at the drain contact L̃S(nt)

D . Therefore, the imaginary part of the ratio
L̃S(nt)

D /V1,D, namely Imag{∆Y (nt)
22 }, is reported at different frequencies. Figs. 7.12

and 7.13 show the local variation source for ECt = 0.455 eV (5 meV variation with
respect to the nominal value) for the two frequencies f1 < fpeak and f2 > fpeak. In
general the source is mainly significant only in the buffer region below the gate
where the position of EFn modulates the trap occupation. Imag{∆Y (nt)

22 } at f1 is more
concentrated at the source side of the channel and assumes positive values, while
at f2 it is more extended towards the drain contact and becomes negative. Fig.
7.14a shows that the real part of Y21 is rigidly shifted towards higher values with
decreasing ECt, while the frequency peak at around 1 kHz is almost insensitive to
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(a) Real part of the Y22 parameter. (b) Imaginary part of the Y22 parameter.

Fig. 7.11 Y22 parameter as a function of frequency at difference trap energy levels.

(a) 3D spatial distribution. (b) 2D spatial distribution.

Fig. 7.12 Local variation source at frequency f1 = 464 Hz reported in Fig. 7.11b.

(a) 3D spatial distribution. (b) 2D spatial distribution.

Fig. 7.13 Local variation source at frequency f2 = 10 kHz reported in Fig. 7.11b.
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(a) Real part of the Y21 parameter. (b) Imaginary part of the Y21 parameter.

Fig. 7.14 Y21 parameter as a function of frequency at difference trap energy levels.

(a) 3D spatial distribution. (b) 2D spatial distribution.

Fig. 7.15 Local variation source at frequency f1 = 46 Hz reported in Fig. 7.14b.

trap energy variations. Fig. 7.14b exhibits two frequency peaks in the imaginary part
of Y21 [5]: a positive peak at fpeak,a = 250 Hz and a negative peak fpeak,b at around 3
kHz due to the presence of buffer traps. With decreasing trap energy level, the buffer
peak shifts towards higher frequencies, while the surface peak is almost insensitive
to ECt variations. Figs. 7.15, 7.16 and 7.17 show the imaginary part of the ratio
L̃S(nt)

D /V1,G, namely Imag{∆Y (nt)
21 } at three different frequencies. Going from f1 to

f3, the local variation source is more distributed towards the drain and in depth of
the buffer region: in particular it has positive values at frequency f1 < fpeak,a and
mostly negative at f2. At f3 > fpeak,b there is a sharp negative peak under the gate at
source side and a broad positive region under the whole gate area.
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(a) 3D spatial distribution. (b) 2D spatial distribution.

Fig. 7.16 Local variation source at frequency f2 = 1 kHz reported in Fig. 7.14b.

(a) 3D spatial distribution. (b) 2D spatial distribution.

Fig. 7.17 Local variation source at frequency f3 = 10 kHz reported in Fig. 7.14b.
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7.4 Conclusions

In this chapter, an efficient implementation of the in-house TCAD drift-diffusion
model coupled to the trap rate equation is presented. The model is validated, with
excellent results, in DC conditions, where the effect of traps is investigated as
a function of the trap model parameters, i.e. concentration and energy level. A
degradation of the drain current is obtained both with increasing concentration Nt

and energy level ECt. Furthermore, the model is applied in AC conditions through
the analysis of the Y parameter low-frequency dispersion, showing the Y parameter
sensitivity to the trap energy and the corresponding local sensitivity. In particular,
the imaginary part of Y22 is reported showing that Fe-doped traps are responsible of
the positive frequency peak at 2.15 kHz, which is shifted towards higher values with
decreasing ECt. Moreover, Imag{∆Y (nt)

22 } highlights that the local variation source
L̃S(nt)

D , concentrated in the buffer region below the gate, is slightly shifted towards
the drain contact with increasing frequency. On the other hand, the imaginary part of
Y21 has a positive peak at 250 Hz and a negative peak at 3 kHz due to buffer traps.
The latter increases in terms of frequencies with decreasing ECt. The analysis of
Imag{∆Y (nt)

21 } demonstrates that the local variation source is distributed towards the
drain and more in depth of the buffer region with increasing frequency. Therefore,
the GF-based technique is a powerful tool not only to compute the sensitivity of the
AC Y parameters in a numerically efficient and accurate way, but also to extract
the local sensitivity, showing the areas of the device where traps influence most the
HEMT AC features. Finally, the presented AC analysis can be readily extended to
the dynamic large-signal analysis with no further code variations.



Chapter 8

Conclusions

Physics-based simulations represent a powerful tool to understand the behavior
of active devices exploiting both conventional and innovative techniques able to
describe the electrical, optical and thermal properties. The continued shrinking
of transistors to even smaller dimensions has led to critical aspects, such as a
significant technological variability, the strong impact of parasitics and a difficult
thermal management. Consequences of this process are especially relevant in the
wide panorama of RF/microwave devices, from the conventional MOSFET device
to the most recent innovative technologies, such as Tunnel FETs, FeFETs, GaN
HEMT and FinFETs. The consequent spread of microwave device performance
makes necessary a physics-based sensitivity analysis with respect to physical and
technological parameters in both static and dynamic conditions.

An in-house, pre-existing 2D physics-based simulator, allowing for LS multi-tone
periodic and quasi-periodic analysis through the HB technique, has been extended.
The original version of the in-house code is based on the drift-diffusion model,
implemented on MATLAB® with the Sharfetter-Gummel discretization technique. It
has been extended to take into account all the temperature dependencies, entering in
a wide set of physical models. The T -dependent TCAD solver has been enhanced
through the implementation of the self-heating equation, which takes into account the
heat dissipation inside the device. Further improvements have been achieved through
the refinement of the pre-existing trap rate equation, the thermionic emission model
and the piezoelectric polarization model, which have a central role in the simulation
of heterostructure devices, especially based on III-V semiconductors. The in-house
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simulator gives the possibility to perform mixed-mode simulations, allowing for
the analysis of circuits including single and multiple interacting devices. Mixed-
mode simulations are directly performed in the frequency domain exploiting the HB
technique, making the in-house solver well suited for the analysis of RF/microwave
devices. A significant impact on the behavior of active devices is due to frequency
dispersion phenomena, which can be investigated through the self-heating equation
and the trap rate equation, making the in-house simulator very appealing with respect
to commercial solvers. On the other hand, including multiple physical effects
in TCAD simulations requires coupling additional equations to the original drift-
diffusion model leading to extra simulation time that may prove a limiting factor
in the widespread diffusion of TCAD tools. To overcome these limits one can rely
on the continuous amelioration of computation capabilities and, most significantly,
on new techniques for agile and flexible sensitivity analysis. From the TCAD
standpoint, the modeling approach adopted in this work is based on the Green’s
Functions technique. The TCAD solver allows for a numerically efficient way to
estimate the relevant GFs, which represents a generalization of the Adjoint method
[64, 65], namely Generalized Adjoint Approach [57, 66, 67]. The GF technique is,
thus, exploited for an efficient sensitivity analysis aimed at calculating the device
response to a small variation of physical/technological parameters from a nominal
condition.

A temperature-dependent sensitivity analysis is proposed, presented and demon-
strated in a 54 nm Si FinFET Class A power amplifier in both the DC case, including
self-heating, and the LS regime. The technique always shows an excellent agree-
ment of the GF approach with incremental TCAD simulations and an advantage in
terms of simulation time of about 20% [70]. T -dependent simulations show a strong
degradation of the DC drain current at increasing temperature, especially in presence
of a thermal resistance, while in LS regime they present a detailed degradation of
output power in all operating conditions, showing more than 1 dB power reduction
at T = 350 K. The thermal sensitivity is demonstrated to be higher in back-off and
limited in compression, where the output power variation due to T is dominated
by the knee-voltage walk-out. LS T -dependent simulations with concurrent load
variations demonstrate that the stage is dominated by thermal degradation [73], while
concurrent T and doping variations in LS regime show that the PA output power is
significantly affected: at 1 dB compression point the available gain exhibits about 1
dB available power spread with doping at T = 320 K [74].
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A complete dynamic thermal analysis is demonstrated on the same device exploit-
ing the Xpar model, extracted from LS TCAD simulations in a 50 Ω environment,
into Keysight ADS. The T -Xpar model is validated against LS TCAD analysis,
including self-heating, and accurately predicts the PA mismatch with increasing
temperature and varying back-off condition [89, 90]. It reproduces the reduction of
the maximum output power and the variation of the DC power consumption due to
the knee voltage thermal walk-out. In the range [300-390] K, there is more than
15% power loss, 2 dB gain degradation and up to 10 percentage points efficiency
loss. Exploiting the ADS envelope analysis, the effect of PA self-heating in pulsed
operating conditions is demonstrated, highlighting the effect of thermal memory.
Finally, the pulsed operated analysis is repeated for a Class B power amplifier in
order to highlight the different role of thermal memory with a different bias condition
[91].

As a further significant example, the GaN-based HEMT technology is addressed.
DC and AC sensitivity analyses are performed to investigate the impact of traps on
0.150 µm Fe-doped AlGaN/GaN HEMT. The GF approach is exploited to compute
the DC sensitivity with respect to a variation of a trap physical parameter, showing
accurate results with respect to repeated DC TCAD simulations at varied model
parameters. The analysis demonstrates a reduction of the drain current with in-
creasing Fe-doped trap concentration from −15%Nt to 15%Nt, while the same trend
is obtained varying the trap energy level from 0.4 eV to 0.5 eV. Moreover, traps
are responsible of the low-frequency dispersion of AC performance. Here, the GF
approach is exploited to compute the sensitivity of the AC Y parameters towards the
variation of the trap energy. Due to the presence of buffer traps, the frequency peak of
Imag{Y22} shows frequency dispersion with a shift towards higher frequency values
with decreasing trap energy level, while two frequency peaks can be noticed in the
imaginary part of the Y21 parameter. The negative peak, due to buffer traps, is shifted
towards higher frequencies with a reduction of the trap energy, while the positive
peak is almost insensitive to energy variations. In this analysis the GF approach is
also exploited to extract the local sensitivity, giving a unique insight into the device
operating conditions and showing the parts of the device where traps influence most
the HEMT AC parameter.
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Appendix A

The Harmonic Balance Technique

Consider the generic mixed-mode configuration of a non-linear microwave circuit of
Fig. A.1, characterized by the active device, which is a non-linear component, and
the input/output linear matching networks [12]. An external time-dependent voltage
vin(t) of arbitrary amplitude is applied to the input terminal. If the peak amplitude of
the input source is not small enough, the device operates in Large-Signal conditions
where harmonic components will be generated and the linearization procedure can
not be performed. The LS input can be composed of one or two tones plus a DC bias,
therefore the circuit operates in a periodic or quasi-periodic LS regime, respectively.
As a consequence, all the terminals voltages vk(t) and currents ik(t) involved in the
microwave circuit are periodic or quasi-periodic functions of time. The periodic
and quasi-periodic LS regime has a great relevance in the design of devices for
analog applications, especially in the RF and microwave fields where most of the
applications show non-linearities.

Fig. A.1 Schematic representation of a mixed-mode configuration characterized by solide-
state device connected to the input and output matching network.

Voltage and current components can be written in the time-domain regime or in
a frequency-domain regime. Frequency domain approaches are usually preferred
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because they are easier and more efficient solutions for periodic or quasi-periodic
operation regimes. One of the main used techniques suited for non-linear networks
is the Harmonic Balance (HB) method [28], whose initial formulation considers all
the frequencies generated by the circuit belonging to the set n f0 (n integer). The
frequency f0 can be associated to a single-tone sinusoidal excitation or to a set of
commensurate1 excitations.

Let’s consider the case of a single-tone periodic LS excitation at fundamental
frequency ω0:

ωi = iω0 i = 0,1,2, ...,NH (A.1)

The time-dependent signal can be expressed in terms of voltage or current as the real
Fourier expansion truncated at the upper harmonic NH:

ik(t) = ik0 +
NH

∑
i=1

[ikci cos(iω0t)+ iksi sin(iω0t)] (A.2a)

vk(t) = vk0 +
NH

∑
i=1

[vkci cos(iω0t)+ vksi sin(iω0t)] (A.2b)

It is possible to write the same expressions in a vector form with 2NH +1 elements
including the DC component:

ik(t)⇐⇒ [ik0, ikc1, iks1, ikc2, iks2, ..., ikcNH, iksNH]
T = iTkH (A.3a)

vk(t)⇐⇒ [vk0,vkc1,vks1,vkc2,vks2, ...,vkcNH,vksNH]
T = vT

kH (A.3b)

At the same time, signals in time domain can be sampled into 2NH +1 equispaced
times, therefore calling T0 the fundamental period, voltages and currents can be
expressed as time sample arrays:

ik(t)⇐⇒ [ik(t1), ik(t2), ..., ik(t2NH+1)]
T = iTk (A.4a)

vk(t)⇐⇒ [vk(t1),vk(t2), ...,vk(t2NH+1)]
T = vT

k (A.4b)

1A set of frequencies is commensurate when all the possible ratios between any two frequencies
are rational numbers.
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Knowing that:

ik(tn) = ik0 +
NH

∑
i=1

[ikci cos(iω0tn)+ Iksi sin(iω0tn)] =ΓΓΓ
−1
n · ikH (A.5a)

vk(tn) = vk0 +
NH

∑
i=1

[vkci cos(iω0tn)+ vksi sin(iω0tn)] =ΓΓΓ
−1
n · vkH (A.5b)

where

ΓΓΓ
−1
n = [1,cos(ω0tn),sin(ω0tn),cos(2ω0tn),sin(2ω0tn), ...,cos(NHω0tn),sin(NHω0tn)]

(A.6)
The matrix ΓΓΓ−1 can be defined having ΓΓΓ−1

n as rows:

ΓΓΓ
−1 =


1 cos(ω0t1) sin(ω0t1) . . . cos(NHω0t1) sin(NHω0t1)
1 cos(ω0t2) sin(ω0t2) . . . cos(NHω0t2) sin(NHω0t2)
...

...
... . . . ...

...
1 cos(ω0t2NH+1) sin(ω0t2NH+1) . . . cos(NHω0t2NH+1) sin(NHω0t2NH+1)


(A.7)

We finally obtain the following expressions:

ik =ΓΓΓ
−1 · ikH vk =ΓΓΓ

−1 · vk (A.8a)

ikH =ΓΓΓ · ik vkH =ΓΓΓ · vk (A.8b)

A non-linear network can be characterized by linear reactive elements such as
capacitors and inductors, whose expressions depend on the time derivatives of
voltages and currents, respectively. In this case, the truncated Fourier expansion
becomes:

dik(t)
dt

= i′k(t) =
NH

∑
i=1

[−iω0ikci sin(iω0t)+ iω0iksi cos(iω0t)] (A.9)

Knowing that the frequency domain array associated to i′k(t) is:

i′k(t)⇐⇒ [0,−ω0iks1,ω0ikc1,−2ω0iks2,2ω0ikc2, ...,−NHω0iksNH,NHω0ikcNH ]
T

(A.10)
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the final expression in matrix form can be found as follows:

i′k =



0
−ω0iks1

ω0ikc1
...

−NHω0iksNH

NHω0ikcNH


=



0 0 0 . . . 0 0
0 0 −ω0 . . . 0 0
0 ω0 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 0 −NHω0

0 0 0 . . . NHω0 0


︸ ︷︷ ︸

ΩΩΩ



i0
ikc1

iIks1
...

ikcNH

iksNH


︸ ︷︷ ︸

ikH

(A.11)

In compact form we can write:

i′kH =ΩΩΩ · ikH (A.12)

The HB formalism can be expressed in a direct (real) Fourier representation, which
is more convenient in most of the non-linear circuit analyses, but it can also be
exploited in a complex notation. Using the complex representation, the Fourier
expansion of currents and voltages becomes:

ik(t) =
NH

∑
n=−NH

Ĩkn exp(jωnt) (A.13a)

vk(t) =
NH

∑
n=−NH

Ṽkn exp(jωnt) (A.13b)

where
ωn = nω0 i = 0,±1,±2, ...,±NH (A.14)

It is possible to write the same expressions in a vector form of 2NH +1 elements:

ik(t)⇐⇒ [Ĩ−kNH , Ĩk(−NH+1), ..., Ĩk0, ..., Ĩk(NH−1), ĨkNH]
T (A.15a)

vk(t)⇐⇒ [Ṽ−kNH,Ṽk(−NH+1), ...,Ṽk0, ...,Ṽk(NH−1),ṼkNH ]
T (A.15b)

Knowing that time domain signals can be sampled into 2NH +1 equispaced times as
shown in Eq. (A.4), the previous expressions can be written in the following way:

ik(tn) =
NH

∑
n=−NH

Ĩkn exp(jωntn) = Γ̃ΓΓ
−1
n · ĨkH (A.16)
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vk(tn) =
NH

∑
n=−NH

Ṽkn exp(jωntn) = Γ̃ΓΓ
−1
n ·ṼkH (A.17)

where
Γ̃ΓΓ
−1
n = [exp(jω−NHtn), ...,exp(jω0tn), ...,exp(jωNHtn)] (A.18)

The matrix Γ̃ΓΓ
−1 can be defined having Γ̃ΓΓ

−1
n as rows:

Γ̃ΓΓ
−1

=


ejω−NH t1 . . . ejω−1t1 ejω0t1 ejω1t1 . . . ejωNH t1

ejω−NH t2 . . . ejω−1t2 ejω0t2 ejω1t2 . . . ejωNH t2

...
...

... . . . ...
...

ejω−NH t2NH+1 . . . ejω−1t2NH+1 e jω0t2NH+1 e jω1t2NH+1 . . . ejωNH t2NH+1


(A.19)

The final expressions in matrix form are:

ik = Γ̃ΓΓ
−1 · ĨkH vk = Γ̃ΓΓ

−1 ·ṼkH (A.20)

ĨkH = Γ̃ΓΓ · ik ṼkH = Γ̃ΓΓ · vk (A.21)

As explained previously, in non-linear networks time derivatives of voltages and
currents can be involved for the definition of reactive elements such as capacitors
and inductors. Therefore, there is the need to express them using the HB technique
in the complex domain:

dik(t)
dt

= i′k(t) =
NH

∑
n=−NH

jωnĨkn exp(jω̃nt) (A.22)

The frequency domain array associated to i′k(t) is:

i′k(t)⇐⇒ [jω−NH Ĩ−kNH , ..., jω−1Ĩ−k1, jω0Ĩk0, jω1Ĩk1, ..., jωN ĨkNH]
T (A.23)



152 The Harmonic Balance Technique

Therefore, the final expression in matrix form is:

Ĩ′kH =



jωNH Ĩ−kNH
...

jω−1Ĩ−k1

jω0Ĩk0

jω1Ĩk1
...

jωNH ĨkNH


= j ·



ω−NH . . . 0 0 0 . . . 0
...

...
... . . . ...

...
...

0 . . . ω−1 0 0 . . . 0
0 . . . 0 ω0 0 . . . 0
0 . . . 0 0 ω1 . . . 0
...

...
... . . . ...

...
...

0 . . . 0 0 0 . . . ωNH


︸ ︷︷ ︸

Ω̃ΩΩ



Ĩ−kNH
...

Ĩ−k1

Ĩk0

Ĩk1
...

ĨkNH


︸ ︷︷ ︸

ĨkH
(A.24)

In compact form, one can write:

Ĩ′kH = Ω̃ΩΩ · ĨkH (A.25)
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