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Design-Space Exploration of Mixed-precision DNN
Accelerators based on Sum-Together Multipliers

Luca Urbinati and Mario R. Casu
Dept. Electronics and Telecommunications, Politecnico di Torino, Turin, Italy, {luca.urbinati,mario.casu}@polito.it

Abstract—Mixed-precision quantization (MPQ) is gaining mo-
mentum in academia and industry as a way to improve the
trade-off between accuracy and latency of Deep Neural Networks
(DNNs) in edge applications. MPQ requires dedicated hardware
to support different bit-widths. One approach uses Precision-
Scalable MAC units (PSMACs) based on multipliers operating
in Sum-Together (ST) mode. These can be configured to compute
N = 1, 2, 4 multiplications/dot-products in parallel with operands
at 16/N bits. We contribute to the State of the Art (SoA)
in three directions: we compare for the first time the SoA
ST multipliers architectures in performance, power and area;
compared to previous work, we contribute to the portfolio of ST-
based accelerators proposing three designs for the most common
DNN algorithms: 2D-Convolution, Depth-wise Convolution and
Fully-Connected; we show how these accelerators can be obtained
with a High-Level Synthesis (HLS) flow. In particular, we perform
a design-space exploration (DSE) in area, latency, power, varying
many knobs, including PSMAC units parallelism, clock frequency
and ST multipliers type. From the DSE on a 28-nm technology we
observe that both at multiplier level and at accelerator level there
is no one-fits-all solution for each possible scenario. Our findings
allow accelerators’ designers to choose, out of a rich variety, the
best combination of ST multiplier and HLS knobs depending on
the target, either high performance, low area, or low power.

Index Terms—Variable-Precision Multiplier, Mixed-Precision
DNN Accelerators, High-Level Synthesis.

I. INTRODUCTION

Mixed-Precision Quantization (MPQ) quantizes DNN layers
individually to find the best trade-off between accuracy and
latency [1]. This method requires hardware with variable bit-
width precision for weights and activations. Since the basic
Deep Learning (DL) operations are matrix multiplications and
convolutions, which in turn consist of scalar multiplications
and dot products, various Precision-Scalable Multiply-and-
Accumulate units (PSMACs) and DNN accelerators have re-
cently emerged [2]. One approach to PSMACs is based on the
so called Sum-Together (ST) multiplier [3], whose inputs usu-
ally pack N = 1, 2, 4 operands depending on the configuration,
with precision inversely proportional to N (e.g., 16/N bits,
Fig. 1(a)-(b)). They compute in one shot N multiplications in
parallel and their low-precision products are summed together
directly within the multiplier itself without requiring an external
addition. In other words, they perform either a multiplication at
full precision or a dot-product at lower precision. When used
inside the PSMAC units of DNN accelerators, they can speed
up the overall layer computation by a factor up to N [4].

In this work we contribute to the State of the Art (SoA) in
three directions:
1) For the first time we compare the SoA ST multipliers in

performance, power and area (PPA);

2) Compared to previous work, we enrich the portfolio of
accelerators based on ST multipliers and propose three im-
plementations for the most common layers: 2D-Convolution
(2D-Conv), Depth-wise Convolution (DW-Conv) and Fully-
Connected (FC).

3) We show how to obtain these accelerators with a High-Level
Synthesis (HLS) approach and for each of them we identify
the best hardware configuration knobs for a given PPA
target. To this end, we report the results of a rich design-
space exploration (DSE) varying many knobs, including
parallelism, clock frequency and ST multiplier type.

II. RELATED WORK

The most complete work on PSMACs is [2]. It extensively
analyzes all types of SoA PSMAC architectures, including
those based on ST multipliers, and classify them in subword-
parallel, divide-and-conquer and bit-serial. Our work considers
not only the ST multipliers selected in [2], i.e. the 16-bit
Baugh-Wooley ST multiplier of [3] and the Fusion Unit of
[5], but also the subword-parallel ST multipliers of [6] and [7],
and the divide-and-conquer one of [8]. In particular, we first
compare these ST multipliers among each other as independent
blocks rather than as PSMAC unit subcomponents. Then, we
show how to exploit the precision reconfigurability of these
multipliers in the PSMAC units of three layer-specific DNN ac-
celerators for inference, namely 2D-Conv, DW-Conv and Fully-
Connected, while [3] did it only for a precision-configurable FC
kernel and [5] for a general-purpose systolic array. Finally, we
are not aware of any other works related to HLS techniques
used to develop precision-scalable DNN accelerators based on
ST multipliers, except our initial research [4].

III. OUR DNN ACCELERATORS WITH ST MULTIPLIERS

A. Working Principle

Although we refer to an ST multiplier with precision con-
figurations as in Figs. 1(a)-(b), the same concepts can be easily
extended to ST multipliers with other configurations.

The working principle of the three ST-based accelerators is
explained in Fig. 1(c). The first column shows the number of
activation/weight pairs (N ) that the ST multiplier can accom-
modate in the 16-bit input operands, depending on the selected
configuration. In the remaining three columns we sketch how
the input (blue) and weight (orange) tensors are processed in
2D-Conv, DW-Conv and FC, respectively.

In 2D-Conv, for every orange filter with C kernels the C
input tensor channels are multiplied with the corresponding
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Fig. 1: Generic ST multiplier (a), its five configurations (b),
and working principles of our ST-based DNN accelerators (c).

weight kernels and these partial results are added channel-
wise. While at full precision (N = 1) an ST multiplier processes
one weight and one “pixel” of the input channel at a time,
at reduced precision we can feed the ST multiplier with two
(N = 2) or four (N = 4) pixel/weight pairs coming from the
channels dimension, as reported in red in the second and third
row of Fig.1(c). The number of MAC cycles scales as C/N
and the corresponding latency as 1/N .

A different approach is required for DW-Conv. In fact, every
output channel of a depth-wise convolution is obtained by
simply convolving every input channel with the corresponding
weight kernel. Since there is no accumulation over the channel
dimension, we can not use the ST multiplier as in 2D-Conv. As
shown in the third column, depending on the configuration, we
feed the ST multiplier with 1, 2, or 4 pairs coming from the
receptive field of the input tensor and the corresponding weight
kernel. As a result, the number of MAC cycles to compute an
output “pixel” is ⌈K2/N⌉, where K is the kernel size (K = 3
in Fig. 1(c)) [4]. Since K2 is typically an odd number, while
N is always even in low-precision configurations, the latency
reduction is less than in 2D-Conv because the last iteration of
the convolution between inputs and weights in a given channel
will always lead to one or three spare elements (one for N = 2
and three for N = 4). This overhead decreases when the kernel
size increases.

The working principle of the ST-based FC accelerator is
shown in the last column of Fig. 1(c). It performs the matrix-
vector product between the weight matrix and the linear array
of input activations. Inspired by [3], the ST multiplier works
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Fig. 2: HLS flow and architecture of the ST-based accelerators.

on the activations array and a weights row in order to pro-
duce an output activation of summed together low-precision
products. The number of MAC cycles scales as C/N and the
corresponding latency as 1/N , as in the 2D-Conv case.

B. Architecture and HLS Flow

An overview of the general architecture of our ST-based
DNN accelerators is in the grey and green block in Fig. 2. Dif-
ferent accelerators can have different size/shape of memories,
behavior of addressing and concatenating logic, and PSMAC
array parallelism (P ). The entire set of variables that define the
design space and their values is shown in Tab. I.

TABLE I: Design space variables and possible values.

Hw. Config. Knobs 2D-Conv DW-Conv FC

ST MUL type [3], [6], [7], [8] ( [5] )

IN {CH/ACT} 4, 8, 16, 32 = OUT CH 256, 512, 1024

OUT {CH/ACT} 4, 8, 16, 32 1, 2, 4, 8, 16 8, 16, 32, 64
MAC array
parallelism (P ) OUT CH OUT CH OUT ACT

IN/OUT memory
(shape)

18×18×
×{IN/OUT} CH

22×22×
×OUT CH {IN/OUT} ACT

WEIGHT memory
(shape)

7×7×IN CH×
×OUT CH

5×5×
×OUT CH

IN ACT×
×OUT ACT

Clock freq. [100÷1000] MHz, 10 steps

The PSMAC array operates on tensor tiles of dimensions
defined by width, height, input and output channels (for DW-
and 2D-Conv) or by input and output activations (for FC).
The iteration over different tiles is handled by the host that
invokes the accelerators. The array consists of P units, each
composed by one (for DW- and 2D-Conv) or two (for FC [3])
ST multipliers, one adder, and one accumulation register. The
P parallelism is one of the DSE variables and is connected to
the number of output channels/activations, as clear from Tab. I.
Thus, each PSMAC unit works on a different filter (2D-Conv),
weight kernel (DW-Conv), or row of the weights matrix (FC)
and iterates sequentially over input channels/activations, width
and height of the tensor tile.

The Memory architecture consists of input, weight and out-
put memories with double buffers. Input and weight memories
are organized in 4-bit banks, to enable the data access patterns
of the accelerators at low-precision configurations shown in
Fig. 1(c), while the output memory is organized in 32-bit banks.



The size/shape of these memories is affected by the dimen-
sions of the tensor tiles, which have been selected by analyzing
the statistics of the layer shapes of the most common DNNs for
edge devices, such as the various families of Mobilenet, Effici-
enNet, and ResNet, as shown in the table (e.g., width/height
of 18 and 22, power-of-two ranges for the channels). The
values that we selected for 2D-Conv and DW-Conv are a
reasonable trade-off between their memory area and the number
of iterations of the accelerators over multiple tensor tiles. For
FC, we took the minimum values of IN ACT/OUT ACT from
[3], while we chose the range with the same criteria used for
the other accelerators.

The Memory Addressing and the Concatenating Logics
implement the working principles of Sec. III-A according to
the type of accelerator and selected configuration. The first one
prepares the addresses to access input and weight memories
and reads the proper four 4-bit data from each memory. The
second one packs these data in the 16-bit operands of the ST
multipliers and sign-extends the lower precision operands in
the asymmetric configurations, i.e. 16×8 and 8×4.

The HLS flow shown in the left part of Fig. 2 generates the
accelerator architecture, whose high-level C/C++ description
is one the inputs of the flow (C/C++ (top) block). The other
input (RTL (ST)) is one of the SoA ST multipliers described
at Register-Transfer Level (RTL) [3], [6]–[8]. In fact, which
ST multiplier to use in the MAC array is another knob of our
DSE. These inputs are passed to Mentor Catapult for the high-
level synthesis (HLS block); the resulting RTL is then passed to
Synopsys Design Compiler for logic synthesis (Implem. block).
The remaining yellow blocks are directives and constraints for
the HLS and Implem. blocks. We pass HLS pragmas to the
HLS tool to perform several optimizations. We set to 1.0 the
Initiation Interval of the innermost loop that runs over the
elements of the weight kernels, in order to pipeline the loop
execution and increase the throughput of 2D-Conv and DW-
Conv. We also set the unrolling factor of the output loops of
the accelerators to P (OUT CH or OUT ACT, depending on
the accelerator type), hence creating the P parallel PSMAC
units of Fig. 2. We partition all the memories with the HLS
directive interleave to allow parallel memory accesses to take
full advantage of the parallelism created by the unrolling
directive. The Constraints for the logic synthesis tool include
the clock frequency, which we let vary in our DSE in Sec. IV.

C. SoA ST Multipliers Implementation

The SoA ST multipliers mentioned in Sec. II ( [3], [6]–[8])
support a wide variety of heterogeneous precisions for input
and weights. For a fair comparison we re-implement their core
ideas in VHDL, slightly adapting their designs to meet our
selected ST multiplier’s configurations (Figs. 1(a)-(b)). All the
selected ST multipliers are implemented with a structural RTL
description, except [7] which is described behaviorally because
the authors did same, too. Notice that [8] proposed seventeen
years in advance a divide-and-conquer architecture very similar
to the more recent [5]; therefore, we decide to give more credit
to the former by implementing that version.

[7]
[8]([5])
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[3]
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Fig. 3: DSE of the SoA ST multipliers.

IV. RESULTS

A. PPA Comparison of ST Multipliers

We synthesized on a 28-nm technology at 0.9 V all the
ST multipliers considered in Sec. III-C with input and output
registers, and varied the target clock frequency from 100 to
1000 MHz in 10 steps. The PPA results of this DSE are reported
in Fig. 3.

In the graph of area vs clock period, [3] performs well
for frequencies lower than 600 MHz, with area less than
1250µm2, while [7] starts to be competitive between 700 MHz
and 800 MHz and finally dominates at high frequencies. The
reasons why [3] behaves poorly at high frequency, is the long
diagonal critical path of the Baugh-Wooley full-adder array.
As a result, the logic synthesis tool infers larger logic gates
to meet tight timing constraints; on the other hand, the tool is
not able to optimize the area of [7] for frequencies less than
700 MHz because its heuristics finds a solution that satisfies the
desired clock period without particular effort. However, since
the behavioral description of [7] allows the tool to freely choose
the best implementation for the internal inferred multipliers and
adders, the solutions at higher clock frequency use fast logic
circuits that are more area efficient than [3].

In the graph of power vs clock period, [3] is the best up to
800 MHz. From that point onward, [6] and [8] triumph.

To conclude this first assessment, we observe that deter-
mining the best ST implementation in the PPA space is not
straightforward because it depends on the design constraints.

B. Results of DSE of DNN Accelerators

We perform a DSE in area, latency and power for the three
ST-based DNN accelerators, using the HLS flow described in
Sec. III-B. For each type of accelerator we vary the hardware
configuration knobs of Tab. I to synthesize a rich set of unique
design points characterized by area, power, clock frequency,
and ST multiplier type. To evaluate their latency when exe-
cuting the most frequent layers from the selected DNNs of
Sec.III-B, we first divide in tiles the input and output tensors
of each selected layer such that the size of the tiles matches
the accelerator’s memory sizes. Then, for each implementation
of an accelerator type, we evaluate the overall latency to



Fig. 4: Latency vs Area: results of DSE for (a) 2D-Convolution,
(b) Depth-wise convolution, and (c) Fully-Connected acceler-
ators. Points with black and red labels are Pareto points in
Latency vs Area and Latency vs Power, respectively.

iterate over all these tiles, taking into account the double
buffer mechanism that hides the tile transfer time. Finally, we
normalize the results to make the results of the DSE layer-
independent. We confirm our approach by doing the same test
with other DNN layers, obtaining the same DSE trends for the
three accelerators. Therefore the results that we report can be
considered valid for any layer.

For each accelerator type, we project the Pareto design points
from the tri-dimensional PPA space to two bi-dimensional
spaces: Latency vs Area (LA) and Latency vs Power (LP).
Fig. 4 reports these two projections on the same Latency vs
Area plot due to space limitation. (A similar graph could be
done for the Latency vs Power projection as well.)

The solutions connected by the black solid line and with
black labels are LA-optimal (Pareto-optimal in the LA space),
while those with red labels are LP-optimal, i.e. would sit on the
Pareto front in the Latency vs Power graph (in the LP space).
The labels indicate input/output channels for 2D-Conv, output
channels for DW-Conv, or input/output activation pairs for FC.

Notice how the majority of the points that are optimal in
LA are suboptimal in LP and vice versa. For example, an SoC
designer planning to reserve an area of 0.03mm2 for a DW-
Conv accelerator could choose solution (A) with 4 channels
optimized at 800 MHz, with normalized latency 0.03 and ST
multiplier from [7]. However, for the same latency, the power-
optimal point is solution (B) with 8 channels, optimized at
400 MHz, with ST multiplier from [3].

Indeed, there are few points that are both LA- and LP-optimal
and sit on the Pareto front of both projections. For example,
the low-area and low-power 2D-Conv accelerator named (C)
with (32, 4) input/output channels pair at 300 MHz with IP [3],
or—at the other end of the spectrum—the design (D) with very
low latency at 500 MHz with ST multiplier from [3].

To conclude this second experiment, we confirm that the re-
sults at accelerator level are consistent with those of Sec. IV-A:
there is no best solution for each possible scenario, but a rich
variety that can satisfy the designers’ constraints, from low
area, to low power, or to high performance.

V. CONCLUSION

In this paper we have presented our contribution in the area
of precision-scalable ST multipliers and mixed-precision DNN
accelerators. We compared the ST multipliers of the literature
and then we derived ST-based DNN accelerators with a high-
level design flow, which allowed us to explore a large design
space resulting from many solutions and architecture-level
variables. Our results allow designers to select the best type
of ST multiplier for the PSMAC unit of their accelerators in
conjunction with the best configuration of hardware parameters
for a given target in the PPA space.
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