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Abstract: Maximum power-point tracking (MPPT) is applied to enable effective operation of pho-
tovoltaic (PV) systems under different external conditions. MPPT is based on a control system that
aims at maintaining the PV system operation in the most effective conditions of maximum power
output. This paper demonstrates the effective application of a novel adaptive control approach
developed to be used in the field of power electronics. The application to MPPT is developed by
using a non-inverted Buck-Boost converter applied to the PV system. The novel control methodology
is based on the application of the Lyapunov stability concepts. The strength of this novel control
technique is confirmed by the accurate comparison among the results obtained by using the proposed
solution and some controllers proposed in the literature.

Keywords: photovoltaic plant; maximum power-point tracker; Buck-Boost converter; Lyapunov
theory; model reference adaptive control; Torelli control box

1. Introduction

Nowadays, renewable energy is a crucial factor for sustainable technological de-
velopment. Photovoltaic (PV) systems are currently among the most sustainable and
continuously improving solutions to exploit renewable energy sources. PV systems are
used in several applications for stand-alone and grid-connected electrical networks. It is
implemented for residential, commercial, industrial, or rural supply applications [1–3].
Furthermore, the PV generation may be used in powered infrastructures for electrical
vehicle (EV) charging stations [4,5]. Moreover, grid-connected PV plants with batteries as
the energy storage elements are used to stabilize and back up energy in the modern electric
network [6].

A general structure of a PV system, shown in Figure 1, consists of a PV array, a reference
voltage generator, a DC–DC converter and a controller. In order to extract the maximum
power from the PV array under the conditions of varying temperature and irradiance
levels, the PV array needs to be operated at its maximum power-point (MPP). It is the job
of the MPPT controller to ensure that the PV array is operated at the MPP by controlling
the choppers’ duty cycle. This tracking of MPP by the controller is aptly called Maximum
Power-Point Tracking (MPPT) [7]. The MPPT for photovoltaic (PV) systems is a typical
application of power electronics. The MPPT controller is an extremely important part of
the PV system, since the efficiency of the controller determines the efficiency of the whole
PV system under variable external conditions.
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Figure 1. PV system with MPPT control.

In a PV system, the energy efficiency improvement depends on two different aspects:

• The technological structure of the PV cells and layout arrangement [8].
• The algorithm used to increase the energy extracted from the PV source by using

MPPT [9].

Several MPPT techniques have been proposed and implemented in the literature.
A comprehensive overview of the MPPT techniques used in the literature has been pre-
sented in the Refs. [10,11]. The commonly proposed techniques in the literature can be
broadly categorized as follows:

• Hill-climbing techniques;
• Optimization based algorithms;
• Artificial intelligence-based techniques; and
• Linear and non-linear techniques.

Hill-climbing (HC) techniques such as Perturb and Observe (P&O) and Incremental
Conductance (IC) have existed in the literature for decades. These HC techniques are
popular because of their relatively accurate results, ease of implementation and low number
of sensors needed.

In P&O, the input power of the converter is calculated, then the voltage level is
perturbed by a small amount (∆V) in one direction by varying the duty cycle. If the
resulting change in power (∆P) is positive, then the perturbation is continued in that
direction, otherwise it is reversed. In this way, the MPP is eventually reached. There
are two problems associated with P&O, which could make P&O inefficient. First of all,
after every perturbation, the power cannot be measured until the transients have been
completed, and this increases the overall rate of convergence. Secondly, although the rate of
convergence can be increased by increasing the amplitude of the perturbation, with higher
amplitudes of perturbation the amplitude of the oscillations around the MPP would also
increase, which results in higher power losses. To overcome these issues, modified P&O
strategies have been developed [12]. In these modified strategies, novel procedures have
been adopted to modify the perturbation value so that the speed of convergences can be
increased. To improve the P&O performance in partial shading conditions, the conventional
P&O algorithm has been modified in different ways. For example, in the Ref. [13] a first
tuning of the duty-cycle of the converter between the maximum and minimum feasible
values was introduced, so that all the peaks can be identified, while in the Ref. [14] the
entire exploration range was divided into rectangular areas and the rectangles were further
divided into smaller rectangles, then the area with the highest possible chance of finding
the GMPP was selected. In both cases, the overall time of convergence increased, and in
the latter case there is still a chance that the GMPP is not reached if an inaccurate section is
chosen. In other cases, the conventional P&O algorithm was combined with metaheuristic
algorithms such as particle swarm optimization [15] and ant colony optimization [16],
obtaining improved results and a marked decrease in power oscillations.

In IC, the aim is to make the sum of instantaneous conductance (Ipv/Vpv) and incre-
mental conductance (∆Ipv/∆Vpv) equal zero [17]. The operating method is the same as for
P&O, as the duty cycle is again varied to search for MPP. Under rapidly variable environ-
mental conditions, IC provides more precise tracking and better adaptability to varying
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environmental conditions than P&O. However, once again, it faces similar problems as
P&O, namely a trade-off between the perturbation amplitude and the oscillations power
loss. Furthermore, it has around the same efficiency as P&O but requires more complex
control circuitry which leads to higher cost [10]. To improve the IC algorithm performance
in partial shading conditions, the conventional algorithm was modified in the Ref. [18] to
obtain a simple linear equation to track the GMPP. However, this algorithm requires the
use of additional measurement circuits at the output of the converter, thus increasing the
overall cost.

In the last years, the use of artificial intelligence (AI) to enhance both the MPPT algo-
rithms and the production and management systems of the PV components has increased
the PV plant efficiency [19]. Bio-inspired AI optimization-based techniques (or meta-
heuristics) have become popular as alternatives to Hill-climbing algorithms [20,21]. An ad-
vantage of these algorithms is their possible superior performance under partial shading
conditions [22]. When the entire PV array is under uniform irradiance, the power-voltage
curve only shows a single peak that is then tracked by the MPPT controller. However,
under partial shading conditions, that is, when a PV array is under non-uniform irradiance
conditions (due to a shadow on part of a PV panel or cloudy weather), the power-voltage
curve shows multiple peaks. Only one of these peaks has the highest value which is then
the GMPP, while other peak points are called Local MPPs (LMPPs). In this case, the task
of the controller becomes more challenging as it additionally needs to make sure that it
converges to the GMPP instead of the LMPP peaks present. One major issue with hill
climbing techniques is that since these techniques are designed to search for a peak without
taking into account the global response, they tend to converge on the LMPP instead of the
GMPP [20].

The structure of these meta-heuristics algorithms is quite similar. The first step is
the random generation of unique particles or individuals in the solution space, to form a
population of particles. The positions of each particle are evaluated against an objective
function. These particles then interact with each other to produce new offsprings. If the
position of the offspring is better than its parent, the position is updated. In this way,
the cycle continues until the process converges to the desired point. These meta-heuristic
algorithms offer better performance in rapidly varying the environmental conditions in
terms of response time, overshoot and fluctuations, but most importantly, they are useful
for trying to converge to the GMPP under partial shading conditions [21].

However, the advantages of meta-heuristic algorithms come at a cost. First of all,
the performance of these algorithms is highly dependent on the initial conditions and
selected parameters. For example, the selection of the size of the initial population is critical
to having an accurate balance between exploration (ability to accurately search at a global
level) and exploitation (accurate convergence on the local maxima). Higher population
size increases exploration but decreases exploitation, and vice versa [23]. In fact, the ideal
population size is a function of the peaks in the PV characteristic curves. This means that a
certain population size that is ideal for a certain PV array system will not be suitable for
another PV system.

Some techniques randomize or use non-linearly decreasing initial weight parameters of
the individuals to initially enhance the exploration process before optimizing the exploitation
process in steady-state conditions [24]. However, this step increases the computation
burden of the operation and increases the overall cost. Selection of the parameters of the
algorithm also plays an important part in the performance of these controllers.

Other AI-based techniques, such as fuzzy logic (FL) and neural networks (NN)-
based controllers tend to handle system non-linearities better than conventional methods.
These techniques do not require knowledge of the mathematical model of the system.
A FL controller consists of three parts: (i) fuzzification, (ii) decision-making, and (iii) de-
fuzzification. During the fuzzification part, a membership function is used to convert
numerical input variables into linguistic variables. The input variables are typically the
error (e) and the change in error (∆e). In the case of converters, the errors can be the
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instantaneous values of power or voltage. The decision-making stage consists of a rule base
as determined by the designer of the system. In the de-fuzzification stage, a membership
function is again used to convert a linguistic variable to a numerical output. For a FL-based
MPPT, the output is normally the duty cycle of the DC–DC converter. The main advantages
of a FL-based MPPT are that it does not need an accurate model of the PV system, can
handle system non-linearities, and can work with imprecise inputs [25]. However, their
main disadvantages are the requirement of setting up the parameters of the fuzzy controller,
and the complex computations during their implementation.

A NN-based controller, similarly to a FL-based controller, operates like a black box
and does not require any information about the PV system. The input parameters, in the
case of a NN-based MPPT algorithm, can be voltages and currents, or other environmental
parameters. The output is usually the duty cycle. In order to accurately track the MPP,
the NN needs to establish an accurate relationship between the input and output parameters.
This relationship is established by training the system for an extended period of time and/or
with an appropriate training data set [11]. Another important point to note is that since each
PV array has a different characteristic, a NN will have to be trained separately for each PV
array. Additionally, since the characteristics of a PV array get modified with time, the NN
will have to be periodically trained to keep accurate tracking of the MPP. Although both
FL-based and NN-based controllers have been successful in providing accurate and fast
dynamic responses even in harsh environmental conditions, there remain the issues of
computational cost, implementation complexity, and time-consuming processes for training
the NN [26].

Because of the problems mentioned above, linear controllers have been proposed for
MPPT. Linear techniques such as proportional-integral-derivative (PID) controllers are
used to extract maximum power from PV systems by optimization of the control gains [27].
The main issue with linear controllers is that, as mentioned before, PV arrays and DC–DC
converters are inherently non-linear systems and thus the use of linear controllers requires
the construction of small-signal approximated models of the PV system, to linearize the
system around the equilibrium point.

Non-linear controllers, on the other hand, guarantee the robustness and stability of
systems for different operational conditions [28]. This is why non-linear controllers have
been the focus of recent research for applications to PV systems. In recent years, various
non-linear controllers have been implemented for tracking the MPP in PV systems, based
on back-stepping, sliding mode control (SMC) and its derivative techniques [22,29–31]. Their
control is easier to implement in digital form and techniques such as SMC in particular
offer appropriate performance against sensitivity to system parameter variations or load
voltage fluctuations.

However, even for these non-linear control techniques there are certain issues that need
to be addressed. For example, there is a well-known issue of the “chattering” phenomenon
which can lead to additional power losses in practical implementation of SMC for practical
applications. For power converters, there is another challenge that needs to be addressed.
For the ideal implementation of SMC, the switching frequency should be kept very high.
However, for certain practical purposes, the frequency has to be maintained at a certain
constant value and cannot be increased to high values due to additional component costs
of components and filter design issues. This problem is solved by implementing the
equivalent control of SMC using the PWM technique that keeps the operating frequency
constant. However, then, operating at finite fixed frequency leads to greater steady-state
errors. This issue was first tackled in the Ref. [32] through the introduction of an “integral
of error” term as a control variable. This is called Integral Sliding Mode Control (ISMC) and
this methodology reduces the steady-state errors. Since then, the sliding mode control with
additional integral action has also been used for the regulation of Čuk and Quasi-Z-source
converters [28,33].

The use of higher-order terms is not just reduced to sliding-mode only. The same
methodology has been used in the Ref. [30] to reduce the steady-state error and improve
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upon the results of a back-stepping controller implemented for MPPT by the Ref. [29].
However, the problem with the use of this methodology is that it not only increases the
computational burden of the system, but also requires additional knowledge of the time
derivatives of the variables.

Following the method used to implement efficient non-linear controllers, this paper
proposes a novel “model-reference adaptive control” (MRAC) for MPP tracking in a PV
system. The rationale of the choice is that the adaptive control technique can be quite useful
for systems that have parameters that can undergo fluctuations. In the literature, adaptive
control techniques have been applied to different engineering fields, such as robotics [34],
flight control [35,36], power system control [37] and so forth. The control mechanism of the
proposed approach is based on the Torelli Control Box (TCB) methodology, in which the
convergence of the error vectors to the equilibrium point is ensured through the fulfilment
of the Lyapunov stability criteria. The TCB methodology has been conceptualized to be
used for different mathematical programming problems [38], and has been applied to
various problems in the power systems area, to solve the power flow [39], the optimal
power flow [40], and the formulation of differential algebraic equations in the analysis of
distribution networks [41] or switched capacitor converters [42].

The novel application to the MPPT controller with the proposed TCB-based control
approach has been developed for a non-inverted Buck-Boost converter-based system for
interfacing a PV source with a DC system.

The next sections of this paper are organized as follows. Section 2 shows the mathe-
matical formulation for the proposed MRAC approach. Section 3 contains the mathematical
modelling that shows the use of the proposed MRAC technique as an MPPT controller
of PV arrays. Section 4 shows the simulation results on a PV array model and compares
the performance of the proposed controller with the performance of other two non-linear
controllers used in the literature. The last section contains the concluding remarks and
underlines some directions for future work.

2. The Proposed Model Reference Adaptive Control Approach

Based on the control systems theory concepts, the variables used in a mathematical
model that represents an evolution during the time (denoted with t), are partitioned into:

• state variables, represented by the vector x(t), with cardinality Nx;
• control variables, represented by the vector u(t), with cardinality Nu;
• algebraic variables, represented by the vector y(t), with cardinality Ny

The matrix-based model of the dynamic system is written with the following non-
linear differential algebraic equations:

ẋ(t) = f(x(t), u(t)) (1)

g(x(t)) = y(t) (2)

The concept of adaptive control considers the definition of a reference trajectory for
the controlled variable, up to reaching the reference values for the output variable vector
yr0 at the equilibrium point after the transient. The reference trajectory can be defined by
considering user-based specifications on typical parameters of the dynamic response such
as the rise time, the overshoot and the settling time [43].

At the equilibrium point, the state variable vector is indicated as x* and the control
variable vector as u*, so that (avoiding in the sequel the explicit indication of the dependence
on time):

To guarantee that the adaptive control law results in an asymptotically stable equilib-
rium point, the following errors are considered:

• The errors with respect to the state variables:

ex = A(x− x∗) (3)
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• The errors with respect to the control variables:

eu = B(u− u∗) (4)

where A is the diagonal matrix that contains on the diagonal the weighting factors αi
referring to the errors on the state variables, for i = 1,..., Nx, and B is the diagonal matrix
that contains on the diagonal the weighting factors β j referring to the errors on the control
variables, for j = 1,..., Nu. The entries in the diagonal matrices can be different to take into
account the different units of the variables involved in the related equations, or the different
variations that occur during the solution process.

The two types of errors are included in a single vector:

e = [eT
x , eT

u]
T (5)

The key aspect for designing the model reference adaptive control is that the state
vector x depends on the control variable vector u. The solution of the control problem
requires the evaluation of the control variable vector u(t) to be provided as an input to the
system for reducing to zero all the entries of the error vector, while satisfying the dynamic
constraints. The controller design problem is then written as follows:

ẋ(u) = f(x(u), u) (6)

e(x(u), u) = 0 (7)

The TCB approach is applied to guarantee the asymptotic stability of the equilibrium
point [38]. For this purpose, the following scalar-positive semi-definite Lyapunov function
is defined:

V =
1
2

eTe (8)

and its derivative with respect to time is [8]:

V̇ = eTė (9)

Considering the following expression of ė:

ė =
∂e
∂u

u̇ (10)

the time derivative of V can also be written as:

V̇ = eT ∂e
∂u

u̇ (11)

From the Lyapunov theorem, the asymptotic stability of the equilibrium point is guar-
anteed if V̇ is negative-definite or negative semi-definite. In the TCB approach, the condition
imposed is that the change of u̇ occurs in the direction of the gradient of V, considering a
positive constant K:

u̇ = −K ·
(∂V

∂u

)T
= −K ·

( ∂e
∂u

)T
e (12)

Then, the expression of the time derivative of V becomes:

V̇ = −K · eT
( ∂e

∂u

)( ∂e
∂u

)T
e (13)

and is structurally a negative semi-definite quadratic form. In this way, by generating the
trajectory of the control variable vector u(t) according to Equation (12), the asymptotic
stability of the equilibrium point is guaranteed.
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3. Application of the MRAC-TCB Approach for MPPT of PV Arrays
3.1. PV System Overview

This section describes the MRAC-TCB control approach to realize a novel MPPT
method in a PV system with a Buck-Boost converter as an interfacing switching topology
between the PV source and the load. In the following, every part of the PV system
considered is introduced and discussed.

The topology of the proposed stand-alone PV system is shown in Figure 2. The system
consists of the following components:

• PV array
• Regression plane
• Non-inverted Buck-Boost converter
• MRAC-TCB controller

In the PV system, the sensors provide the values of the irradiance and temperature of
the PV panel to the regression plane that determines the voltage at the MPP, termed as VMPP,
using a mathematical relationship. The error in the PV system is defined as the difference
between the output voltage of the PV array and the reference voltage. This error is the input
of the designed MRAC-TCB controller, which generates the output signal u that controls
the duty ratio of the Buck-Boost converter through the use of a pulse width modulation
(PWM) generator. Further details about the regression plane, the mathematical modelling
of the converter, and the derivation of the controller, are given in the next subsections.

Figure 2. Block diagram of the PV system.

3.2. Generation of the Reference Voltage by the Regression Plane

The regression plane provides the value of VMPP for any value of irradiance and
temperature of the PV array. This is performed by establishing a linear mathematical
relationship for the calculation of VMPP from the values of irradiance and temperature.
Examples of this methodology in the literature can be found in the Refs. [29,44]. In this
paper, the relationship is established by the following process. First, multiple MPP curves
are generated by varying the temperature from 30 ◦C to 60 ◦C at constant irradiance level
of 1000 W/m2, and their data points are recorded. Then, the temperature is kept constant
at 25 ◦C and the level of irradiance is varied from 1000 W/m2 to 600 W/m2. In this way,
another set of data points is generated. From the data points obtained, linear regression is
applied to obtain a three-dimensional regression plane. From the regression plane, a value
of VMPP is obtained for any value of temperature and irradiance. Details of the PV array that
have been used for the collection of data points are provided in Table 1. The mathematical
relationship established between VMPP, irradiance G and temperature T is as follows:

VMPP = c0 − cT T − cG G (14)

where c0, cT and cG are coefficients whose values are determined for each PV array individually.



Energies 2023, 16, 2782 8 of 18

Table 1. Specifications of PV array.

Description of Parameters Nominal Value

PV modules per string 10
Parallel strings 1

Maximum Power 213.15 W
Cells per module 72

Voltage at open circuit 363 V
Current at short circuit 7.84 A

Voltage at Maximum Power 290 V
Current at Maximum Power 7.35 A

3.3. Mathematical Modeling of the Non-Inverted Buck-Boost Converter

The inclusion of a DC–DC converter is necessary in a PV system, because it provides
the interface between the PV panel and the load and enables the tracking of the operating
point of the PV panel to its MPP. In this paper, a Non-inverted Buck-Boost converter is
used, because from all the proposed converters it is considered one of the best choices for
MPPT applications [45]. Comparing different types of converters is outside the scope of this
paper, and the proposed technique is applicable to all the types of converters. The circuit
diagram of the converter is shown in Figure 3. In this paper, the converter is operated with
continuous conduction only.

Figure 3. Non-inverted Buck-Boost converter.

The converter has two modes of operation. In the first mode, the switches are ON,
and the diode is reverse-biased. Using Kirchhoff’s current and voltage laws, the equations
for the capacitor current and inductor voltage in the first mode of operation are:

iC1 = iPV − iL

vL = vC1

iC2 = −vC2

R

(15)

In the second mode, both switches are OFF and the diode is forward-biased. Again,
using Kirchhoff’s voltage and current laws, the equations for the capacitor current and
inductor voltage are: 

iC1 = iPV

vL = −vC2

iC2 = iL1 −
vC2

R

(16)
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Using the volt-second balance on the inductor L and the capacitor charge balance on
the capacitors C1 and C2, and denoting as µ the average value of the duty ratio, the following
equations are derived: 

dvC1

dt
=

iPV
C1
− iL

C1
µ

diL
dt

=
vC1

L
µ − vC2

L
(1− µ)

dvC2

dt
=

iL
C2

(1− µ) − vC2

RC2

(17)

Let x1, x2 and x3 be the average values of vC1, iL and vC2, respectively:
x1 = vC1

x2 = iL

x3 = vC2

(18)

The average duty cycle µ is taken as the control variable u, which is the single entry of
the control variable vector u defined in Section 2. By replacing in Equation (17) the state
variables defined in (18) and the control variable u, the following equations can be derived:

ẋ1 =
iPV
C1
− x2

C1
u

ẋ2 =
x1

L
u − x3

L
(1− u)

ẋ3 =
x2

C2
(1− u) − x3

RC2

(19)

The above state space model is used to track the reference VMPP.

3.4. Mathematical Derivation of the MRAC-TCB Approach for the Non-Inverted
Buck-Boost Converter

Again, the procedure to apply the MRAC-TCB controller follows the same methodol-
ogy as the previous sections. The first step is the derivation of a reference signal for the
trajectory to follow. As explained above, this is generated through the use of a regression
plane. Again, this means that for this particular application the variable of interest yr0 is
defined as vC1.

The second step is the derivation of the steady-state expressions for all the states of
the system. These expressions are found by setting the contents of Equation (19) to zero.

x∗1 = yr0

u∗ = 2a−
√

4a2−4a(a−yr0)

2(a−yr0)

x∗2 =
yr0u∗

R(1−u∗)2

x∗3 =
yr0u∗
1−u∗

(20)

where a = IpvR1.
The next step is to define the tracking errors that can be minimized through the

adaptation mechanism to accurately track the reference signal, as:
ex1 = α1(x1 − x∗1)
ex2 = α2(x2 − x∗2)
ex3 = α3(x3 − x∗3)
eu = β(u− u∗)

(21)
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Here, the weight vector entries α1, α2 and α3 of the diagonal matrix A and the weight
constant β are empirically determined to specify the speed of the control algorithm. Again,
using the expression defined in Equation (12) and the error vector mentioned above,
the control equation becomes:

u̇ = −K
[
α1

dx1

du
ex1 + α2

dx2

du
ex2 + α3

dx3

du
ex3 + βeu

]
(22)

where K is the gain factor with a constant value given in Table 2. The sensitivity parameters
s1 = dx1

du , s2 = dx2
du and s3 = dx3

du are calculated based on the original Buck-Boost converter
model given in Equation (17).

ṡ1 = − 1
C1
(−x2 − s2u)

ṡ2 = − 1
L (s1u + x3 − s3(1− u) + x1)

ṡ3 = 1
C2

(
s2(1− u)− x2 − s3

R

) (23)

Table 2. Specifications of Buck-Boost converter and controller gains.

Description of Parameters Nominal Value

Capacitance, C1 67 µF
Capacitance, C2 480 µF
Inductance, L 11 mH
Resistance, R 20 Ω

Switching frequency, fs 100 kHz
TCB gain, K 104

3.5. Simulation Results for the Buck-Boost Converter

The proposed MRAC-TCB controller has been tested by imposing both fluctuating and
step-wise changes in the environmental conditions of irradiance, with simulations carried
out in Matlab/Simulink. The irradiance can be gathered at fast rates, for example, second by
second or even at sub-second rates [46]. Therefore, the testing is carried out by applying step
irradiance changes pushed to very large changes as a conservative stress case. In particular,
while the irradiance values are kept within a reasonable range, the controller has been
intentionally subject to large changes at very fast time steps, to impose higher stress to
the control system with respect to actual conditions in which the corresponding quantities
could change more smoothly. The results are presented in the next subsection. Concerning
temperature changes, these changes occur at a slower rate [47], so that no testing is shown
for temperature variations in the sub-second observation time interval considered.

In the specifications for the PV array and Buck-Boost converter mentioned in Tables 1 and 2,
respectively, the empirically determined values of weight vector is A is [3,1,1] and the
weight β is equal to 5. To justify the selection of these parameters, we have shown the
evolution of the steady-state errors with respect to the values of the weight vector entries
and of the controller gain K in Figure 4. As seen from Figure 4a,c, as the value of α1 and β
is increased, the steady-state errors of all parameters are reduced. Similarly, Figure 4b,c
shows that as the value of K is increased to 1 × 104, errors are also reduced more smoothly.
Therefore, the choice of all weight vector entries equal to unity is not the best one, and the
increase in the value of K is justified as well. Further increasing the value of K does not
provide significant additional benefits.

Considering the values α1, α2, α3, and β, being four entries involved, a unique represen-
tation of the combinations of values of these entries is not possible. Hence, the description
of the parameters chosen has been conducted as follows. The error on the control vari-
able related to β is considerably lower with respect to the errors in the other variables.
In particular, from Figure 4, when β = 1 there are some fluctuations in the error (as shown
in Figure 4), and these fluctuations are progressively reduced when β increases (and this
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happens with different combinations of α1, α2 and α3). For values of β around 5 or higher
the fluctuations remain very small, so that the value chosen is β = 5 and is maintained for
the other tests shown.

(a)

(b)

(c)

Figure 4. Evolution of errors w.r.t. variations in the parameters. (a) All weight vector entries equal to
unity, and parameter K = 1 × 104. (b) Weight vector entries α1 = 3, α2 = 1, α3 = 1, β = 5, and parameter
K = 1 × 103. (c) Weight vector entries α1 = 3, α2 = 1, α3 = 1, β = 5, and parameter K = 1 × 104.

About the values of α1, α2 and α3, the comparison has been carried out by keeping
α3 = 1 and changing the values of α1 and α2. A parametric analysis with α1 and α2 variable
from 0.5 to 5 is shown in the 3D graph of Figure 5a, referring to the 2% settling time as
the entry used for comparison. Looking at the trend of variation of the 2% settling time,
the values α1 = 3 and α2 = 1 (indicated with the red ellipses and arrow) are chosen based on
the application of the elbow criterion, for which the changes in the 2% settling time become
acceptably low.

Figure 5b–e shows how changing the values of α1 and α2 does not result in a significant
change in the errors of the parameters x1 and x2 after the first part of the evolution. Each
error has been normalized by dividing the parameter values with the total change in error
from the starting point to the steady-state conditions.

The numerical values of the coefficients of the regression plane for this PV array
system, determined as indicated in Section 3.2, are c0 = 322, cT = 1.34, and cG = 0.00964.
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The final subsection presents the comparison of the MRAC-TCB controller with an
integral back-stepping and a P&O controller.

(a)

(b)

(c)

(d)

Figure 5. Cont.



Energies 2023, 16, 2782 13 of 18

(e)

Figure 5. Evolution of errors in x1 and x2 parameters w.r.t. variations in α1 and α2 and settling time
in x1. (a) Variation in settling time (2%) of x1 due to variations in α1 and α2. (b) Error in x1 due to
variations in α1 while α2 is 1. (c) Error in x1 due to variations in α2 while α1 is 3. (d) Error in x2 due to
variations in α1 while α2 is 1. (e) Error in x2 due to variations in α2 while α1 is 3.

Test under Conditions of Variable Irradiance

The controller was tested under conditions of variable irradiance. Initially, the irradi-
ance values changed in a fluctuating way, while the temperature was kept constant at 25 ◦C.
This is shown in Figure 6. The fluctuations centered around 1000 W/m2 and ranged from
900 to 1140 W/m2. In the second test, shown in Figure 7 the range of irradiance change
increased by a large margin to test the stability and the sensitivity of our controller gains to
large variations. Furthermore, the irradiance change was performed in a step-wise manner
to subject our controller to the strongest form of stress. The initial irradiance is kept at
1000 W/m2, and is changed in a step-wise way to 800 W/m2 at 0.05 s. This value is then
further stepped down to 600 W/m2 at 0.15 s.

Figures 8 and 9 show the reference voltage tracking under both fluctuating and
step-wise variable irradiance conditions. The first aspect to note is that the generated
reference value from the regression plane is tracked efficiently, due to the controller with
no steady-state error. The controller is not only able to track the sudden change in reference
voltage due to fluctuations in Figure 8, but is also able to track the large and sudden
step-wise changes in irradiance at 0.05 s and 1 s, respectively with minute rise and settling
times. Figure 10 shows both the maximum power-point tracking and the output power
generated by the proposed MRAC-TCB controller under the step change variable irradiance
conditions. From Figure 10, the generated power output of the PV array is delivered to the
load with MPPT efficiency above 95%.

Figure 6. Test with fluctuating irradiance in time.
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Figure 7. Test with step-wise variable irradiance in time.

Figure 8. Tracking the MPP voltage under fluctuating irradiance.

Figure 9. Tracking the MPP voltage under step-wise variable irradiance.

Figure 10. Power output of the PV Array under step-wise variable irradiance.

3.6. Comparison with Perturb and Observe and Integral Back-Stepping Controllers

Among the non-linear controllers implemented in the literature, one of the best results
was cited by the Ref. [30] for an MPPT system based on a non-inverted Buck-Boost system.
Therefore, for comparison purposes, the integral back-stepping (IBS) controller proposed
in the Ref. [30] has been replicated and a comparison with the proposed controller has
been carried out. In addition, a simple P&O controller has been fine-tuned as well for the
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PV system under analysis. Figure 11 shows the tracking of the reference voltage of the
three controllers under conditions of step-wise varying irradiance. It can be seen from the
figure that the MRAC-TCB and the IBS controllers have no issues of steady-state errors,
although the IBS controller has slight voltage overshoot.

A comparison between the responses of these controllers is provided in Table 3. While
the IBS controller has a slight overshoot of around 13 V and a settling time (2%) of 2.7 ms,
the MRAC-TCB controller can be fine-tuned to have almost no overshoot voltage and
a settling time (2%) of 3.1 ms. Even after perturbations, as can be seen in Figure 11,
the response of TCB controller settles down much quicker than that of the IBS controller.
Furthermore, after the perturbations, the MRAC-TCB controller also has a rise time of only
54.75 µs, as compared to 2.17 ms of the IBS controller.

Similarly, Figure 12 shows that after multiple fine tuning attempts, P&O can also
track the MPPT point but undergoes several fluctuations before reaching the steady-state
point. While it should be noted the P&O is the simplest controller to implement as it does
not require the use of a regression plane and hence the extra sensors, the superiority of
Lyapunov-based controllers is evident. In particular, the settling time (2%) of P&O cannot
be determined because the output voltage value does not reach 2% of the steady-state value.

Figure 11. PV array MPP voltage tracking comparison with the IBS controller under variable irradiance.

Figure 12. PV array MPPT comparison with the IBS and P&O controllers under variable irradiance.

Table 3. Comparison between controllers.

Method RT (ms) ST 5% (ms) ST 2% (ms) Overshoot (V) MPPT Efficiency

P&O 2.3 58.2 NA 86.0 94.8
IBS 2.1 2.8 2.7 13.3 97.4

MRAC-TCB 2.3 2.5 3.0 6.3 96.8
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4. Conclusions

In this paper, a pulse-width-modulated, model reference adaptive control based on
the TCB controller was proposed for the regulation of an inverted Buck-Boost converter
applied as a maximum power-point tracker in a PV system. This paper has demonstrated
for the first time the application of the MRAC-TCB controller to the inverted Buck-Boost
converter taken as a viable example of a converter for the specific application. Neverthe-
less, the proposed control technique is applicable to all types of DC–DC converters. The
proposed controller has demonstrated strong robustness under various testing conditions,
confirming the theoretical findings that prove the global asymptotic stability using the
Lyapunov stability criterion.

The simulations of the PV system were performed in a Matlab/Simulink environment.
The regression plane was used to generate the peak power voltage taken as reference for
the MRAC-TCB controller. The tests were carried out by using variable irradiance with
large and step-wise changes at fast rates, that is, the changes imposed were larger with
respect to what would happen in real conditions that could be tested experimentally. Even
by imposing these stress cases in the simulations, the MRAC-TCB controller exhibited a
very robust response. Moreover, the test with fluctuating irradiance in time has shown
effective adaptation of the output voltage to the changing external conditions.

From the results of further comparisons with the Lyapunov-based Integral Back-
Stepping controller and a P&O controller, referring to settling time, voltage overshoot and
MPPT efficiency, the MRAC-TCB controller exhibited results clearly better than P&O and
comparable with the Integral Back-Stepping controller, in particular, with remarkably lower
voltage overshoot.

It should be noted that, although the controller performance is excellent, the results are
dependent on the accuracy and precision in the definition of the regression plane. For practical
applications, as the PV array ages, the regression plane may need to be updated.

Work is in progress to extend the study to the comparison of the results obtained
with the proposed MRAC-TC controller to different converters and to test the proposed
controller in real-case applications.
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Abbreviations

AI Artificial intelligence
DC Direct current
FL Fuzzy logic
GMPP Global maximum power-point
IBS Integral back-stepping controller
IC Incremental conductance
ISMC Integral sliding mode control
LMPP Local maximum power-point
MPP Maximum power-point
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MPPT Maximum power-point tracking
MRAC Model reference adaptive control
NN Neural network
PID Proportional integral derivative
P&O Perturb and observe
PV Photovoltaic
PWM Pulse width modulation
SMC Sliding mode control
TCB Torelli control box
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