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Probability, Typicality and Emergence in

Statistical Mechanics

Sergio Chibbaro, Lamberto Rondoni and Angelo Vulpiani

January 23, 2021

Abstract

The relevance of probability theory is obvious in a subject called “Sta-
tistical Mechanics” (SM). On the other hand, SM arose as a microscopic
description of single objects made of many (invisible) parts, thus justify-
ing from an atomistic point of view the laws of thermodynamics. As a
matter of fact, experimental measurements of thermodynamic quantities
are conducted on a single system of interest, hence a fundamental prob-
lem arises in connecting probabilistic computations, e.g. the averages over
ensembles of identical objects, with experiments.

One of the most evident aspects of macroscopic phenomena is that
they are characterized by a clear trend in time, that cannot be reverted.
On the other hand, our understanding of microscopic dynamics is that
they are reversible in time. With the aid of analytical computations on
stochastic systems, and of numerical simulations of deterministic Hamil-
tonian systems, we illustrate basic features of macroscopic irreversibility,
thus of the microscopic foundations of the second principle of thermody-
namics, along the lines of Boltzmann’s kinetic theory. It will be evidenced
that in systems characterized by a very large number of degrees of free-
dom, irreversibility concerns single realizations of the evolution processes,
in the sense of the vast majority of the far-from-equilibrium initial condi-
tions. That the vast majority out of a collection of realizations of a given
process shares certain properties is often referred to as typicality.

1 Introduction

Statistical mechanics originates in the study of the properties of macroscopic
bodies, i.e. of objects made of very large numbers of microscopic particles (atoms
or molecules) whose dynamics follows mechanical laws, that are classical or
quantum, depending on the case [LL80, Ma85]. One may formally write these
equations for all the particles in the system, and may in principle solve them.
However, the number of degrees of freedom, hence of equations to solve, is huge
and, in addition, the initial conditions are not known, therefore the solution of
this problem is impossible in practice. At the same time, knowledge of positions
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and velocities of all the particles, which amounts to endless tables of numbers,
is not particularly informative, if one is interested in temperature, pressure,
elasticity, magnetization etc. This impossibility is hardly any concern.

On the other hand, whether the microscopic motions are very complicated
or not, whether they are known or not, we observe that the macroscopic be-
haviours are relatively simple and understandable in terms of a reduced number
of “observables” following relatively simple laws. In SM, the observed macro-
scopic simplicity, in spite of the expected complexity of the microscopic motions,
is attributed to the statistical nature of the macroscopic laws, which reduces the
complexity by averaging over the many degrees of freedom. The result is not
purely mechanical [LL80, Ma85, CFLV08], and qualitatively differs from merely
mechanical laws. That is why probabilities constitute the fundamental tool
of SM. Their usage in physics has been pioneered by the founding fathers of
SM, Maxwell, Boltzmann and Gibbs, who changed the very idea of the term
prediction in physics and, as a consequence, in philosophy as well.

Given that this subject is one and a half century old, why should we discuss
it today? In our opinion there are at least three good reasons for that:

(a) The subject is of interest by itself, both for scientists and philosophers,
since it it exemplifies how a new phenomenon may emerge from the typ-
ical behaviour of a lower level one. In particular, the relation between
microscopic and macroscopic laws is paradigmatic of how reductionist ap-
proaches to complex phenomena in many branches of science are prone to
failure [CRV14a, CRV14b, B94, B02].

(b) The subject is pedagogically relevant: with respect to other appealing
but rather speculative frameworks, like ecology or cosmology, it allows
a concrete discussion of the main conceptual issues concerning the link
between different levels of description of a given reality.

(c) The subject is important in the development of current technology: for
instance, challenging frontiers for the applications of statistical physics
are provided by systems with a small number of degrees of freedom, far
from the thermodynamic limit, such as those of interesting in bio- and
nano-technologies. Another frontier is given by non Hamiltonian models,
which are considered appropriate in the description of granular materials,
active matter, epidemics, etc. In these cases, one or both of the origi-
nal assumptions of SM, namely the very many degrees of freedom and
the Hamiltonian dynamics, are absent. Therefore the foundations and
applicability of the theory have to be scrutinised [Ma85], in the light of
a presumably even higher relevance of probabilities than in the original
framework of SM [Z05].

The relevance of probability theory for SM stems from the original idea of Boltz-
mann, who associated macroscopic (thermodynamic) quantities to averages of
mechanical observables of the microscopic constituents of matter. In particular,
he adopted frequency of events as the basic notion of probability [VCCPV, G01].
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In Boltzmann’s SM, probability has no relation to measures of ignorance or un-
certainty,1 and it does not make any use of collections of identical objects.

This is part, instead, of Gibbs approach to SM, in which averages are com-
puted with respect to probabilities that represent how the microscopic phases of
large ensembles of identical objects are distributed in their phase spaces. This
corresponds to the classical notion of probability, which differs from the frequen-
tist notion, but it is commonly expected be equivalent to that. As computations
of time-averages are much harder than ensemble calculations, one commonly ac-
cepts ergodic hypothesis, which amounts to such equivalence, and proceeds as
prescribed by Gibbs. Therefore, a question arises about the link between the
probabilistic computations of SM, and the results of laboratory experiments,
which are conducted on a single realization of the macroscopic object under
investigation.

In our opinion, the main theoretical issue to be addressed, in order to answer
this question is the justification of typicality, i.e. of the fact that time averages
of macroscopic quantities in the evolution of a single system are very close to
averages of that quantity over ensembles of microscopically distinct but other-
wise identical replicas of that system [G12]. This fundamental property can be
seen as emergent in the proper limits.

To convince ourselves that this is not a hopeless project, we may refer to
one of the best propositions used to link probability and physics, the Cournot’s
principle:

An event with very small probability will not happen.

Actually, this statement may be associated with the one in Jakob Bernoulli’s
celebrated book Ars Conjectandi (1713), which reads:

Something is morally certain if its probability is so close to certainty that short-
fall is imperceptible.

We do not enter the debate about the validity of such a principle, see [SV01] for
a nice analysis of it. However, we recall that eminent mathematicians, such as P.
Levy, J. Hadamard, and A.N. Kolmogorov, considered the Cournot’s principle
as the only sensible connection between probability and the empirical world.
That connection granted, Levy stressed the concrete character of probability,
arguing that, at the ontological level:

Probability is a physical property just like length and weight.

In this chapter, we shall explain how macroscopic laws emerge as statisti-
cal laws from the microscopic ones: in passing from the microscopic realm to
the macroscopic one, novel properties arise, which are alien to the microscopic
realm. In summary: (i) we first illustrate the main ideas of Boltzmann, and
the entailing ergodic hypothesis for systems made of very many degrees of free-
dom. Then, we will analyse some examples with regard to irreversibility and
typicality: (ii) to this purpose, the Ehrenfest model will be used. This is a

1This inspired a whole branch of mathematics, known as ergodic theory, which represents
one way of introducing probabilities in the analysis of the otherwise rigidly deterministic
dynamical systems.
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stochastic process concerning N non-interacting particles, and it can be rig-
orously analysed, showing that, in the N → ∞ limit, irreversible behaviours
characterize almost all realizations of the process; this will be followed by (iii)
numerical simulations of single systems made of many particles, showing their
irreversibility.

We note that conceptually a stochastic process is fundamentally different
from the deterministic reversible dynamics of Hamiltonian particle systems.
Nevertheless, it can be rigorously proven that particular deterministic systems
can be mapped into stochastic processes, and when that is not the case, the
presence of chaos in interacting particle systems effectively amounts to a cer-
tain degree of dynamical randmness. Assuming that this is the case for systems
of interest, as it has been repeatedly demonstrated in the literature, and as we
will also show, the stochastic process we consider turns useful because it allows
a pregnant quantitative analysis of the onset of typicality in the large N limit.

2 Probability and real world

Discussing the foundations of SM necessarily starts with the two seminal con-
tributions given by Boltzmann [C98, G01]:

I. the use of probabilities in the calculation of physical quantities;

II. the link between microscopic dynamics (mechanical laws) and macroscopic
properties (thermodynamics).

The second is formalised by Boltzmann’s celebrated relation

S = k lnW . (1)

where S is the entropy of a given state, and W is number of possible micro-
scopic configurations corresponding that macroscopic state. In the Hamiltonian
dynamics picture, this number is then identified with the phase space volume
occupied by the relevant microscopic phases. For a system of N particles each
with d degrees of freedom, a microscopic phase is a 2dN -dimensional vector,
Γ = (Q1, P1;Q2, P2; ...;QN , PN ), whose components are the d-dimensional co-
ordinates Qi and momenta Pi, i = 1, ..., N of all particles. The volume in the
phase space is thus defined for a fixed energy as

W (E, V,N) =
1

N !h3N

∫
δ(H(Q,P)− E)d3NQd3NP , (2)

where h is the 2d-dimensional volume of a small cell, that we may think refers
to a single particle [LL80].2

From a philosophical standpoint, Eq.(1) plays the role of a bridge law [CRV14a],
connecting the atomic level to the macroscopic one, and constitutes the funda-
mental ingredient of SM, that justifies all its applications to condensed matter
physics and chemistry.

2The use of the symbol h should not lead to believe that quantum effects are taken into
consideration. In the present picture, quantum mechanics plays no role.
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Linked to point I is the ergodic hypothesis, which connects dynamics and
probability. This is done as follows. Consider a macroscopic object of N inter-
acting particles each with 3 degrees of freedom, and let the microscopic state
be described by X ∈ R6N . A measurement of some macroscopic quantity, for
instance the pressure, is supposed to last much longer than the molecular time
scales, and the result of the measurement is taken to be the time average over the
measurement time T , of some mechanical property that is function of X. The
measurement tool is therefore said to effectively compute the following quantity:

ĀT =
1

T

∫ T
0

A(X(t))dt . (3)

In principle, the computation of ĀT requires the initial condition X(0), and
the determination of the time evolution following from that initial phase, X(t).
Given that X(t) represents the complete microscopic motion, this is surely be-
yond any human capability.

Boltzmann’s ingenious idea to overcome this difficulty, i.e. the ergodic hy-
pothesis, is to replace the time average with a suitable average on the the phase
space. He assumed that

lim
T→∞

1

T

∫ T
0

A(X(t))dt =

∫
A(X)ρ(X)dX , (4)

where ρ(X) is the suitable probability density. The sense of this hypothesis
is that the physically relevant but impossible computation of the time-average
can actually be turned into a (generally exceedingly simpler) probabilistic com-
putation. In particular, if the ergodic hypothesis is assumed to be valid, it is
easy to derive also the canonical Boltzmann-Gibbs distribution for a system
which exchanges energy with an external environment, and then deduce the
corresponding thermodynamics. If successful, this process achieves the goal of
SM.

The issue is now whether the ergodic hypothesis is valid or not in the cases of
physical interest. Unfortunately, many numerical investigations, starting from
the FPUT (Fermi, Pasta, Ulam and Tsingou) work [G07] on chains of non
linear oscillators, as well as rigorous mathematical results, notably the KAM
(Kolmogorov, Arnold and Moser) theorem on non integrable systems [D14],
show that the ergodic hypothesis does not hold rigorously in the form given
above, if generic functions of phase A are considered. One could, thus, naively
conclude that ergodicity cannot be taken as central in the foundations of SM,
and that it could even be misleading. As a matter of fact, one finds that the
ergodic hypothesis cannot be so lightly discarded. Indeed, it turns out that:

(a) the Boltzmann-Gibbs probability distributions (the classical ensembles)
are valid;

(b) molecular dynamics gives correct results, being generally based on the er-
godic hypothesis.
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To understand these facts, one may recall the original Boltzmann’s reasoning,
that has since been considered the standard explanation of the success of the
ergodic hypothesis [LL80, Ma85]. even though it has been variously challenged
in time [B96, G05]. That reasoning has been made mathematically rigorous by
Khinchin [K49]. In a nutshell, Khinchin’s argues that the ergodic hypothesis is
“practically” true, as far as physical phenomena are considered, if

• N � 1;

• suitable observables are selected;

• one allows for failure of (4) in a small region of the phase space.

Khinchin proved that, for the class of separable sum functions defined by

f(X) =

N∑
n=1

fn(qn,pn), (5)

where each fn represents a single particle contribution, the following holds

Prob
( |δf(X)|

N
≥ c1
N1/4

)
≤ c2
N1/4

(6)

where c1, c2 are constants, and δf(X) is the difference between the time average
starting at X and the average value computed in the microcanonical ensemble.
It is worth noting that many interesting microscopic functions of phase are sum
functions, like kinetic energy, the momentum etc. Then, Khinchin considered
non interacting systems, whose energy (Hamiltonian) is expressed as

H =
∑
n

h1(qn,pn). (7)

where each h1 term is the energy of one particle. That is a serious limitation
of the approach, but Mazur and van der Linden generalised Khinchin’s result
to the physically more interesting case of (weakly) interacting particles[ML63],
whose hamiltonian can be written as

H =
∑
n

h1(qn,pn) +
∑
n,n′

V (|qn − qn′ |) . (8)

In brief, it has been proven that, although the ergodic hypothesis as formulated
above is not generally rigorously true for physically interesting systems, it re-
mains valid for physically relevant observables of a wide class of systems made
of very many particles. Indeed, in this case, violations of the hypothesis are
restricted to negligibly small regions of phase space, in which the system may
fall with a probability of order O(N−1/4), that vanishes in the N → ∞ limit,
but is definitely irrelevant “already” for 1024 particles.

The main ingredients of this reasoning are the large value of N , together
with the fact that one only needs to consider a special class of phase functions.
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This makes by and large marginal the role of the details of the microscopic
dynamics, apart from the fact that it must preserve phase space volumes, like
Hamiltonian dynamics does.

One consequence of having a restricted set of observables and and very large
N , is that one may separate different space and time scales. The fact that
N � 1 implies that particles are much smaller than the macroscopic body they
constitute. Moreover, when these particles are allowed to move almost freely in
space, thanks to their weak interactions, their mean-free path λ has also to be
much smaller than the characteristic macroscopic length L of the object they
belong to. Such distances can then be associated with the corresponding time-
scales, i.e. the times needed to cross them with the particles average velocity.

The separation of scales is fundamental for the emergence of novel phenom-
ena, when passing from one level of description to another [B94, K13, D15].
Indeed, it is required for spatial correlations to be negligible over distances that
are very small on the macroscopic scale, which is the basis for quantities such
as the internal energy, the entropy etc. to be extensive, as observed in ther-
modynamics. Moreover, the separation of time scales allows the realization of
local thermodynamic equilibrium in sufficiently short times, that the average
performed by a measurement appears to account for all the possible values the
observable of interest can take. Consequently, the initial condition is irrelevant,
and the ergodic hypthesis is vindicated.

That is the content of the condition known as typicality, which states that
extensive observables will stay close to their mean value; and we now see that
such a condition is better established if the number of particles is larger. There-
fore, in this framework, the “atypical” behaviours can be considered of vanishing
probability when dealing with macroscopic objects, in agreement with thermo-
dynamics, that is deterministic and excludes them.

We conclude this section noting that while the approach illustrated above
provides a convincing basis for the applicability of SM to the description of
macroscopic objects, it does not cover the whole spectrum of relevant problems.
In particular, given a generic initial condition, and an observable O, estimates of
the minimum value of the measurement time T , such that ŌT ' 〈O〉, are hardly
available. This problem has been widely investigated since the FPUT numerical
experiment, in which the 1-dimensional nature of the system hinders the decay
of various kinds of correlations, making the local thermodynamic equilibrium
hard to establish [G07]. While this does not allow a direct connection with ther-
modynamics, it does not prevent the use of SM, which in this respect generalizes
the macroscopic theories to small systems, like 1-dimensional systems must be.

2.1 Statistical mechanics as statistical inference?

As argued above, we believe that Boltzmann’s justification of SM, based on the
large number of degrees of freedom and on typicality, is conceptually satisfactory
when dealing with the mergence of macroscopic phenomena from microscopic
dynamics. Nevertheless, there exists a radical anti-dynamical point of view
which takes SM as a mere form of statistical inference, and not like a theory of
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objective physical reality.
This view is philosophically pragmatic and anti-realistic, and it implies that

probabilities measure the degree of truth of a logical proposition, rather than
describing the state of a given material object. This approach has become quite
fashionable in the framework of “complex systems”, and can be traced back to
the work of Jaynes [J57], who expressed this idea through the maximum entropy
principle (MaxEnt): a general rule for finding the probability of a given event
when only partial information is available. In a nutshell, the principle proceeds
as follows: given the expected values ci of m independent functions fi, defined
on a space of coordinates x, a probability distribution ρ is constructed, in such
a way that

ci =

∫
fi(x)ρ(x)dx ≡ 〈fi〉 i = 1, ...,m . (9)

As the name anticipates, the construction proceeds by maximisation of a formal
entropy function H, under the constraints (9), which is thought to generalize
the Gibbs entropy [G06, CFLV08]. In practice, using the Lagrange multipliers
procedure, the probability density ρ is obtained maximising

H = −
∫
ρ(x) ln ρ(x)dx, (10)

under the constraints ci = 〈fi〉. One then obtains:

ρ(x) =
1

Z
exp

m∑
i=1

λifi(x) , (11)

where the parameters λ1, .., λm depend on the values c1, ..., cm. This approach
may indeed be applied to the statistical mechanics of systems with a fixed
number of particles; for instance, fizing the value of the mean energy leads
to the usual canonical Gibbs distribution in a very simple and elegant fashion
[P11, U95]. Therefore, the MaxEnt appears as a cornucopia, out of which one
can extract in a straightforward way the main results of SM.

This conceptual issue deserves a critical discussion. Indeed, the interest
of such an approach comes from the fact that most phenomena of scientific
interest, notably the biological phenomena, lack a reliable theory, while there is
good amount of data concerning them. Two difficulties immediately arise:

(a) the ancient saying “ex nihilo nihil” continues to be appealing;

(b) unperformed experiments have no results.

In this respect, a caustic, but insightful example was conceived by Shang-Keng
Ma [Ma85]:

“How many days a year does it rain in Hsinchu?” 3 One might reply “As there
are two possibilities, to rain or not to rain, and I am completely ignorant about
Hsinchu, therefore it rains six months in a year.”

3Hsinchu is a chinese city on the Pacific ocean.
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The important point Ma wants to make is that it is not possible to infer some-
thing about a real phenomenon, thanks to our ignorance. As recalled in the
previous section, probability in SM is used in relation to objective frequencies,
it is the ratio of numbers extracted from concrete observations. In the MaxEnt
framework, it is instead related to the degree of uncertainty or of our ignorance
about an event: lack of knowledge is used to produce kowledge.

Apart from these very general considerations, the weakest technical aspect
of the MaxEnt approach is its dependence on the choice of the variables needed
to represent a given phenomenon. Tis fact can be understood as follows. Given
a property X, whose values x are distributed according to the probability den-
sity ρX , one realizes that the “entropy” HX = −

∫
ρX(x) ln ρX(x)dx is not an

intrinsic quantity of the phenomenon X, hence it is unclear how H can char-
acterize X. For instance, changing parametrisation, i.e. using the coordinates
y = f(x) in place of x, where f is an invertible function, the entropy of the
same phenomenon turns:

HY = −
∫
ρY (y) ln ρY (y)dy = HX +

∫
ρX(x) ln |f ′(x)|dx . (12)

Therefore the MaxEnt gives different solutions if different variables are adopted
to describe the very same phenomenon. In order to avoid this unacceptable
condition, Jaynes later proposed a more sophisticated version of the MaxEnt,
in terms of the relative “entropy”:

H∗ = −
∫
ρ(x) ln

[ρ(x)

q(x)

]
dx , (13)

where q is a known probability density. H∗ at variance with the entropy H,
does not depend on the choice of variables. Nonetheless, H∗ now depends on
the distribution q, hence the problem is merely shifted toward the selection of
such a probability density, which is analogous to the problem of choosing the
proper variables.

For instance, knowledge of the mean energy and taking a uniform distri-
bution, say q = const, leads to the correct Gibbs distribution, but this q is, in
principle, either a totally arbitrary choice, or it amounts to an a priori knowledge
of the correct result. Analogoulsy, while the correct variables for the description
of equilibrium thermodynamic systems are well known, because they concern
comparatively very simple phenomena, which have been investigated for very
long, the same cannot be stated about generic systems, such as the complex ones
for which the MaxEnt principle is supposed to provide a theoretical framework.

In conclusion, even the second, more elaborate method, is not truly pre-
dictive. Therefore, although the MaxEnt principle can be considered a neat
and elegant way of deriving Gibbs-like probability distributions, when they are
known to apply, we see no reason to found SM on it. Presumably, it may be
useful to gain insight on a given phenomenon, in the absence of informed guiding
principles, to be tested together with other alternatives, but one should keep in
mind that it may lead into error, since Gibbs-like probability distributions are
not generic, not even in relatively simply physical phenomena [ARV17].

9



3 The old debated problem of irreversibility

Typicality, which we have first discussed in the case of equilibrium systems, plays
an important role also in the case of irreversible non-equilibrium phenomena.
To illustrate this fact, let us begin with two simple observations:

(a) microscopic mechanical laws are invariant under time reversal:

t→ −t , q→ q , p→ −p . (14)

(b) the macroscopic world is described by irreversible laws, e.g. the Fick equa-
tion for the diffusion of a scalar concentration C

∂tC = D∆C , (15)

where D is the diffusivity of the scalar.

The question thus arises: is it possible to derive macroscopic (irreversible) equa-
tions starting from a microscopic (reversible) description [L93]?

This fundamental question constitutes the core of the objections raised by
Loschmidt and Zermelo about Boltzmann’s celebrated H-theorem, which de-
scribes an irreversible evolution from non-equilibrium toward equilibrium states
[H09]. Loschmidt tackled directly the issue of reversibility, while Zermelo ap-
plied Poincaré’s recurrence theorem, that shortly earlier had been demonstrated.
The theorem states that, given a conservative system, like the newtonian ones
we consider, and an initial condition in its phase space, the entailing evolution
will sooner or later come back arbitrarily close to the sarting point. In other
words, there is “recurrence”. Therefore, if a function of phase increases for a
while,4 sooner or later it has to decrease; which apparently means that the sec-
ond law of thermodynamics cannot be derived from the newtonian dynamics of
a system made of N particles.

Beside technical points, Boltzmann rapidly understood and refuted Zer-
melo’s mathematically correctly formulated paradox, explaining the physical
content of his theory. First of all, one must realize that physics, like all mea-
surements one can perform, is about specific space and time scales. Then,
Boltzmann’s point of view was masterly summarised by Smoluchowski as fol-
lows : A process appears irreversible when the initial state has a recurrence time
which is long compared to the time of observation In fact, Zermelo’s paradox
is physically irrelevant because, as rigorously proven by Kac [K57] for ergodic
systems with N degrees of freedom, the recurrence-time goes like

〈TR〉 = τoC
N , (16)

where τo is a typical time, and C > 1 depends on the desired precision of recur-
rence. Therefore, the mathematcally correct Zermelo’s argument is physically

4Most notably the opposite of the H-functional taken by Boltzmann to mirror the entropy
of an isolated system.
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irrelevant because, given N for a macroscopic system, the corresponding recur-
rence time is unphysically and ridiculously huge: well beyond many ages of our
universe for just a cubic centimetre of air.

Loschmidt raised a subtler criticism, that requires more elaborate analysis.

3.1 Use and abuse of probabilities (ensembles) and en-
tropies

Gibbs ensembles are one of the cornerstones of SM, yet we believe that they
are often introduced in very unfortunate fashions. For instance, in standard
textbooks[] one can finds rather obscure statements, such as

“an ensemble is an infinite collection of identical systems”

Gibbs’ goal, who acknowledged Maxwell and Boltzmann for introducing en-
sembles [G06], was to use them in order to reformulate the Boltzmann’s proba-
bilistic approach based on the ergodic hypothesis. He then defined an ensemble
as an infinite (imaginary) collection of macroscopically identical systems, that
differ in their microscopic phases. Mathematically, such a collection could be
intuitively and efficiently represented by a distribution of points in the phase
space. The physical reasons behind the applicability of this idea have been
outlined e.g. by Fermi[F56].

He explained that an ensemble represents the microscopic states explored by
the dynamics of a single system, in the time taken by a measurement, but only
under some conditions. In particular, the transitions from microscopic state to
microscopic state must be much faster than the measurement.

Therefore, from the thermodynamic perspective, which is a deterministic
description of single systems, taking too seriously statistical ensembles may be
misleading and, in fact, a source of errors. Different is the case of systems
that are not of thermodynamic interest, for which probabilities may be the only
sensible information,5 which however we do not treat here.

Let us consider, for example, the entropy of a given system, and let ρ(X,t)
be a probability distribution of its microscopic states in the phase space. The
so called Gibbs-entropy is then defined as:

SG(t) = −kB
∫
ρ(X,t) ln ρ(X, t) dX = SG(0) . (17)

One may be tempted to think of the dynamics of the collection of ensemble
members described by ρ(X,t) as of the molecuels of a certain system, and their
evolution in phase space as the diffusion of molecules in real-space. However,
one should note that phase space is an abstract, exceedingly high-dimensional
space, that is totally different fro the 3-dimensional real space. Phase points

5When dealing with non-macroscopic systems, thermodynamics does not strictly apply.
This is the case, for instance, of Brownian particles immersed in a liquid. In this case, only a
probabilistic, ensemble, description appears interesting and feasible.
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are not molecules,6 hence the evolution of their density has in general no phys-
ical content at all. In fact, if the N particles of the system obey the Hamilton
equations of motion, the celebrated Liouville Theorem states that volumes in
phase space are conserved by the time evolution. An immeadiate consequence
of which is that the Gibbs entropy SG is constant in time[H09]. In other words,
while the Gibbs entropy correctly yields the equilibrium thermodynamic en-
tropy of the system, it does not represent the growing entropy of an isolated
nonequilibrium system: the Gibbs entropy is not a suitable SM counterpart of
the thermodynamic entropy.

To overcome this difficulty, many auhtors have introduced a coarse-graining
of the phase space, i.e. a partition of phase space made of cells of given small
size, say ε, and a corersponding coarse-grained version of the probability density
and of the Gibbs entropy. The probability for the microscopic phase to lie in
the i−the cell at time t is expressed by:

Pε(i, t) =

∫
Λε(i)

ρ(X, t) dX , (18)

and the corresponding coarse grained Gibbs entropy is defined by:

SG,ε(t) = −kB
∑
i

Pε(i, t) lnPε(i, t) . (19)

Then, unlike SG, the quantity SG,ε is not constant in time: it grows mono-
tonically, if ρ is not invariant, till a maximum is reached. But this success in
describig an evolving “entropy” is only apparent, and not real. One of the main,
far from unique, difficulties that this method faces is that the evolution of SG,ε
is not intrinsic, but depends on ε. Also, it has been proven that SG,ε does not
grow for a while: it remains constant up to a crossover time t∗ ∼ ln(1/ε), which
grows without bounds, when ε decreases [CFLV08, FPPRV]. Physically this
makes no sense; it is analogous to state that the heat generated by burning one
litre of gasoline depends on how accurately we observe the phenomenon, and if
we observe it very accurately, no heat is generated...

3.2 The H theorem

A physical framework in which macroscopic irreversibility emerges out of mi-
croscopic reversible dynamics is afforded by the celebrated H-Theorem, which
Boltzmann derived within the kinetic theory of gases. Here, one starts from the
one particle distribution function f(q,p, t), which represents the mass density
in the so- called µ- space, i.e. the space of a single particle coordinates and mo-
menta, which 6-dimensional for particles with 3 degrees of freedom. In the limit
of dilute monoatomic gas, with rather subtle assumptions, Boltzmann derived

6For instance, they have no extension and do not interact, while molecules occupy a certain
volume and interect with each other. Moreover, one phase point represents a whole N -particles
system, which something totally different from one of the N particles.
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the time evolution equation of f , which takes the form:

∂

∂t
f(q,p, t) +

∑
j

pj
m

∂

∂qj
f(q,p, t) +

∑
j

ṗj
∂

∂pj
f(q,p, t) = C(f, f) , (20)

where C(f, f) is a bilinear integral term which accounts for the (weak) interac-
tions among the particles. This equation implies that the quantity:

SB(t) = −H(t) = −kB
∫
f(q,p, t) ln f(q,p, t) dq dp (21)

constanty increases, until an equilibrium state is reached [H09]:

dSB(t)

dt
≥ 0 , where “ = ” holds only at equilibrium (22)

Boltzmann could then identify his entropy SB with the thermodynamic entropy
of an isolated dilute gas. Equation (22) is called “H-theorem”. The physical
content is that the second law of thermodynamics is obtained via SB , (21),
casting the laws of classical mechanics, which are reversible, into a suitable
probabilistic framework.

In addition to the recurrence paradox formulated by Zermelo, which we
have observed to be physically irrelevant, another paradox has been devised to
contradict Boltzmann’s approach and his H-theroem: the reversibility paradox,
usually attributed to Loschmidt 7. In fact, this paradox is mathematically
justified, like Zermelo’s paradox, and can be equally dismissed, as irrelevant for
the physics of macroscopic systems.

To understand that, let us recall the assumptions underlying the Boltzmann
theory. First of all, the number of particles N is very large. Then, the one
particle distribution function f(q,p, t) that is the main theoretical object in
the theory, can be seen as an empirical distribution function, concerning the
positions and velocities of the N particles, formally expressed by:

f(q,p, t) =
1

N

N∑
n=1

δ[q− qn(t)]δ[p− pn(t)] . (23)

Therefore,

(i) f(q,p, t) is a well defined macroscopic observable: the number density of
particles;

(ii) f(q,p, t) can be measured (e.g. in numerical simulations) and such a mea-
surement concerns the single system under investigation, made of the N
particles: there is no need to refer to the statistical ensembles.

7The content of the paradox is the following. Given that microscopic dynamics is reversible
in time, if we were able to reverse time, the dynamics should trace back its trajectory, and
therefore also SB should decrease.
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It has then been proven by Lanford that the microscopic Hamiltonian, reversible,
dynamics is not incompatible with the H-theorem[L81]. Indeed, given a hard-
sphere system; considering the Boltzmann-Grad limit, i.e. N → ∞, σ → 0 so
that Nσ2 → constant, where σ is the diameter of the particles; and starting
from an initial condition in a “good set”, one obtains that f(q,p, t) evolves as
prescribed by the Boltzmann equation, hence the H-theorem holds. In other
words, Lanford proved that

f(q,p, t) ' fB(q,p, t) , (24)

where fB(q,p, t) is the solution of the Boltzmann equation. This result holds
for a short time, which is a fraction of the mean-collision time, for N � 1 and a
typical X(0); but it is enough to prove rigorously that Hamiltonian dynamics,
in the proper limit, does not violate the Boltzmann equation, and one obtains
an irreversible behaviour from a microscopic reversible dynamics [L93, CRV14a,
CFLV08, CCCV16].

It is further worth noting that the validity of the H-theorem does not rest
on the details of the particles interactions, as long as they exert a short range
repulsion. This is important, from a physical point of view, since it means that
the result is quite general.

3.3 Again about entropies and probability

Although at first glance the Gibbs and the Boltzmann entropies look similar,
their dynamical conceptual and physical meaning, hence their behaviours are
totally different. Both entropies correctly describe equilibrium states, but the
Gibbs entropy is defined in terms of the very abstract notion of phase space
probability density or of ensemble, while the Boltzmann entropy is derived from
the very material property which is the number of particles of one concrete
system occupying a given spacial volume, with velocity in a given cube of the
velocity space. Therefore, some understanding of the connection between such
diverse entropies is desirable.

Roughly speaking, two main points of view are generally adopted: the sub-
jective and the objective interpretation of probability. According to the sub-
jective interpretation, probability is a degree of belief in something. One of
the most influential followers of such a view is Jaynes, who claimed that the
entropy of a physical system depends on the observers’ knowledge of it, or on
their (informed) belief concerning the phenomenon of interest. In the objec-
tive interpretation, the probability of an event is instead determined by the the
physics of the system of interest and not by the available or missing information.

This difference allows us to distinguish between thermodynamic irreversibil-
ity, and the relaxation of a phase-space probability distribution ρ(X, t) to an
invariant (constant in time) distribution, further clarifying that an abstract
ensemble must not be confused with a given macroscopic system. Indeed,
for dynamical system exhibiting a good degree of chaos, one commonly ob-
serves that ρ(X, t) converges in time to an invariant probability distribution,

14



ρ(X, t)→ ρinv(X). In other words, the ensemble averages of all phase functions
“irreversibly” converge to given values.

This is not the irreversibility the second law of thermodynamics speaks
about! In the thermodynamic case, the observables of interest of systems pre-
pared in the same way, evolve in the same fashion. If an enseble average con-
verges, the different elements of the ensemble, hence their observables, may
evolve in totally different and inconsistent ways. Again, this is a consequence of
the fact that phase-space points are not particles, and their probability density
is not a mass distribution. In the phase space, a single system is represented by
just one point and an actual experiment follows a single trajectory, not a cloud
of points from which a collection of different trajectories arises.

The physically relevant issue is that a single macroscopic system behaves
irreversibly and in a unique fashion, starting from a generic initial microscopic
state.

In summary, contrarily to some perhaps fashionable claims [PS79], there is
no direct link between the convergence process of probabilities in phase space,
and the thermodynamic irreversibility. For this reason, the only way to pursue
the program of SM for macroscipic objects is to take an objective approach to
probability, which is the Boltzmann framework. That does not diminish in any
way the importance of dynamical system theory in other problems [CFLV08],
even when the number of degrees of freedom is large[BJPV].

4 Typicality and irreversibility

The above discussion introduces the question of typicality, which is related to
the one raised by various philosophers of science, regarding the role of the micro-
canonical distribution (ensemble) in the description of constant energy (isolated)
systems. We argue that there are very good reasons to assign a privileged role
to the microcanonical ensemble, compared to other probability distributions,
that are equally invariant under the Hamiltonian evolution. This rather tech-
nical subject concerning deterministic dynamics, can be cast in a suggestive
framework, once it has been shown that the dynamics of interacting particles
does commonly and effectively result in a certain kind of randomness. We thus
illustrate the notion of typicality, and the connection between deterministic and
stochastic evolution with some examples.

4.1 Typicality in stochastic models

A popular model whose simplicity allows a neat discussion of typicality is the
well known Ehrenfest flea model [BCV19], that is jokingly referred to the fleas
that jump back and forth between two dogs. The model consists of a Markov
chain [G18] representing N “particles”, each of which can either be in a box
called A, or in another box called B. The state of the Markov chain at time t
is identified by the number nt of particles in A, and the evolution is ruled by a
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stochastic law, with given transition probabilities:

Pn→n−1 =
n

N
, Pn→n+1 = 1− n

N
.

dictating how the state nt = n changes in one time step to become nt+1 = n±1.
In our SM language, the state nt can be seen as the “macroscopic” state of the
system of interest, while the the corresponding “microscopic” configuration is
defined by the list of the particles lying in box A, considered as distinguishable
particles. The equilibrium (macroscopic) state is expressed by neq = N/2.

The evolution of an ensemble of initial conditions starting from a given state
n0 can be described computing not only the mean population 〈nt〉 but also its
variance σ2

t = 〈n2
t 〉 − 〈nt〉2. One obtains:

〈nt〉 =
N

2
+
(

1− 2

N

)t
∆0 , σ

2
t =

N

4
+
(

1− 4

N

)t(
∆2

0−
N

4

)
+
(

1− 2

N

)2t

∆2
0 , (25)

where ∆0 = n0−N/2. The main result is that 〈nt〉 → neq = N/2, exponentially
fast with a characteristic time τc = −1/ ln(1 − 2/N) ' N/2 and a standard
deviation σt that goes to its equilibrium value

√
N/2 with a characteristic time

O(N).
These results for 〈nt〉 and σt are obtained at the level of the ensemble, i.e.

as averages over the behaviour of all possible single N -particles (macroscopic)
systems obeying Eq.(25). What about a single macroscopic object, i.e. a single
realization of the process?
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Figure 1: Several realisations of the time evolution of the state of the Ehrenfest
flea model, nt, for N = 106. The coloured region corresponds to three standard
deviations from the running mean: 〈nt〉− 3σt < nt < 〈nt〉+ 3σt, from [BCV19].

Figure 1 illustrates the result of numerical simulations, showing that for large
N , the single object behaves “typically”. In more mathematical terms, one has:

Prob
(
nt '< nt > for any t ∈ [0, T ]

)
' 1 where T = O(N) , (26)
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Figure 2: Sketch of a determinisitc (Hamiltonian) model of a gas confined by a
piston.

which means that nt practically behaves as the average 〈nt〉 in almost all cases.
Consider now a far from equilibrium initial condition, e.g. n0 ' N . It is

possible to show that, for N � 1, up to a time O(N/2), i.e. as long as nt
remains far from neq, each single realization of nt stays “close” to the time
dependent average 〈nt〉. Indeed using tools of probability theory, one can show
[BCV19]:

Prob
( |nt − 〈nt〉|

N
< εN for any t ∈ [0, T ]

)
≥ 1− aN , (27)

with the quantities εN → 0, and aN → 0 as N → ∞. Taking εN ∼ N−B with
0 < B < 1/3, one has aN ∼ N−A with A > 0. For instance, B = 0.2 implies
A ≥ 0.2

That means that the overwhelming majority of realisations of the stochastic
process nt remains close to 〈nt〉 for a long time, if N is sufficiently large. In
other words, every macroscopic measurement on the systems has a very low
probability of resulting sensibly different from the expected value. This is the
conceptual meaning of “tipicality” in SM.

4.2 Typicality in large deterministic systems

The above, exactly solvable stochastic model, neatly quantifies the notion of
typicality, but it may appear inappropriate in one investigation concerning the
statistical properties of particle systems obeying deterministic equations of mo-
tion. The gap between the stochastic and the deterministic realm is however
bridged by standard deterministic particle systems, whose properties evolve as
erratically as they do in random processes.

Consider, for instance, a channel containing N particles of mass m, closed
by a fixed vertical wall on the left, and by a frinctionless piston of mass M on
the right[CCCV16]. The piston motion is determined by a constant force F and
by its collisions with particles inside the channel, see Fig.2 . The Hamiltonian
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Figure 3: X(t) vs. t for N = 1024,M = 50,m = 1, F = 150 and X(0) =
Xeq + 10σeq in a chaotic piston (a), and in a non chaotic piston (b). Red lines
represent X(t) for a single realization; black lines refer to the ensemble average
〈X(t)〉,[CCCV16].

of this system reads:

H =
P 2

2M
+
∑
i

p2
i

2m
+
∑
i<j

U(|qi − qj |) + Uw(q1, ...,qN , X) + FX ,

where U is the interacting potential among the particles, and Uw denotes the
interaction of the particles with the wall. In the case of point particles, U = 0
and Uw yields elastic collisions. Then, the dynamics is not chaotic, and it is
easy to find the “equilibrium” position of the piston, 〈X〉, and its variance σ2

X .
In presence of interactions, e.g. for interaction potentials like:

U(r) =
Uo
r12

, Uw = Uo
∑
i

1

|xi −X|12

the equations of motion can be solved numerically, and reveal one positive Lya-
punov exponent, i.e. chaos.

Figure 3 illustrates the irreversible behavior of the states X(t) of one chaotic
and of one non-chaotic instances of the piston model. Their initial conditions
X(0) are typical assuming a fixed X(0) which is far from equilibrium, which
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Figure 4: X(t) vs t, for initial condition X(0) = Xeq + 3σeq; N = 1024,M =
50,m = 1, F = 150 X(t) vs t in (a) and (b); N = 4,M = 50,m = 1, F = 150 in
(c), from [CCCV16].

are determined by the models parameters. In particular, the positions of the
particles are initially distributed uniformly in the interval [0, X(0)], while the
velocities initially follow a Maxwell-Boltzmann distribution at a temperature T
different from the equilibrium temperature Teq, so that |X(0) − Xeq| � σeq,
where the subscript eq refers to the equilibrium state.

The result is that the single trajectories are typical: although far from equi-
librium, fluctuations about the corresponding ensemble averages are small com-
pared to such averages, as in the case of the stochastic Ehrenfest model. This
supports the anticipated analogy between stochastic and deterministic systems,
both in the presence and in the absence of chaos, demonstrating that posi-
tive Lyapunov exponents are not required for the randomness associated with a
many particles system irreversible behaviour. As a matter of fact, the numeri-
cal results for our deterministic reversible dynamics look rather similar to those
for the stochastic Ehrenfest model, explicitly showing why irreversibility can
be understood as an emergent property of a single system under proper initial
conditions, when N turns sufficiently large[CCCV16].

These results should be contrasted with those of Fig.4, which reports the
behaviour of a small N system starting from an initial condition close to equi-
librium. It is well evident the absence of irreversible behaviour.
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5 Summary and conclusion

In this contribution we discussed the notion of irreversibility and its relation to
typicality, in the framework of the SM of macroscopic systems made of classi-
cal particles. We pointed out the dangers associated with an uninformed use
of probabilities in phase space, i.e. of statistical ensemble. The fact is that
the thermodynamic laws ruling the behaviour of macroscopic objects are de-
terministic and, for a given initial marcoscopic state, always lead to the same
evolution. Therefore, there is no need to average over ensembles of differently
evolving objects: in the case one really wants to perform such an avarage, the
results will be equal to that given by one of those objects. We then formalized
this fact with the notion of typicality which, for a macroscopic observable M ,
may be expressed as:

Prob
(
M(t) ' 〈M(t)〉

)
' 1 when N � 1 (28)

where Prob represents the fraction of phase space trajectories enjoying a given
property, and the property considered is that almost all trajectories separately
behave as the their average.

In our investigation, two examples have been analysed, in order to illus-
trate how typicality and irreversibility arise in the evolution of systems made
of many particles. The first is a stochastic process, known as the Ehrenfest flea
model, which is exactly solvable hence allows us to obtain analytical expres-
sions of the quantities of interest. While this is not a particle system like the
Hamiltonian systems considered by Boltzmann, it gives a clear picture of the
emergence of irreversibility in its large N limit. We have then investigated two
versions of a gas confined by a moving piston, which are in fact Hamiltonian
particles systems, and we have then shown that the stochastic and the deter-
ministic systems have totally analogous behaviours, confirming the relevance of
the stochastic description, in the case of large N . Finally, we have shown that
for small N irreversibility in a single system, in the sense of Eq.(28), does not
hold. Therefore, this is indeed and emergent property of the macroscipic realm.

Our results have been obtained under the following conditions:

1. the system is made of a very large number of particles, i.e. N � 1;

2. the initial condition is very far from equilibrium, meaning

• |n0 −N/2| �
√
N in the Ehrenfest model

• |X(0)−Xeq| � σeq in piston model.

As a final remark, let us observe that the notion of typicality we have asso-
ciated with the thermodynamic laws, pertains also to the Boltzmann approach.
It consists of an objective operation: counting the cases of interest, and realiz-
ing that, with no exception, they behave in the same prescribed way. However,
counting requires a finite number of objects. Ensembles, on the other hand,
refers to the probability of a continuum. This is one of the technicalities that
requires further investigation.
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