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Abstract—Embedded System-on-Chip (SoC) memory require-
ments in the Automotive industry are constantly growing. For this
reason, memories occupy a significant part of Automotive SoC’s
die area, increasing the defect probability inside the embedded
storage. Automotive SoC manufacturers need to deeply test their
embedded memories as they are one of the significant contributors
to the yield of their devices. The test effort increases for the
characterization of new technologies and new families of devices
that need to be characterized by the manufacturers. These tests
generate a massive quantity of diagnostic information that is
incredibly valuable for designers and technology experts. This
diagnostic information can be analyzed to identify and correct
possible weaknesses and misbehavior. The easiest way to collect
memory diagnostic information consists of failure bitmaps in
which each fault is saved as coordinates. This method is the
simplest solution to implement. However, logging the coordinates
of every fault may generate an unmanageable quantity of data.
This problem is exacerbated when there is an on-chip limitation
on the amount of data that can be saved or transmitted to the
external world.

This paper presents an optimized on-chip compression algo-
rithm that allows to reduce the required on-chip memory to store
diagnostic information during embedded memory testing. This
solution allows the reconstruction of a failure bitmap, generating
a topological representation of the density of the failings bits in
the embedded on-chip memory. The proposed approach effectively
reduces the used storage to a fraction with respect to the one used
by the original failing bitmap. The algorithm uses a coordinates-
based approach, in which the memory is logically divided into
equally divided sectors. The small time overhead introduced by
the algorithm is compensated by the ability to achieve optimal
space utilization.

Index Terms—Automotive SoC, reliability, memory diagnosis,
compression

I. INTRODUCTION

Testing is crucial to ensure that each commercialized device
is within the specifications [1]. Embedded on-chip memories
(eMemories) used in the Automotive industry occupy a large
portion of the overall die area. Given their considerable di-
mension, memories have a significant effect on yield. For this
reason, manufacturers deeply test their devices, collecting as
much information as possible about their design while check-
ing the covering of all the product requirements. Technology
experts and designers can then use this data to strengthen
their designs and devise countermeasures for the most common
failure scenarios. So, all the data collected help manufacturers
to enhance their devices’ yield.

Two common approaches used to efficiently test the mem-
ories are software and hardware-based. Software-based ap-

proaches are the simplest and the most used solutions for
memory verification. These methods use the external ATE
and the integrated CPU of a SoC to perform the memory
verification. The software approaches are the most flexible
because they are easily modifiable and adaptable at any time.
The main drawback of these approaches is the time overhead
with respect to the hardware-based ones.

Specialized hardware modules have been designed and in-
cluded in the devices to speed up the execution of the memory
tests [2] [3] [4] [5] [6] [8] [9]. A classic approach consists of
implementing an hardware Built-In Self-Test (BIST) module
to perform at-speed verification of the eMemories. These hard-
ware modules share a different flexibility than their software
counterparts but are able to significantly decrease the test time.

During the early characterization steps of the devices, man-
ufacturers perform a complete test suite to identify the weak-
nesses of their memories. This characterization is especially
useful for new designs and technologies. One of the classic
steps that manufacturers perform is aim at validating the chosen
reference current for the eMemories of their devices [10]. This
reference value is used to evaluate and compare the value
stored on a bit cell, discerning between 0s and 1s. Executing
memory verification while shifting the reference current of the
sense amplifiers from the nominal value can highlight recurring
failings patterns. The more the reference current is shifted, the
more failing patterns appear. If the dedicated diagnostic data
storage is limited, it is crucial to retain valuable information
about these failing patterns. Indeed, in case of a large number of
faults, not all diagnostic information can be saved using lossless
encoding algorithms. Nevertheless, a valuable information for
Designers and technology experts is the fault density along the
DUT memories, or in other words, the topological distribution
of the faults even without knowing the exact fail position.

A crucial part of the test process is to enhance the storage
efficiency of the diagnostic information. Especially during
the initial device characterization, testing the memories may
generate a massive amount of data that need to be collected
and analyzed. A possible solution [7] to collect diagnostic
information accumulates failures in a bit failing map. Such a
map is generated by a matrix representation of the memory
under test. In the resulting matrix, each tested bit is reported
one by one. This algorithm is memory intensive as each bit
of the memory has to be transmitted to the external Automatic
Test Equipment (ATE) for analysis purposes. Communications



between an ATE and the Device Under Test (DUT) are very
time-consuming and must be limited to avoid unnecessary test
time overhead.

A different solution [11] compacts diagnostic information in
shape-encoding segments called slices. This lossless represen-
tation can significantly reduce the memory needed to represent
the diagnostic information for specific failure shapes. Together
with the approach in [7], also this solution cannot cover 100%
of fail cases within a reasonable time and dedicated on-chip
memory space.

The solution proposed in this paper presents an innovative
and optimized compression solution to collect memory diagnos-
tic information. By resorting to on-chip computation, memory
is represented in equally divided sections called pixels. Using
this approach, the equally divided sections that are encoded
using a color-based association to highlight possible recurring
patterns in memory failings. Our solution is able to perform
data collection with minimal time overhead while gathering
high-quality topological diagnostic information with minimal
memory requirements.

The paper is organized in the following way: in Section
II, the internal memory structure is presented and analyzed.
Particular attention has been posed to provide information about
memory characterization using different reading reference val-
ues. In Section III, we explain the proposed solution, including
all steps needed to encode memory diagnostic information
using our optimized compression algorithm and how to color-
encode them. Section IV highlights our experimental results on
an Automotive SoC made by Infineon Technologies. In Section
V, the obtained results are evaluated, providing some conclusive
considerations.

II. BACKGROUND

A. Memory organization

Bits in the embedded memories are arranged as a matrix.
Each row in this matrix is called wordline, while the columns
are called bitlines. In a typical non-volatile memory, a wordline
contains a certain number of pages which are composed of a
predefined number of bits. For the user, a page represents the
smallest addressable unit.

Wordlines are then combined to form a physical sector.
Finally, physical sectors are combined to form a memory bank.

Big memories are made by creating multiple independent
replicas of the memory banks, Fig. 1.

When a read operation is issued, the Sense Amplifier (Fig.
2) assigns the corresponding bit cell value. This operation is
repeated for all the bits of the page being read. The Sense
Amplifier is an analog component connected to the bitlines that
compares the current driven by the bit cell against a reference
value. If the value is above the reference, the 0 value is assigned
to the bit cell, 1 otherwise.

B. Characterization and Memory Current Margin Test

Memory units may present many faults in the early steps of
technology development. Characterization processes are used
to perform studies about statistical topological distribution that
may be present due to non-optimal architectural design or
specific process variation or different working parameters (tem-
perature, frequency and so on) [10]. Many verification steps are

Fig. 1: Embedded memory organization

Fig. 2: Sense Amplifier

performed to find fault distribution when changing the Sense
Amplifier reference current and observing the corresponding
bit misbehavior. This process can highlight recurring defects in
the memory behavior, such as non-uniform topological faults
distributions, that are process and technology-dependent.

The resulting diagnostic information can be seen as coordi-
nates that describe the physical location of the faults present
for the selected margin.

Fig. 3: Standard bit fail map generated shifting the reference
current of the Sense Amplifiers

C. Fault topological distribution
Technology experts are interested in topological failings

patterns with respect to their exact positions. They benefit from
a compressed overview of the failings in the memory that shows
the fault density more than their precise locations. The benefit
is especially evident for fault-dense DUTs, where the number
of faults limits the ability to represent a large portion of the
memory. Also, the exact coordinates of every fault are not
needed for this type of characterization.

A topological failings pattern corresponds to an increased
probability of faults in a specific area of the physical memory.



Method
Density
accurate Storage On-Chip

Landzberg [7] Yes High Yes

Chen [4] No
Variable

with resolution Possible

Bernardi [11] Yes Low Yes

Proposed Yes
Variable

with resolution Yes

TABLE I: Comparison between features of various approaches

Multiple factors can interfere with the correct reading, altering
the programming state of the cells and then generating a topo-
logical failings pattern. Fig. 3 represents the failing information
using a standard Bitmap in which each black dot corresponds
to a failure. Failures are focused on the center, highlighting a
topological failing pattern.

D. Algorithms for diagnostic data collection

The most straightforward algorithm for collecting the diag-
nostic data from the embedded memory test is the one described
in Landzberg et al. [7]. In his approach, the ATE directly
accesses the memory under test, reading bit by bit. The failures
found during these procedures are directly exported through
their coordinate with no further manipulation. The failure
constellation can be reconstructed by simply analyzing the
collection of exported coordinates. On the other hand, Bernardi
et al. [11] developed an algorithm to collect failure information
using the concept of encoding and pattern recognition. Faults
are collected in color-encoded segments called slices. In this
way, the authors were able to be more memory efficient with
respect to [7]. Lastly, Chen et al. [4] proposed a compression
method, able to reduce the amount of memory needed to
represent a failure constellation at the cost of the accuracy of
the representation.

III. PROPOSED APPROACH

The proposed solution is based on the compression of diag-
nostic failing information during the execution of an on-chip
memory verification. Our solution can overcome the explosion
in memory requirements required by [7] and, for sparse faults,
by [11] to represent fault-dense scenarios.

The base element of the compression algorithm is called
pixel, which represents a portion of the memory of the DUT.
A pixel is composed of a configurable number of wordlines
and bitlines. These two parameters are freely configurable to
achieve various levels of compression. The smaller the pixel’s
dimension, the greater the resolution at the expense of the
memory requirements. Each pixel comprises a two-dimensional
coordinate and a counter representing the number of faults for
the represented memory portion.

Table I shows a comparison between our proposed approach
and other diagnostic data collection algorithms. Our proposed
approach is topologically accurate, showing the density of
memory fails in different areas of the memory. This charac-
teristic is in common with the algorithms shown in Bernardi
et al. [11] and Landberg [7]. As for storage requirements,
similar to the algorithm of Chen et al. [4], it varies based
on the chosen resolution. In common with Bernardi et al. and
Chen, the proposed approach’s memory requirements are lower

than the Landzberg approach. Lastly, all the compared methods
are executable on-chip (with [4] being originally tested with
additional hardware and tester capabilities).

The proposed approach does not require additional hardware
in the DUT. It is also compatible with BIST-based memory
tests, as well as the CPU-based ones. Moreover, the proposed
approach can be used in conjunction with the methods [7] and
[11] by dynamically switching to the compression approach
when the available dedicated on-chip storage is running low.

A. SLAC Pixel structures

Each pixel is encoded into the on-chip memory as a struc-
ture that includes three parameters: x and y coordinates and
the number of faults. This approach allows the algorithm to
achieve the minimum possible used space by exploiting bit-
wise operators to manage the structure parameters. Each pixel
is represented using 4 Bytes in the following way (Fig. 4):

• 1 Byte, X pixel coordinate
• 1 Byte, Y pixel coordinate
• 2 Bytes, faults counter

Fig. 4: Pixel encoding structure

B. On-chip memorization of the encoded information

When a new fault is discovered and processed by the
proposed algorithm for compression:

• The corresponding pixel X and Y coordinates are identi-
fied. These two values are computed in the following way:

XPixel =

⌊
XFault

bitsPerP ixel

⌋
(1)

Y Pixel =

⌊
Y Fault

bitsPerP ixel

⌋
(2)

Where bitsPerP ixel corresponds to the pixel’s dimension
terms of number of bitlines or wordlines. XFault and Y Fault
represent the fault coordinate.

• The pixel with the corresponding X and Y coordinates is
indexed, and the counter used to represent the number of
faults is increased by one.

To optimize the algorithm’s speed, available memory has
been organized using a set-associative approach as in Bernardi
et al. [11]. Given a number of N sets, the allocated on-chip
memory for the diagnostic data is equally divided into N
portions. When a new fault is found, the corresponding pixel
is indexed using the X coordinate. The pixel location is used
to generate the set and tag in the following way:

SET = XPixel%N (3)

TAG =
XPixel

N
(4)



Each SET represents a different list that is indexed once a
new fault is found. A linear search is then performed over
all pixels already present in the selected SET , checking for
correspondence using the TAG.

For example, Fig. 5 depicts a memory composed of 16
bitlines and 12 wordlines. In this example, each pixel rep-
resented by a square composed of 2 bitlines/wordlines each
(bitsPerP ixel = 2). The red square represents a fault located
at coordinates X = 6 and Y = 1. Fig. 5 shows an example
of how the SET and TAG of the pixel are computed starting
from a given fault.

X = 6 XPixel = 3

Y = 1 Y Pixel = 0

SET = 1

TAG = 0

Fig. 5: Example of set and tag computation starting from a fault

Another important aspect is that a pixel is stored in the on-
chip memory only if there is at least one fault. The first fault
will trigger its creation. This approach can reduce the storage
used to the minimum, avoiding storing useless information.

Fig. 6a represents a Bitmap on a memory bank using a
compaction algorithm [11]. This algorithm is based on encod-
ing and compacting faults while performing on-chip memory
verification. To reduce the used storage, faults are compacted
and encoded as contiguous slices. In this case, only a portion
of the memory could be represented due to the on-chip storage
limitation. Fig. 6b represents the same failing information using
our compression algorithm. The compressed bitmap allows to
overcome the storage limitation. Each square corresponds to
128 wordlines and 128 bitlines and has been colored if the
portion has at least one fault.

(a) Bernardi et al. (b) Proposed

Fig. 6: Bitmap on one single bank with sparse faults, presenting
a topological failings pattern towards the right

Fig. 7 shows a zoomed version of the example in Fig. 6
reconstructed starting from the data produced by the algorithm
of Chen et al. [4]. The resolution was set to the maximum
allowed to represent the entire memory in the dedicated on-chip
memory reserved for diagnostic information. The red dots in the
picture represent faults, while the blue dots represent the area in
which the presence of faults is uncertain. For this uncertainty,
Chen et al. method is unsuitable for characterization studies,
where the topological fault distribution is the most crucial
parameter for designers and technology experts.

Fig. 7: Example of reconstructed memory using Chen et al.
algorithm

C. Color gradient for visualization

To better visualize the generated pixels, we developed a
post-verification tool that creates a colored representation of
the memory under test. This tool runs offline on the tester or
on an external computer after collecting the pixels from the
DUT. The corresponding color depends on the number of faults
represented by the pixel. A naive approach would be to divide
multiple ranges of faults and assign each to a different color.
The problem with this solution is that the entire spectrum must
be manually assigned. To overcome this limitation, the value
is mapped into the three RGB components. Each pixel that
has at least one fault is color mapped using three different
sine functions, centered respectively at 0.0, 0.5, and 1.0 in the
following way:

RED sin(π · faultsnorm − π

2.0
) (5)

GREEN sin(π · faultsnorm)

BLUE sin(π · faultsnorm +
π

2.0
)

Where faultsnorm refers to the normalized number of faults
with respect to the maximum number of representable ones by
a pixel (on turn dependent by its dimension):

faultsnorm =
faultscount − 1

faultsmax
(6)

Value of faultsmax can be offline trimmed to highlight better
topological patterns that appear with higher or lower faults.

The plot of the three sine functions is available in Fig. 8.
Coloring examples are depicted at Fig. 9.

The post-processing function is applied offline once the fail-
ing information have been downloaded from the test machine.
A different color schema can be applied depending on the
needs, making this approach even more flexible. In the shown
case, the higher the fault density, the more red the pixel will
be. A lower number of faults will make the color bluer.

IV. EXPERIMENTAL RESULTS

This section shows our experimental results collected with
the proposed compression algorithm using an Automotive SoC
device made by Infineon.

The following results are collected while characterizing
the eMemories sense amplifier’s reference current. In our
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Fig. 8: Mapping function from pixel difference to RGB com-
ponents

Fig. 9: Example of pixel coloring based on the percentage of
faults

experiments, we had a limitation of an embedded 24KB of
memory to collect diagnostic information from these tests. All
the results and pictures that will be shown are contained in
this integrated memory. Once this memory is saturated by
diagnostic information, the data logging stops leading to a loss
of information. The following results show the performance of
the various bit mapping algorithm with this memory limitation.

A. Data visualization

The following pictures illustrate how the same fault configu-
rations are exported and visualized using different approaches.
The main goal of our approach is to help designers and
technology experts visualize the failure density of their DUT,
so the main focus of this paragraph is to show how this density
can be discerned using different methods.

The following pictures have been obtained by gradually
shifting the reference current of the sense amplifiers, a standard
test performed during the characterization of new devices.

Fig. 10 shows the first of these current reference shifts
performed on a single bank of the memory under test. In
this picture, there is a comparison of three different diagnostic
data collection algorithms. In Fig. 10a the simple Landzber
bitmapping approach [7], in Fig. 10b the compaction algorithm
of Bernardi et al. [11] and in Fig. 10c the proposed compression
approach. As can be seen, by using A, identifying the most
fault-dense area is not immediate. Even a zoomed-out version,
centered on the most fault-dense zone, is challenging to analyze
and observe. This situation is slightly better for the compaction

algorithm in 10b, where the colors help identify the faults.
Using 10c, the topological distribution of faults is immediately
evident, indicating the most fault-dense zones on the top right
corner of the memory bank. In the following, we will keep the
Bernardi approach as a reference for a lossless algorithm.

(a) Landzberg (b) Bernardi et al. (c) Proposed

Fig. 10: Bit fail map visual comparison with slight reference
current shifting (increment #1)

Fig. 11 further increases the shift in reference current of the
sense amplifiers. The fault density is again more visible in Fig.
11b, showing the reconstruction of the bank with the proposed
approach. The algorithm of Bernardi et al. in Fig. 11a tries to
show the same information in a lossless compaction of the data
but is not able to represent the faults in the top left corner of the
bank that are starting to fail under the tighter reference current
constraints. The Bernardi et al. approach saturates the 24KB of
available memory to represent the fault information, reducing
the amount of helpful information that reaches the ATE at the
end of the test.

Fig. 12 and figure 13 clearly show that the lossless approach
cannot give helpful information about the fault happening in
the memory under test. The 24KB limit is reached when just a
portion of the total faults are discovered, and a vast percentage
of memory is not represented at all. On the other hand, the
proposed algorithm can correctly represent all the faults in the
memory, albeit in a compressed manner.

(a) Bernardi et al. (b) Proposed

Fig. 11: Bit fail map visual comparison reference current shift
(increment #2)

B. TIMING
In this section, the timing overhead of the various algorithm

is analyzed. The Landzberg approach is always the fastest
and will be used as the overhead computation reference. The
scenarios considered to make this consideration have a variable
amount of faults randomly distributed along the memory under
test. As shown in Table II, the overhead of Bernardi et al. and
the proposed approach grows with the number of faults found.
The overhead of the proposed approach is always lower than



(a) Bernardi et al. (b) Proposed

Fig. 12: Bit fail map visual comparison reference current shift
(increment #3)

(a) Bernardi et al. (b) Proposed

Fig. 13: Bit fail map visual comparison reference current shift
(increment #4)

the Bernardi et al. one, especially with the growing number of
faults. For example, at 5500 faults, the Bernardi approach has
a 14.63% of overhead, while the proposed stops at 9.60%.

Time overhead
(% wrt to Landzberg)

# Faults Bernardi et al. Proposed
100 2.33 2.28
250 2.67 2.48
500 3.02 2.67

1000 4.18 3.25
2000 6.81 4.48
4000 11.03 7.35
5500 14.63 9.60

TABLE II: Comparison between timings of various approaches
in a memory with randomly distributed faults (with % com-
puted over the overhead with respect to the Landzberg ap-
proach)

C. Memory requirements
This section is focused on the memory needed to represent

the various scenarios depicted in figures from 10 to 13. These
cases are taken from a real characterization step performed
by Automotive SoC manufacturers. The diagnostic information
collection limit is 24KB of on-chip dedicated memory. When
this memory is saturated, no additional data is saved, and the
related information is lost. It would be possible to notify the
ATE of the saturation, wait for it to download the 24KB, and
restart the logging. However, this communication with the ATE
would be unmanageable for fault-dense scenarios and cases of
multiple devices tested in parallel, such as in a mass production
environment. As seen from Table III, the case in Fig. 10 is
the only one in which all three analyzed methods can fit the
diagnostic data in 24KB of dedicated on-chip storage. The
Landzberg approach is already near this value, with a memory

requirement of 20.62KB. The Bernardi et al. approach requires
90% less with requirements of 2.19KB, a reduction of 90% with
respect to Landzberg. Finally, our proposed approach required
0.60KB, a reduction of 97% with respect to Landzberg and
of 72,6% with Bernardi et al. In the other cases, up to 13,
the lossless algorithms saturates the 24KB available, with the
proposed approach requiring only 4.68KB in the worst case.
For a visual comparison, Fig. 13 clearly shows the limitation of
the lossless approaches. With 24KB, only a tiny portion of the
memory is represented. In this case, our compression approach
can represent all the memory under test, with information about
the fault density in its various zone, invaluable information for
Automotive SoC manufacturers.

Size (KB)
Landzberg Bernardi et al. Proposed

Fig. 10 20.62 2.19 0.60
Fig. 11 24.0 24.0 1.82
Fig. 12 24.0 24.0 2.04
Fig. 13 24.0 24.0 4.68

TABLE III: Comparison between memory requirements of
various approaches

V. CONCLUSIONS
In this paper, we described a novel algorithm that compresses

the diagnostic information generated during the test of the
embedded memories of Automotive SoC devices. The shown
results were taken from a real device made by Infineon, and
they show the validity of our approach both in terms of
memory requirements and the usefulness of the collected data.
The proposed algorithm is particularly effective during device
characterization, where the topological fault distribution is the
most crucial parameter for technology experts and designers.
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