
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Collecting diagnostic information through dichotomic search from Logic BIST of failing in-field automotive SoCs with
delay faults / Bernardi, Paolo; Filipponi, Gabriele; Reorda, Matteo Sonza; Appello, Davide; Bertani, Claudia; Tancorre,
Vincenzo. - ELETTRONICO. - (2023), pp. 21-26. (Intervento presentato al convegno International Symposium on
Design and Diagnostics of Electronic Circuits and Systems tenutosi a Tallinn (Estonia) nel 03-05 May 2023)
[10.1109/DDECS57882.2023.10139670].

Original

Collecting diagnostic information through dichotomic search from Logic BIST of failing in-field automotive
SoCs with delay faults

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DDECS57882.2023.10139670

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2979773 since: 2023-07-14T09:29:19Z

Institute of Electrical and Electronics Engineers

Collecting diagnostic information through
dichotomic search from Logic BIST of failing

in-field automotive SoCs with delay faults
Paolo Bernardi, Gabriele Filipponi, Matteo Sonza Reorda

Politecnico di Torino, Italy
name.surname at polito.it

Davide Appello, Claudia Bertani, Vincenzo Tancorre
ST Microelectronics, Italy

name.surname at st.com

Abstract—Embedded nano-electronic devices have spread in
daily life over the past ten years. Chip and embedded system
manufacturing has thus become more challenging in recent years.

When safety-critical sectors like the automobile are considered,
addressing system anomalies and faults is crucial. Therefore, it
is necessary to develop and research innovative ways to maintain
high reliability in safety-critical sectors despite the complexity of
present Systems-on-Chip (SoCs).

In order to ensure high reliability, and be compliant with reli-
ability standards, designers started to add additional circuitry to
perform on-device tests. Built-In-Self-Test (BIST) is a technology
that allows to conduct exhaustive tests within devices and, most
importantly, without the need for external equipment. BIST can
detect faults by outputting a signature at test end, which can
be compared with a known value. Thus such known signatures
are key, and in case of a signature mismatch it is not trivial to
understand the root cause of the failure.

This paper proposes a methodology to find the first failing
pattern which causes the BIST’s signature to deviate and a way
to collect good signatures from in-field devices, at key on/off,
where BISTs are programmed and executed by the firmware at
maximum frequency for an industrial case study produced by
STMicroelectronics.

The transition delay fault model is the primary target for the
described work.

Index Terms—Logic BIST, MISR signature, Dichotomic search.

I. INTRODUCTION

Embedded nano-electronic devices have grown more com-
mon in people’s daily lives during the previous decade. Inte-
grated Circuits (IC) are already ubiquitous in everyday objects,
and the features required by ICs are becoming increasingly
demanding. As a result, chip and embedded systems have
become exceedingly sophisticated, broadening the surface of
undesirable behaviors and potential defects during regular
system operation.

When it comes to safety-critical sectors like automotive, it
is evident that resolving system anomalies and faults become
vital, as it is required to spot malfunctioning devices before
they can cause damage to the environment or people. Thus,
testing becomes required throughout the entire device’s life
cycle, beginning with manufacture and continuing during
normal mission mode.

Automatic Test Equipment (ATE), which incorporates a
command line interface and the ability to save patterns gener-
ated by Automatic Test Pattern Generation (ATPG) for usage

on the device’s multiple units, is now often used to undertake
test pattern operations. To accomplish this, the ATE must fulfill
memory and channel requirements capable of storing patterns
and meeting the number of interconnections necessary to apply
the patterns to the device’s inputs, which becomes exceedingly
costly. Because the rising complexity of today’s Systems-on-
Chip leads to a rise in the number of patterns and pins required
for the ATE, another testing technique was designed to deal
with the enormity of modern systems. Manufacturers began to
include into devices modules capable of self-testing, formally
named Built-In Self Test (BIST), without the need for any
external equipment [1]. BIST manages to execute exhaustive
testing using structural approaches and output a signature,
through a Multiple Input Signature Register (MISR), of the
test result after being programmed with meaningful parameters
such as the starting seed, amount of generated patterns, and
working frequency. The signature is computed on each BIST
cycle and compacted so that only the final one is visible after
the test, and thus to check for abnormalities, it is necessary
to compare it to a known one, generally referred to as golden
signature.

In modern SoCs, a module named Self-Test-Control-Unit
(STCU) exposes registers that enable software to schedule and
execute onboard BISTs, thus opening for in-field testing. In
the automotive field, assessing the reliability of the processor
is crucial, hence, in addition to the classic pre-sale test that
regards the manufacturing test flow [2] [3], the device is
checked while it is in the field to avoid the possible occurrence
of abnormal behavior. Such events usually are key on/off,
meaning when the vehicle is turned on and off.

Despite its benefits, BIST requires known golden values for
every potential parameter combination to be compared, and
determining the underlying cause of a signature mismatch is
difficult. The compacted signature loses information, and thus
determining the pattern that caused the signature to deviate
requires a significant amount of BIST execution and time.

For this reason, we propose a methodology for collecting
Logic BIST signatures extracted from the in-field devices at
key on-off, where BISTs are executed at maximum frequency
and programmed by firmware, and a methodology for iden-
tifying the first failing pattern, which holds key information.
Such information can be later exploited to perform a diagnosis
of the device [4]. The focus is primarily on detecting transition
delay faults, but stuck-at faults can also be addressed with an979-8-3503-3277-3/23/$31.00 ©2023 IEEE

expedient described later.
The experimental setup is based on an external tool that

sends commands to program, execute, and acquire results
from BISTs in the case of the study, an SPC58 automotive
SoC produced by STMicroelectronics. BIST experiments are
executed by firmware with variable parameters: the operating
system clock frequency and the generated pattern number
(PCS). The whole work can be applied to a real-world scenario
as it can be ported to devices in firmware.

The paper continues as follows. In Section II, the reader
is provided with the basics regarding Built-In Self Testing,
focusing on Logic BIST technology, its signature, the MISR,
and in-field testing. Then, the dichotomic search algorithm is
briefly discussed. Section III describes the proposed signature
collection approach, dichotomic search applied to MISR, and
how the memory is used to hold the needed data. In Section
IV, the experimental setup and results are shown. Section V
draws some conclusions.

II. BACKGROUND

This section briefly describes the foundation of what this
work stands on top. Firstly, BIST’s architecture is discussed,
which is the piece of hardware that enables in-field testing, and
in the case that the logic circuitry is tested reports the result in
the form of a compacted signature. The way such signature is
computed enables the dichotomic search algorithm to process
it, and thus is discussed secondly.

A. Built-In Self Test
Testing has gotten more challenging with the emergence

of Very-Large-Scale-Integration (VLSI) in the previous few
decades, as a result test creation and testing cannot keep
up with the rising complexity of devices. When considering
safety-critical sectors such as automotive, it is straightfor-
ward how much more complicated the situation is since
tight standards regulate reliability assessment. With increas-
ing operating frequencies, pin-outs, and prices, standard test
equipment (ATE) becomes unfeasible. To resolve these issues,
manufacturers began to incorporate auxiliary modules within
devices capable of self-testing from the inside without the
use of external equipment, hence enhancing reliability, named
Built-In-Self-Test (BIST).

The BIST approach initially addressed at [1], is frequently
utilized since it substitutes more sophisticated and costly
ATEs. Furthermore, BIST may evaluate complex devices with
highly interconnected components efficiently. Moreover, BIST
enables the user to test the circuit without device makers
exposing any information about its design, although it is
necessary for them to give the user instructions on how to
run the test and understand the findings.

The Unit-Under-Test (UUT) can be programmed to operate
in functional or test modes. When in test mode, the device’s
Primary Inputs (PI) and Outputs (PO) are disconnected, and
the BIST controller begins feeding patterns produced by
a Test-Pattern-Generator (TPG) into the device inputs. The
outputs are attached to an Output-Data-Evaluator (ODE) that
can detect if the intended signature matches the resulting one.
The ODE, which is often implemented using a Multiple-Input-
Signature Register (MISR), is updated on each BIST cycle,
resulting in a signature that depends not only on the current

test outputs but also on previous tests outcome. Thus there
is no need to compare each output with what would be the
expected one: it is enough to know the correct signature and
verify that it matches the one produced by the ODE.

BIST is called Logic BIST when the circuits being tested are
logic modules (LBIST). In general, its implementation consists
of the following modules:

• LBIST Controller which selects between test or normal
functional mode and handles the configuration of BIST;

• Pseudo Random Number Generator (PRNG) generates
patterns to apply to Unit Under Test (UUT);

• Multiple Input Signature Register (MISR) collects the
output signature obtained after the run of the BIST. The
signature is updated on every BIST cycle and depends on
previous and current test results.

The LBIST Controller can be further programmed with
meaningful testing parameters such as:

1) Pattern-Count-Stop (PCS): it instructs the TPG on how
many patterns need to be generated;

2) Initial seed of the PRPG for the BIST structure.
In order to detect failures in devices, it is possible to exploit

On-Chip BISTs. As described in [5], and [6], On-Chip LBISTs
run results can be collected for further usage in the field of
Silicon Life-Cycle Management.

B. In-field testing

Device manufacturing is not the final stage in the testing
cycle in safety-critical sectors. Devices must be checked during
their entire life cycle to retain their reliability. Because of this,
Silicon Life-cycle Management (SLM) has emerged as one of
the fields in which industries have concentrated over the past
few decades. Its primary goal is to gather as much valuable
data as possible and analyze it during its operational lifetime
to learn helpful information that will help to enhance device
operations [7].

The stage of the SLM, known as in-field testing, ensures
the reliability of SoC devices in their operating state. Meeting
the reliability requirements of numerous application domains
is becoming increasingly important. Rules and standards, such
as ISO 26262 [8], may explicitly mandate that fault coverage
estimates be provided for various degrees of safety, especially
when the system is used in specific safety-critical sectors. In-
field testing may be done during the device’s key-on/off events
or while the application is running, depending on the scope of
the application [9].

C. Dichotomic Search Algorithm

Dycothomic search is a well-known and researched Com-
puter Science algorithm [10] that finds an element in a
set by recursively choosing between two possible selections
(dichotomies) at each stage. A dichotomic search may be
thought of as following the edges of an implicit binary tree
structure until it hits a leaf, which can be seen as a goal or final
state. Given K, the set of all possible objects of cardinality k,
and a function f : K −→ {0, 1} which takes an object of the
set returns a boolean value of 0 or 1. Elements in the sets
must satisfy the rule described at Equation 1.

∀x, y ∈ K, x < y, f(x) = 0 =⇒ f(y) = 0 (1)

Given the prerequisites, finding a specific element within
the set is possible without the need to test every member in
the set but by applying dichotomic search. The algorithm is
described in Listing 1:

1 low = 0, high = k-1
2 while (high > low):
3 current = (high + low) >> 1
4 if f(current) == true: /* range from bottom */
5 low = current - 1
6 else: /* range from top */
7 high = current - 1

Listing 1. Pseudo code of dichotomy search algorithm.

The complexity of the algorithm relies on O(log2(k)) as
the total number of tested objects is logarithmic relative to the
cardinality of the given set.

In the proposed work dichotomy search is used for identi-
fying the first failing BIST pattern.

III. THE PROPOSED APPROACH

The proposed approach seeks to provide a mechanism
for finding the first failing pattern when an abnormal Logic
BIST’s signature, if compared to a known golden one, in
malfunctioning devices is reported. The goal is to propose a
mechanism to partially execute BIST runs to identify the last
BIST cycle executed correctly or the first failing BIST cycle,
thus adding meaningful information to the reported signature
and enabling better diagnosis. Moreover, if a golden signature
is missing, a way to collect it safely and restart the flow is
presented.

A mismatched Logic BIST’s signature at key on/off, means
a failure in the UUT’s logic during field operations and thus
needs further investigation to understand the root of the failure.

The flow, shown in Figure 1, starts with the vehicle exe-
cuting Logic BIST at key on/off (1), which at the test end
a signature is reported (2). If the signature is the expected
one, the vehicle can be safely driven and the loop repeats at
the next key on/off. Otherwise, if the signature mismatches, it
indicates that a pattern failed thus the vehicle is not safe and
further investigation is needed. Since the signature is computed
by compressing previous ones with new data, there are two
possibilities:

1) The last applied pattern made the UUT fail, which has
a probability of 1

#tested patterns ;
2) A pattern applied prior to the last one made the UUT

fail, propagating a wrong signature until the end.

In the latter case, multiple patterns can fail the UUT,
resulting in multiple signature corruption. Thus, the signature
reported at (2) lacks information, as it is impossible to assess
which pattern made the UUT fail, hence enabling limited logic
diagnosis investigations. In this scenario, the only possibility
for the diagnosis is to use the final signature.

Our approach enriches information about the signature by
finding the first failing pattern through dichotomic search
and saving it into the flash of the device (3, 4). This opens
up possible future logic diagnosis, which can reduce the
candidates list through information given by the first failing
pattern and thus be used to identify faults (5).

Tests are conducted at the maximum working frequency to
put more strain on the UUT and to better focus on delay
misbehaviors. Nevertheless, the proposed method must control
the speed to collect good BIST signatures at low frequencies.

A. Test flow

In the event of a Logic BIST’s signature mismatch, it is not
trivial to identify the first failing pattern. Since Logic BIST’s
signature is computed so that the previous data is used to
generate a new signature, thus propagating until the end, tests
need to be executed for every pattern until the searched one
is found.

In this work dichotomic search is used to obtain the first fail-
ing pattern in a failed device, which allows reducing the num-
ber of required tests in the domain of log2 (#total patterns).

Logic BIST’s signature satisfies all the dichotomic search
algorithm requirements previously described, subsection II-C,
and thus can be applied:

• Signature depends on the past ones, and thus a deviation
will propagate until the end of the test;

• Cardinality is the number of patterns generated, which
can be programmed through Logic BIST Controller;

Fig. 1. Flow of the proposed approach.

• The function needed, which takes a signature and outputs
a boolean value, is just the comparison between the
expected signature and the obtained one.

The test flow, pictured in Figure 2, is based on the capability
of BISTs to be programmed in steps, and in order to better
target delay faults, every BIST execution is done at maximum
working frequency.

Fig. 2. Simplified Finite State Machine (FSM) version of the logic to be
implemented for the proposed work.

The flow follows:
1) Start by executing Logic BISTs from firmware with the

maximum number of patterns #total at the maximum
frequency;

2) If the signature matches the expected one since the max-
imum number of patterns have been generated, every
pattern generated between 0x0 and #total patterns can
be marked as green, thus the test ends, and the device
is marked as good, as shown in Figure 3.

Fig. 3. In case the signature is good, test ends immediately.

3) If the signature mismatches, the dichotomic algorithm
starts by bisecting the range of patterns by program-
ming Logic BIST with half of the total patterns
#total patterns

2 . If the signature is wrong again, every
signature generated with a number of patterns between
#total patterns

2 and #total pattern is wrong and thus
can be marked as red without executing Logic BIST.

4) The flow continues by iterating the same logic as de-
scribed in Listing 1. It ends when no further dichotomies
can be distinguished, meaning, in this case, a single
number of pattern has been reached. Figure 4 describes
it.

Fig. 4. When the signature is wrong, dichotomic search can be applied. The
algorithm ends when two distinct dichotomies cannot be distinguished.

Golden signatures are loaded, if available, from a database
saved into FLASH memory. In the event of a signature
database miss a mechanism to extract the required signature
safely is executed. The methodology to capture a golden
signature and the flash memory layout is explained in the
following sections.

B. Golden signature computation
Logic BIST requires golden signatures for the comparison

to detect anomalies, as described in subsection II-A. As
reported in Figure 2, tests are conducted at high frequency
to better target delay faults, thus most likely corrupting the
final signature. In the event a golden signature is missing
from FLASH, it is possible to store it with the following steps
safely:

• Current test is suspended;
• Frequency lowered to a safer working BIST range;
• At self-test end the resulting signature is collected and

saved into FLASH and marked as golden;
• Initial test is finally restarted.
The frequency switch has the duty to lower the risks of

capturing into the signature a possible failure, thus corrupting
the result and later the comparison for the test.

This work focuses primarily on delay faults, yet dichotomy
search can still be applied to BIST’s signature in case stuck-at

faults are addressed: the mechanism previously proposed to
capture golden signatures from an in-field device needs to be
replaced by a pre-filled database of signatures because a stuck-
at will corrupt the signature no matter the working frequency.

However it is essential to underline that by observing the
bath curve [11] for device failure/aging, which states that faults
are more likely to occur at device manufacturing and after
heavy usage, and following Burn-In [3] to highlight production
failures, it is logic to assume that a failure shall first manifest
as a delay and then transform to a stuck-at. Nevertheless, this
work has the objective is to identify misbehaviours as soon as
they appear, hence delay coverage is a primary objective.

C. Data storage

The scheme of the memory layout, shown in Figure 5,
is divided into two regions: the golden region, which holds
golden signatures, and the failure region in which the first
failing pattern obtained through dichotomy search is saved.
The base structure of the regions comprehends:

• The index representing the number of patterns for the
test;

• The resulting Logic BIST’s signature.
Depending on the fault model being considered, the foot-

print changes.
For delay fault modeling, at device shipping, the structure

is empty and filled during device operation. Only the first
entry of the golden region is occupied with good devices,
as no anomalies have been detected. If Logic BIST detects
a fault, then all entries will be filled by dichotomy search,
and the entry in the failure region will hold the first failing
pattern or the last good. The number of entries depends on
how many dichotomies the number of patterns can be divided
#entries = log2(#total patterns) + 1.

Meanwhile, for stuck-at modeling, the golden region must
be pre-filled as no computation on golden signatures is done,
hence the number of entries is #entries = #total patterns+
1. Moreover, the index for the golden signatures is omitted,
as can derived as an offset from a FLASH base address.

Independently on the fault model being considered the
scheme must be replicated for every BIST partition.

Fig. 5. Scheme of the memory layout for the approach.

IV. AN INDUSTRIAL CASE OF STUDY

The case study used for validating the methodology is an
industrial automotive System-on-Chip belonging to the SPC58
family produced by STMicroelectronics. The Design under
Test (DUT) has the following characteristics:

• 20 million gates;
• About 700,000 flip-flops;
• ASIL-D compliant;
• Multi-core architecture;
• Powerpc-VLE compliant;
• Double cascade PLL system;
• 7 LBIST partitions;
• 92 MBIST partitions.

A. FLASH footprint
Each of the 7 Logic BIST partitions onboard offers 16

bits of programmable PCS, thus Logic BISTs are initially
programmed with a starting PCS of 0xFFFF , which is then
halved/adjusted by the dichotomic search on every iteration.

Every entry in the scheme described in subsection III-C is
80 bits wide: 16 bits for the index, 64 bits for the signature.
Depending on the fault model used, the footprint of the
FLASH changes. For delay modeling the whole structure
occupies 7 · 80 · (log2 (0xFFFF) + 1) = 9520bits or
∼ 9kb. Meanwhile for stuck-at model, as the index can
be omitted for the golden region, the structure spikes to
7 · 64 · (0xFFFF + 1) + 16 = 29360144bits or ∼ 29Mb.

Please notice that the methodology is very effective to
collect information about delay faults detection, which is
the primary objective of the paper. In case stuck-at faulty
behaviours needs to be considered, then a larger amount of
memory need to be assigned.

B. Code size and complexity
The presented work can be ported in firmware to devices.

Table I shows incremental code sizes starting from the base
system, adding the library needed to handle BIST from
firmware, and finally, implementing the proposed approach.
The logic of the work can be written in a high-level language,
like C, within ∼ 100 lines of code, and its complexity
depends on the total number of patterns as described by
O(log2 (#total patterns)).

System + BIST library + Implementation
Code size 127,568 136,304 136,912

Delta - 8,736 608

Table I. Incremental code size of the firmware implementing the proposed
approach.

C. Signature collection time
In the case of study, Logic BISTs programmed to test

concurrently the maximum number of patterns 0xFFFF take
up to ∼ 100ms to complete the self-test procedure, and at
self-test completion, the device asserts a functional reset of it-
self resetting the cores but the STCU, which enables signature
collection. Thus at key on/off, if the device is not faulty, only
one Logic BIST execution is necessary, hence, the duration
of the procedure is100ms. If the initial signature mismatches,
dichotomy search starts by executing Logic BISTs for a total
of 16 times with decreasing/raising number of patterns. At
worst, if the number of patterns that the dichotomy search
finishes at is 0xFFFF − 1, the time needed for the whole
execution is 100+

∑15
i=1

100·(2i−1)
2i ∼ 1500ms as the selected

dichotomy is always the upper one. While at best, the pattern
to be found is 0x1, meaning that the lower dichotomy is always

chosen ,then the time required is
∑15

i=0
100
2i ∼ 200ms. If

golden signatures are not present in the database, the execution
time will double, as for every execution a golden signature
needs to be extracted. Presented measurements considers BIST
time execution only, as FLASH erase and program operation,
even if done on every iteration, take respectively 0.0192ms
and 0.00475ms, thus begin negligible if compared to BIST
execution time.

D. Experimental setup
To validate the proposed approach, an experimental setup,

shown in Figure 6, was assembled, which includes:
1) The actual board with the SoC installed;
2) A programmable voltage regulator which powers the

SoC’s core;
3) An external tool that manages BIST parameters and

handles the serial communication with the board and
the voltage regulator.

Fig. 6. Full experimental setup.

BISTs are programmed and executed by firmware during
regular device operation. In order to do so, a Command Line
Interface (CLI) is programmed into FLASH of the SoC to
expose utilities for BIST operations.

The external software tool is the primary component that
coordinates Logic BIST experiments, implements dichotomy
search for the presented approach, and handles the commu-
nication with the board and the power supply. It is written
in C++17 for the back-end and exploits Microsoft Foundation
Classes (MFC) for the Graphical User Interface (GUI).

The programmable power supply manages the voltage to the
device’s core, and thus it is possible to raise/lower the voltage
of the core, mirroring a real in-field scenario with voltage
drops.

E. Experimental Results
Early results on the experimental setup show that the

proposed approach indeed works, and within a batch of devices
marked as failed with delay faults, three failures were observed
through the proposed approach, and the respective failing
pattern was extracted among the corresponding signature.

The data collection of Logic BISTs signatures in the ex-
perimental setup was done at the core reference voltage with
raising frequencies to find a better range to target delay faults.
The number of frequencies used depends upon a parameter
named ∆, which indicates the quantity by which frequency is
increased each time, equal to 10MHz.

Results are arranged in a matrix that reports on the ordinate
the device type, good or failed, and on the coordinate, the
frequency used to conduct tests. Every cell in the matrix is
colorized to visualize results better:

• GREEN: Logic BISTs reported a good signature at max-
imum programmed number of patterns;

• RED: Logic BISTs reported a wrong signature for every
programmed PCS by the dichotomic search;

• PURPLE: Dichotomic search found the first failing pat-
tern.

Devices marked as good reported no failure. Meanwhile,
three devices marked as failed reported failures at 200MHz
domain, and dichotomic search managed to retrieve the first
failing pattern for those tests.

Fig. 7. Matrix of the results captured from a batch of devices.

V. CONCLUSION

A methodology is proposed to collect Logic BIST signatures
from in-field devices at key-on/off. In particular, a way to
safely collect golden signatures and find the first failing pattern
when the initial signature mismatches through dichotomy
search. This data can be exploited to improve the diagnosis
of failures as test results are saved into the FLASH memory
and can be accessed anytime by manufacturers.

Future work will explore the programmable voltage regu-
lator to further stress the UUT, thus possibly capturing faults
not detected in normal device conditions. Running tests with
different pairs of frequencies/voltage are intended to better
reflect real-world events in which the vehicle may be involved.

REFERENCES

[1] N. Benowitz et al., “An advanced fault isolation system for digital logic,”
IEEE Transactions on Computers, vol. C-24, no. 5, pp. 489–497, 1975.

[2] I. Polian et al., “Exploring the mysteries of system-level test,” in 2020
IEEE 29th Asian Test Symposium (ATS), 2020, pp. 1–6.

[3] C. He et al., “Wafer level stress: Enabling zero defect quality for auto-
motive microcontrollers without package burn-in,” in IEEE International
Test Conference (ITC), 2020.

[4] W.-T. Cheng, M. Sharma, T. Rinderknecht, L. Lai, and C. Hill, “Sig-
nature based diagnosis for logic bist,” in 2007 IEEE International Test
Conference, 2007, pp. 1–9.

[5] A. Manzone, P. Bernardi, M. Grosso, M. Rebaudengo, E. Sanchez, and
M. Reorda, “Integrating bist techniques for on-line soc testing,” in 11th
IEEE International On-Line Testing Symposium, 2005, pp. 235–240.

[6] G. Filipponi, G. Iaria, M. S. Reorda, D. Appello, G. Garozzo, and
V. Tancorre, “In-field data collection system through logic bist for
large automotive systems-on-chip,” in 2022 IEEE International Test
Conference (ITC), 2022, pp. 646–649.

[7] R. Kashyap, “Silicon lifecycle management (slm) with in-chip monitor-
ing,” in 2021 IEEE International Reliability Physics Symposium (IRPS),
2021, pp. 1–4.

[8] “Iso 26262-[1-10], road vehicles – functional safety,” 2011.
[9] J. A. Abraham et al., “Special session 8b — panel: In-field testing of

soc devices: Which solutions by which players?” in 2014 IEEE 32nd
VLSI Test Symposium (VTS), 2014, pp. 1–2.

[10] D. Knuth, “Sorting and searching: The art of computer programming,
vol. iii,” 1973.

[11] G. Klutke, P. Kiessler, and M. Wortman, “A critical look at the bathtub
curve,” IEEE Transactions on Reliability, vol. 52, no. 1, pp. 125–129,
2003.

