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Coevolutionary Dynamics of Actions and
Opinions in Social Networks

Hassan Dehghani Aghbolagh, Mengbin Ye, Lorenzo Zino, Zhiyong Chen, and Ming Cao

Abstract— Empirical studies suggest a deep intertwin-
ing between opinion formation and decision-making pro-
cesses, but these have been treated as separate problems
in the study of dynamical models for social networks. In
this paper, we bridge the gap in the literature by proposing
a novel coevolutionary model, in which each individual
selects an action from a binary set and has an opinion on
which action they prefer. Actions and opinions coevolve
on a two-layer network. For homogeneous parameters,
undirected networks, and under reasonable assumptions
on the asynchronous updating mechanics, we prove that
the coevolutionary dynamics is an ordinal potential game,
enabling analysis via potential game theory. Specifically,
we establish global convergence to the Nash equilibria of
the game, proving that actions converge in a finite num-
ber of time steps, while opinions converge asymptotically.
Next, we provide sufficient conditions for the existence
of, and convergence to, polarized equilibria, whereby the
population splits into two communities, each selecting and
supporting one of the actions. Finally, we use simulations
to examine the social psychological phenomenon of plural-
istic ignorance.

Index Terms— dynamics on networks, opinion dynamics,
decision making, evolutionary game theory, polarization

I. INTRODUCTION

THROUGHOUT the past decades, researchers in different
fields have used mathematical models to study different

complex dynamical processes in social networks, such as
opinion formation and collective decision making [1]–[5].
Development and analysis of such models have helped to
understand and predict how individual interactions can lead
to complex collective behavior emerging in the wider social
network [4], [6]–[9].

The field of opinion dynamics studies models of the for-
mation and evolution of opinions in groups of individuals,
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with roots in the 1950s (see [1], [10], [11] for a review). The
seminal French-DeGroot model [12] established that, under
mild network connectivity assumptions, the opinions of all
individuals reach a common value (a consensus) due to social
influence as captured by a weighted averaging procedure [12],
[13]. Several generalizations of this model have been pro-
posed. We mention the work by Friedkin and Johnsen [14],
which posits that an individual’s existing prejudices can lead
to persistent disagreement, which has been extended and
validated experimentally [3], [15].

On another research front, the study of collective decision-
making in networks of interacting agents has gained popular-
ity. In particular, mathematical models based on evolutionary
game theory have been used to describe and predict how an
individual decides on which action to take (e.g., a product to
buy, or a social convention to adopt), choosing from a finite
set of possibilities, and how these decisions are revised after
interacting with other individuals [2], [9], [16], [17]. The study
of these models, in particular those based on the paradigm
of network coordination games and its extensions [16], has
allowed to shed light on the emergent behavior of complex
social system, including the evolution of social norms and con-
ventions, and nontrivial interactions between heterogeneous
types of agents [8], [18], and has paved the way for the design
of intervention policies to control the network [19], [20].

Results from the social psychology literature, including
empirical evidence, indicate a strong relationship between
the opinions held and decisions taken by individuals. These
studies suggest that, within a community, the exchange of
opinions can affect individuals’ actions, while the way people
form opinions can be influenced by observing the actions of
others. For instance, teachers may decide to revise content
delivery methods after forming opinions about which method
is more effective [21], [22]. In another example, [23] showed
that policymakers shifted their attitudes about work-oriented
reforms when they observed the impact of these actions in
other regions. See [24]–[26] for more examples along these
lines. Despite such a strong relationship, we also point out
that actions and opinions are not always aligned in the real-
world. A classic example is the phenomenon of unpopular
norms [27]–[29], in which a community keeps exhibiting a
collective behavior that is disapproved by the most of its
members. This is often caused by pluralistic ignorance (see,
for instance, the study on alcohol abuse by undergraduates
in Princeton University in the 1990s [30]). In summary, the
mechanisms governing the evolution of actions and opinions
in communities appear to be nontrivially intertwined.
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Despite evidence of such a complex intertwining, few
existing mathematical frameworks are able to capture the
coevolution of actions and opinions. Building on the semi-
nal work by Martins [31], continuous-opinion discrete-action
(CODA) models have been developed and studied [32]–[34],
and utilized to study real-world problems such as innovation
diffusion [35] and competition in duopolies [36]. CODA
models are able to reproduce certain interesting real-world
phenomena, including polarization and oscillations [32], [33].
However, they rely on the simplifying assumptions that i) an
individual’s action is a direct quantization of their opinion, and
ii) only actions are observable in the population. In neglecting
more complex social psychological mechanisms that charac-
terize human decision-making, CODA models are unable to
capture important phenomena such as unpopular norms or plu-
ralistic ignorance [27]–[30]. Recently, models were proposed
to consider coevolution of private and expressed opinions [37],
[38], but no decision-making process is present. On the other
hand, [27] proposes a decision-making process influenced
by the opinions of individuals, which are however assumed
to be time-invariant. Some preliminary efforts to model the
coevolution of individuals’ actions and opinions can be found
in our works of [39], [40]. However, the complexity of the
framework proposed in [39] hinders its analytical tractability,
with findings mostly limited to numerical simulations.

In this paper, we fill in this gap by proposing a novel
coevolutionary model in which individuals make decisions and
revise their opinions by interacting on a two-layer network,
whereby they observe others’ actions on an influence layer and
share their opinions on a communication layer. The proposed
framework is formalized within a game-theoretic paradigm,
and unifies the fields of opinion dynamics and collective de-
cision making, by encompassing and generalizing the French-
DeGroot [12], [13] and the Friedkin-Johnsen [3], [14] opin-
ion dynamics models, and network coordination games [9],
[16]–[18]. Specifically, individuals simultaneously update their
opinion and action, aiming to maximize a payoff function
that consists of four terms, accounting for i) the individuals’
tendency to coordinate with others’ actions observed on the
influence layer; ii) the opinion formation and exchange on
the communication layer, iii) the (possible) presence of indi-
viduals’ existing prejudices, and iv) the individuals’ tendency
to act consistently with their opinion, respectively. The first
term comes from network coordination games [16], while the
second and third come from the Friedkin-Johnsen model [14].
The fourth term, instead, couples an individual’s action with
their opinion, ensuring that an individual’s decision-making
and opinion formation processes are inherently intertwined in
a nontrivial fashion as motivated in the above.

We perform a rigorous analysis of the proposed coevolu-
tionary model leveraging potential game theory. Under the
assumptions that each layer of the network is undirected and
the agent parameters are homogeneous, we prove that the
game defining the model is a generalized ordinal potential
game [41]. Exploiting the corresponding potential function,
we provide a comprehensive characterization of the long-
term behavior of the coevolutionary dynamics, proving global
convergence to the Nash equilibria of the coevolutionary game.

In particular, we prove that individuals’ actions converge
in finite time, while opinions converge asymptotically. Our
approach follows the works in [42], [43], which interpreted
opinion dynamics as best-response strategies to a game, but
novel analysis was required as our state space is the Cartesian
product of discrete (action) and continuous (opinion) sets. Our
general convergence result significantly advances the limited
existing theoretical analysis of coevolutionary models, that
only considered the special scenario in which the opinion
formation process is not affected by the decision-making
one [39], [40].

Then, we use our model to explore two real-world phe-
nomena: polarization and pluralistic ignorance. Building on
our general convergence result, we derive sufficient conditions
for the existence of and convergence to polarized equilibria,
in which the network is divided into two groups supporting
and taking opposite actions. Interestingly, polarization —often
observed in real-world social networks [44], [45]— occurs
in our model without antagonistic interactions or strongly
biased assimilation [46]–[49] (which are not always realistic
assumptions [50]), and without simplified quantized decision-
making of CODA models [31]–[33]. Finally, we explore the
social psychological phenomenon of pluralistic ignorance,
which arises when some individuals in a community hold
an incorrect assumption about the thoughts, feelings, and/or
behaviors of others in the population [51]. Via simulations,
we show that our model is capable of qualitatively reproducing
the classical empirical findings in [30].

The rest of the paper is organized as follows. We conclude
this section with preliminaries including graph theory and
game theory. Section II presents classic models of decision-
making and opinion dynamics in a game-theoretic framework.
Then, the coevolutionary model is presented in Section III,
for which convergence results are provided in Section IV. Sec-
tion V is devoted to the analysis of polarization and pluralistic
ignorance phenomena. Finally, Section VI concludes the paper.

A. Notation
We denote the set of real, nonnegative real, and nonnegative

integer numbers as R, R+, and Z+, respectively. A vector x
is denoted with bold lowercase fonts, with ith entry xi. A
matrix A is denoted with bold capital fonts, where aij denotes
the generic jth entry of the ith row. The column vector of
all ones is denoted by 1 and the identity matrix is I , with
the appropriate dimension determined in the context. Given a
vector x or a matrix A, x⊤ and A⊤ are the transpose vector
and matrix, respectively. Given a scalar quantity x ∈ R, the
function sgn(x) denotes its sign, with sgn(0) = 0.

B. Graph Theory
A (weighted) directed network is defined as a triple GA =

(V, EA,A), where V = {1, . . . , n} is the node set, indexed by
positive integer numbers; EA ⊆ V × V is the edge set, where
(i, j) ∈ EA if and only if there is a link from node i to node j;
and A ∈ Rn×n

+ is the weight matrix, so that its generic entry
aij > 0 ⇐⇒ (i, j) ∈ V . The edge (i, i) ∈ EA represents a
self-loop. A network is undirected iff A = A⊤. We say that a
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Influence layer
(V, EA,A)

Communication layer
(V, EW ,W )

Fig. 1: The two-layer network structure utilized in the model.

weight matrix is row-stochastic (column-stochastic) if its rows
(columns) sum to 1, that is, if A1 = 1 (1⊤A = 1⊤). Weight
matrices that are both row- and column-stochastic are said to
be doubly-stochastic.

Given a network GA = (V, EA,A) and a node i ∈ V , we
define the neighbors of node i as the set NA

i := {j : (i, j) ∈
EA}. Given a pair of nodes i and j, we say that i is connected
with j if there exists a sequence of edges (e1, . . . , ek) such that
eh ∈ EA, for all h = 1, . . . , k, e1 = (i, p), and ek = (q, j), for
some p, q ∈ V . We say that a network is (strongly) connected
if and only if i is connected with j, for every pair of distinct
nodes i, j ∈ V . Moreover, GA is strongly connected if and
only if A is an irreducible matrix [52].

Given two networks GA and GW with the same node set
V , we define a two-layer network as G = (V, EA,A, EW ,W ),
where the edge set and weight matrix of each original network
form a layer of the two-layer network [53]. In general, EA ̸=
EW and thus the two layers have different edges. We say that
the two-layer network is connected if and only if both layers
are separately connected. An example of a two-layer network
is illustrated in Fig. 1.

C. Game Theory

A game γ = (V,A,f) is defined by a set of players V =
{1, . . . , n}; a set of strategies A that the players can choose,
where a strategy ζ ∈ A can be, in general, a scalar or a vector1;
and a payoff vector, f = [f1, . . . , fn]

⊤, where fi : A → R is
the payoff function of player i ∈ V . Let zi ∈ A represent the
strategy of individual i; then, the state variable of the game
z ∈ An can be defined by gathering the strategies of the
n individuals into a single vector (or matrix if strategies are
vectors). The payoff function fi(ζ,z) determines the payoff
that individual i receives for choosing strategy ζ ∈ A, given
the state of the system is z. In the following, we will provide
the definition of a generalized ordinal potential game [41],
which will be used in the rest of this paper.

Definition 1: A game γ = (V,A,f) is called a generalized
ordinal potential game if there exist a potential function Φ :
A → R such that for any pair of states z and z′ that differs in
a single component zi ̸= zi

′ (i.e., the state of a single player),

1A more general formulation, which is beyond the scope of this paper, may
consider scenarios in which the strategy set can vary between players.

then, for all i ∈ V , the following holds:

fi(zi, z)− fi(z
′
i, z) > 0 =⇒ Φ(z)− Φ(z′) > 0. (1)

Notice that in some game-theoretic literature, when referring
to changes in the potential due to updates in the state of a
player i, the potential function is written as a function of two
arguments, that is, zi and a vector containing all the other
entries of the state z. For the sake of readability, we decided
to adopt a simpler notation.

Finally, suppose that at each time step t ∈ Z+, individual
i has the opportunity to revise their state. In this paper, we
will consider individuals using a well-known concept in game
theory known as best-response updating to revise their state.
Formally, we can define the set of best responses as follows.

Definition 2: Given a game γ = (V,A,f), the best-
response strategies for player i ∈ V given the state of the
system x are defined as

Bi

(
fi(·, z)

)
:= argmaxζ∈Afi(ζ,z). (2)

Note that, in general, the best response is not unique, and
multiple strategies might be contained in the set Bi

(
fi(·, z)

)
.

II. DECISION-MAKING AND OPINION DYNAMICS

Before proposing our coevolutionary model, we briefly
illustrate how decision-making and opinion dynamics have
been cast, independently, as best-response dynamics in a
game-theoretic formalism, and we discuss the motivations for
developing a coevolutionary framework.

A. Decision-Making as a Network Coordination Game

In the last decade, game theory has become increasingly
popular to model collective decision-making in communities,
especially through the lens of network coordination games [9],
[16]–[18]. These models consider a population of n ≥ 2
individuals, each assigned a binary variable xi(t) ∈ {−1, 1},
representing individual i’s action at discrete-time instants
t ∈ Z+. Actions are gathered in the action vector x(t) =
[x1(t), . . . , xn(t)]

⊤ ∈ {−1,+1}n, which is the network’s
state. Individuals observe others’ actions on a weighted net-
work GA = (V, EA,A), with the row stochastic weight matrix
A.

Each individual engages in a pairwise coordination game
with each and every neighbor, with unit payoff for coordinat-
ing on action −1 and payoff of 1+α for coordinating on action
1, where α ≥ 0. The scenario α > 0 describes action +1
having an advantage over −1, e.g. for innovations [9], [17].
Given state x, each individual i is thus associated with the
following payoff function for selecting action ζa ∈ {−1,+1}:

fa
i (ζa,x) =

1

4

∑
j∈V

aij [(1−xj)(1−ζa)+(1+α)(1+xj)(1+ζa)].

(3)
Observe that the best-response strategy for such a payoff

function yields a threshold such that +1 ∈ Bi(f
a
i (·,x)) if and

only if a discriminant quantity δa(x) satisfies

δa(x) =
∑

j∈V
aij

[
2xj + α(1 + xj)

]
≥ 0. (4)
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In other words, action +1 is a best response if and only if
a sufficiently large fraction of the neighbors of i adopt it
(weighted by the matrix A and the advantage α). Charac-
terizing the equilibria and studying the long-term behavior of
a population of individuals who update their action following
a best-response strategy in a network coordination game has
been extensively studied [16], [54], even for heterogeneous
agents [18] and in the presence of noise [9], [17].

B. Friedkin-Johnsen Opinion Dynamics Model

In the Friedkin-Johnsen model [3], [14], each individual i
of a population of n ≥ 2 individuals is assigned a continuous
variable yi(t) ∈ [−1, 1], representing the individual’s opinion
at discrete-time instant t ∈ Z+. Opinions are gathered in the
opinion vector y(t) = [y1(t), . . . , yn(t)]

⊤ ∈ [−1,+1]n, which
is the network’s state. Individuals share their opinions through
interactions on a weighted network GW = (V, EW ,W ), with
the row stochastic weight matrix W .

Specifically, individual i’s action at the next time step
yi(t+ 1) is obtained by averaging the opinions shared by the
neighboring individuals and individual i’s existing prejudice
ui ∈ [−1, 1]. The parameter γi ∈ [0, 1] provides a weighting
that captures individual i’s level of attachment to their preju-
dice relative to the influence from opinions of their neighbors.
Thus, the update rule reads

yi(t+ 1) = (1− γi)
∑

j∈V
wijyj(t) + γiui. (5)

Following [42], [43], the Friedkin-Johnsen model can be
equivalently cast in a game-theoretic framework. In fact, with
payoff the function

fo
i (ζo,y) = −1

2
(1−γi)

∑
j∈V

wij(ζo−yj)
2− 1

2
γi(ζo−ui)

2 (6)

the update rule in Eq. (5) can be interpreted as a best-response
strategy, that is, yi(t+ 1) = Bi(f

o
i (·,y)).

C. Motivation for a Coevolutionary Framework
As discussed in the Introduction, there is strong evidence

from the social psychology literature that an individual’s ac-
tions and those of their neighbors can influence the individual’s
opinion, and vice versa [21]–[26]. This major body of empiri-
cal evidence suggests that decoupling the decision making and
opinion formation and studying them one independently of the
other may be an oversimplification, which restricts the range
of behaviors that such models can reproduce and predict.

Surprisingly, few efforts have explored this coupling via
mathematical models except our two related works [39], [40],
which explored a scenario in which the opinion formation and
decision-making processes are indeed intertwined, but the two
update rules are distinct rather than obtained from a single pay-
off function, and analytical results are limited to the scenario in
which the former is not affected by the latter. In the following,
instead, we will propose a coevolutionary framework, in which
individuals simultaneously make decisions and revise their
opinions, and we illustrate how important real-world collective
population phenomena could arise from the coevolutionary
framework, namely polarization and pluralistic ignorance.

III. COEVOLUTIONARY MODEL

In this section, we propose the coevolutionary model, which
couples the network coordination games and opinion dynamics
models within a single game-theoretic framework.

A. Setting

We consider a population of n ≥ 2 interacting individuals,
each assigned a two-dimensional state variable (or strategy)
zi(t) = (xi(t), yi(t)) ∈ A = {−1, 1} × [−1, 1], representing
individual i’s action and opinion, respectively, at discrete-time
instant t ∈ Z+. Individual i’s action at time t, xi(t), represents
their choice on two alternative actions of −1 and +1, while
the opinion yi(t) ∈ [−1, 1], represents individual i’s attitude
orientation towards the two actions. Actions are gathered in
the action vector x(t) = [x1(t), . . . , xn(t)]

⊤ ∈ {−1,+1}n,
while opinions are gathered in the opinion vector y(t) =
[y1(t), . . . , yn(t)]

⊤ ∈ [−1, 1]n. These two vectors determine
the state of the system, which can be written by gathering them
in an n-by-2 matrix z(t) = [x,y] = [z1(t)

⊤, . . . , zn(t)
⊤]⊤.

We propose an example to clarify the concepts of action and
opinion, although the model has a broad range of applications.
In the context of spelling conventions in the English language,
xi(t) = +1 and xi(t) = −1 may represent individual i using
the spelling “center” and “centre”, respectively [55]. Then,
yi(t) represents individual i’s attitude, with a positive and
negative yi(t) representing individual i preferring “center”
and “centre”, respectively; the magnitude of yi(t) indicates
the strength of preference. This example clearly illustrates
a scenario in which the action taken by an individual may
strongly differ from their preference, due to social influence
and pressure to conform expected norms.

We consider a setting in which individuals interact on a
two-layer network G = (V, EA,A, EW ,W ), which we assume
to be connected, and in which the two nonnegative weight
matrices are row-stochastic. Specifically, individuals observe
others’ actions through an influence layer GA = (V, EA,A)
and share opinions across a communication layer GW =
(V, EW ,W ), as illustrated in Fig. 1.

B. Payoff Function

In our coevolutionary model, we combine the payoff func-
tions of a network coordination game from Eq. (3) and
the Friedkin-Johnsen model from Eq. (6) in a single payoff
function. Hence, given state z = (x,y), we propose the payoff
function fi(ζ, z) for individual i for selecting strategy ζ =
(ζa, ζo), with action ζa ∈ {−1,+1} and opinion ζo ∈ [−1, 1]:

fi(ζ, z) =
λi(1− βi)

4

∑
j∈V

aij

[
(1− xj)(1− ζa)

+ (1 + α)(1 + xj)(1 + ζa)

]
− 1

2
βi(1− λi)(1− γi)

∑
j∈V

wij(ζo − yj)
2

− 1

2
βi(1− λi)γi(ζo − ui)

2 − 1

2
λiβi(ζa − ζo)

2 (7)
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Fig. 2: Schematic of the coevolutionary model.

TABLE I: Models variables and parameters.

xi(t) ∈ {−1,+1} action of individual i at time t
yi(t) ∈ [−1,+1] opinion of individual i at time t

aij ∈ [0, 1] influence of j’s action on i
wij ∈ [0, 1] influence of j’s opinion on i

α ≥ 0 advantage of action +1
λi ∈ [0, 1] weight of actions
βi ∈ [0, 1] weight of opinions

ui ∈ [−1,+1] prejudice of individual i
γi ∈ [0, 1] attachment to the prejudice of individual i

where ui, γi, aij , wij are defined in Sections II-A and II-B,
and recalled in Table I.

The payoff function is made of four terms, as illustrated
in Fig. 2. The first term comes from network coordination
games in Eq. (3), as discussed in detail in Section II-A. The
second and third terms correspond to the opinion dynamics
model in Eq. (6), discussed in detail in Section II-B. The
fourth term is proportional to the squared difference between
an individual’s action and their opinion, which accounts for
an individual’s desire to resolve inconsistencies between their
actions and opinions. This term, and the weighting parameters
λi ∈ [0, 1] and βi ∈ [0, 1], underline our proposed method
for coupling the evolution of the decision-making and opinion
dynamics processes. One will see this clearly in the sequel,
when we present the best-response dynamics with respect to
the payoff function in Eq. (7). The four terms are weighted
by two parameters, λi and βi, representing the contribution
of the actions and opinions in determining individual i’s
payoff, respectively. Specifically, every term of the payoff in
Eq. (7) that contains action states (the first and the fourth) is
multiplied by λi, while those terms that do not contain them
are multiplied by 1 − λi; this is similarly implemented with
the parameter βi for opinion states. All the model parameters
are summarized in Table I.

Remark 1: When βi = 0, then the payoff function in
Eq. (7) reduces to the payoff function of a coordination game,
previously discussed in Eq. (3); for λi = 0, it reduces to
the one of the Friedkin-Johnsen model, previously discussed
in Eq. (6). Finally, when λi = βi = 1, individual i is totally
self-centered and closed to influence from other individuals.

In the sequel, we explore the payoff function fi and how
it is used to define the coevolutionary model dynamics. For
notational convenience, we will sometimes omit explicitly
writing the state of the system z = (x,y) when there is no
risk of confusion, and thus we use fi(ζ) to denote fi(ζ, z).

Before presenting the update rule of the coevolutionary
dynamics, we will present a result on the maximizers of the

payoff function in Eq. (7), which allows us to characterize the
best-response strategies of the coevolutionary game γ. Given
a state of the system z and an individual i ∈ V , let us define
the discriminant quantity δi(z) as:

δi(z) = 2λiβi(1− λi)
[
(1− γi)

∑
j∈V

wijyj + γiui

]
+

(1− βi)λi

2

∑
j∈V

aij

[
2xj + α(1 + xj)

]
. (8)

The following two results characterize the best-response strate-
gies for the payoff function in Eq. (7). For the sake of
readability, the proofs are reported in Appendix A.

Proposition 1: For the coevolutionary game γ = (V,A,f)
on the two-layer network G, with the ith entry of f defined
in Eq. (7), and the function δi(z) defined in Eq. (8), consider
a player i ∈ V . Suppose also λi ∈ [0, 1] and βi ∈ (0, 1]. If
δi(z) ̸= 0, then the best-response strategy Bi

(
fi(·, z(t))

)
=

(ζa, ζo), with

ζa = sgn(δi) (9a)

ζo = (1−λi)
[
(1−γi)

∑
j∈V

wijyj+γiui

]
+λisgn(δi) (9b)

If δi(z) = 0, then Bi

(
fi(·, z(t))

)
= {(+1, ζo), (−1, ζ̄o)}, with

ζo = (1− λi)
[
(1− γi)

∑
j∈V

wijyj + γiui

]
+ λi (10a)

ζ̄o = (1− λi)
[
(1− γi)

∑
j∈V

wijyj + γiui

]
− λi. (10b)

Note that Proposition 1 illustrates how the coupling between
opinions and actions due to the fourth term in Eq. (7) yields a
nontrivial best-response strategy when the action and opinion
are jointly revised. Importantly, the update rules for xi(t) and
yi(t) cannot be decoupled, as they are intertwined by the quan-
tity δi(z), which depends both on opinions and actions. We
also point out that, although the best-response expression in
Proposition 1 looks complex, the expression comes from two
separate processes well established in the literature (network
coordination games and Friedkin-Johnsen opinion dynamics)
being coupled together by a term that, intuitively, suggests an
individual has a desire to resolve discrepancies between their
action and opinion.

Remark 2: In general, the best-response strategy might not
be unique. A trivial scenario is the limit case βi = 0, in which
opinions do not influence the payoff and Eq. (7) reduces to
Eq. (3), and every ζo ∈ [−1, 1] provides the same payoff.
More interestingly, for βi ̸= 0, the payoff function fi has two
maximizers when δi = 0: one with positive action ζa = +1
and one with negative action ζa = −1. In the sequel, we make
a simple assumption on how the individuals resolve the issue
of multiple maximizers.

C. Dynamics

We are now in position to define the update dynamics
for the individuals’ actions and opinions. We consider an
asynchronous rule. Specifically, at each discrete time instant
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t ∈ Z+, a single2 individual i ∈ V becomes active and updates
their opinion and action simultaneously. In the next section
when we present the main convergence result of this paper,
we provide an explicit assumption on how individuals are
selected to activate at each time step. However, our model is
general to allow convergence analysis of z(t) under different
assumptions on agent activation sequences, and so no explicit
assumption is imposed in this section, where we simply focus
on presentation of the individual dynamics.

If individual i ∈ V becomes active at time t, then they
revises their state zi(t) according to a best-response update,
that is,

zi(t+ 1) ∈ Bi

(
fi(·, z(t))

)
(11)

where Bi is the best-response strategies defined in Eq. (2) and
fi is the payoff in Eq. (7). As we have observed in Remark 2,
in general, the best response might not be unique, and in such
scenarios, we should select a tie-break rule to unequivocally
determine the system evolution. Proposition 1 gives explicit
expressions for the best-response strategies for the payoff
function fi, which allows us to write explicit expressions for
Eq. (11), and resolve ties (which occur if δi = 0).

In particular, we make explicit the best-response update
rule of the coevolutionary dynamics as follows. For active
individual i with βi ∈ (0, 1], the state is updated as

xi(t+ 1) = S(δi(z(t)) (12)

yi(t+ 1) = (1− λi)
[
(1− γi)

∑
j∈V

wijyj(t) + γiui

]
+ λiS(δi)

(13)

where

S(δi(z(t))) =


+1 if δi(z(t)) > 0

−1 if δi(z(t)) < 0

xi(t) if δi(z(t)) = 0.

(14)

The above update rule resolves the tie in which both actions
−1 and +1 give the same payoff. Specifically, we have adopted
a conservative method for resolving ties, enforcing an agent to
stick with the current action when both possible actions give
equal reward, consistent with the social psychology literature
on the presence of inertia in decision-making and status-quo
bias [56]. Finally, if βi = 0, following a similar approach, we
set that yi(t + 1) = yi(t), which translates to yi(t) = yi(0)
for all t ≥ 0, while xi(t+ 1) is given in Eq. (12).

To summarize, the proposed coevolutionary model is for-
mulated as a best-response dynamics for the coevolutionary
game γ = (V,A,f) on a two-layer network G, with a two-
dimensional set of strategies A = {−1,+1} × [−1,+1], and
the payoff vector is defined with its ith entry in Eq. (7).

IV. CONVERGENCE ANALYSIS

In this section, we establish a general convergence result
for the proposed coevolutionary dynamics for homogeneous
agents, which is one of the main theoretical contributions of

2Our model can be readily extended to consider a nonsingleton set of
individuals activating at each time instant, or all individuals (corresponding
to synchronous updating among the population).

this work. To keep the exposition clear, the proofs for each
theorem, lemma or corollary are presented in the Appendix.

In Section III, we presented our coevolutionary model in
a game-theoretic framework, casting the update mechanism
as a best-response dynamics to the payoff function Eq. (7).
Our convergence analysis is thus inspired by game-theoretic
methods, in particular the theory of potential games [41]. To
begin, we introduce the following function and establish two
associated technical results that prove the function is in fact a
potential function for the coevolutionary game:

Φ(z) =
∑
i∈V

∑
j∈V\{i}

ηi
aij
2

[
(1 + α)(1 + xj)(1 + xi)

+ (1− xi)(1− xj)

]
− 1

2

∑
i∈V

∑
j∈V

wij

2
(yi − yj)

2 − 1

2

∑
k∈V

γi
(1− γi)

(yk − uk)
2

− 1

2

∑
k∈V

λi

(1− λi)(1− γi)
(yk − xk)

2 (15)

where ηi = λi(1− βi)/4βi(1− λi)(1− γi).
The following lemma, whose proof is reported in Ap-

pendix B, connects the potential function to the payoff function
in Eq. (7) under an assumption on the parameters.

Assumption 1: Suppose that all the parameters are homo-
geneous, i.e., λi = λ ∈ (0, 1), γi = γ ∈ (0, 1), and
βi = β ∈ (0, 1) for all i ∈ V . Suppose further that the two
layers are undirected, that is, W = W⊤, and A = A⊤, and
that each individual has a self-loop on the influence layer, that
is, aii > 0 for all i ∈ V .

Lemma 1: Under Assumption 1, the coevolutionary game
γ = (V,A,f) on the two-layer network G is a generalized
ordinal potential game with potential function Φ, defined in
Eq. (15).

Next, we provide an explicit lower bound on the increase in
the potential function if an agent that activates changes action
according to the coevolutionary dynamics in Eqs. (12) and
(13). Its proof is reported in Appendix B

Corollary 1: Consider the coevolutionary model on the
two-layer network G in which individuals update their actions
and opinions according to Eq. (12) and Eq. (13), respectively.
Suppose that Assumption 1 holds. If agent i ∈ V is active at
time t, and xi(t) ̸= xi(t+ 1), then

Φ(z(t+ 1))− Φ(z(t)) > min
k∈V

ξλ(1− β)akk > 0 (16)

where ξ = [β(1− λ)(1− γ)]−1 > 0.

In Section III-C, we detailed the general model dynamics,
whereby a single agent i ∈ V activates at each discrete time
t ∈ Z+ to update their state zi(t) = (xi(t), yi(t)). However,
there can be a number of different mechanisms governing the
sequence of agent activations. In our work, we secure a general
convergence result by assuming a particular mechanism, as we
now detail.
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Assumption 2: There exists a T ∈ Z+ such that in every
time window [t; t+ T ), ∀t ∈ Z+, each agent i ∈ V activates
at least once3.

This assumption ensures that every agent will activate at
least once in T time steps. It covers a broad range of scenarios,
since T can be much greater than n (allowing agents to
update multiple times inside of T time steps), and imposes
no restriction or requirement on the ordering of the agent
activations. Other assumptions on the activation sequence
can be considered, which may lead to different convergence
results. For instance, one could assume that at every time step,
every agent has a positive probability of becoming active, or
that every agent activates infinitely often as t → ∞ [2].

Although we proved in Lemma 1 that the coevolutionary
game is a generalized ordinal potential game, we cannot
exploit existing convergence results on potential games such as
those detailed in [41]. This is because in our game, the strategy
space for each player (individual) is a Cartesian product of
a finite strategy set (actions) and a continuous strategy set
(opinions), and as noted below Proposition 1, the action and
opinion updating dynamics cannot be decoupled. Significant
additional analysis is therefore required. We first present a
convergence result for the opinion vector under the assumption
that the action vector is fixed, which is key for the proof of
our main convergence result, reported in the following. For
the sake of readability, the proof is postponed to Appendix C.

Lemma 2: Consider a modified coevolutionary model on
the two-layer network G, where individuals update their opin-
ions according to Eq. (13) while the actions are held constant,
xi(t + 1) = xi(t) = x∗

i for all t ≥ 0, and let action vector
be denoted by x∗ ∈ {−1,+1}n, Then, under Assumption 1,
there is a unique opinion vector y∗ ∈ [−1, 1]n that is the
unique equilibrium of the opinion dynamics in Eq. (13).
Further, if Assumption 2 also holds, then limt→∞ yi(t) = y∗i
asymptotically.

Finally, we are ready to present the main convergence result
of our paper, whose proof is reported in Appendix D. This
result establishes that for all initial conditions, the system
converges to a steady state.

Theorem 1: Consider a coevolutionary model on the two-
layer network G in which individuals update their opinions
and actions according to Eq. (13) and Eq. (12), respectively.
Suppose that Assumptions 1 and 2 hold. Then, for all initial
conditions z(0) ∈ {−1,+1}n × [−1, 1]n, the state of the
system z(t) converges to a steady state z∗. Specifically, the
action vector x(t) converges to x∗ in finite time, while the
opinion vector y(t) converges to y∗ asymptotically.

Thus, the key conclusion on the dynamics of the coevolu-
tionary model is that under Assumption 1 on the parameters,
and Assumption 2 on the activation mechanism for the agents,
the actions and opinions of all individuals converge to an
equilibrium z∗ = (x∗,y∗), for all initial conditions. Moreover,
z∗ is a Nash equilibrium of the coevolutionary game. However,
there are generally speaking a number of different Nash

3Note this implies T ≥ n.

equilibria which the system can converge to, and it is difficult
to provide insight into regions of attraction for the equilibria
due to the highly nonlinear dynamics (although Lemma 2
indicates that for a given action equilibrium x∗, the opinion
equilibrium y∗ is unique). In fact, Assumption 2 places little
restriction on the agent activation sequence, and thus for the
same z(0), it is possible to converge to two different Nash
equilibria ẑ∗ and z̄∗, for different agent activation sequences.
In the next section, we provide a region of attraction for a
specific type of equilibrium, under further conditions.

Before concluding this section, we would like to stress
that the fundamental properties detailed in Lemma 1 and
Corollary 1, which are key for the convergence analysis, are
structural properties of the coevolutionary dynamics and are
independent of the activation mechanism. This suggests that
future work may consider convergence analysis under different
assumptions on the activation mechanism.

V. EMERGENT REAL-WORLD PHENOMENA

In the rest of this paper, we will utilize the proposed
coevolutionary model and the convergence result in Theorem 1
to investigate some specific emergent phenomena of the model,
which may have several interesting real-world applications.
Besides the phenomenon of unpopular norms and shifts in
social conventions, which could be reproduced and studied
following the paradigm proposed for a similar coevolution-
ary model in [39], [40], we will show that our model can
reproduce polarization and pluralistic ignorance. Specifically,
in Section V-A, we derive analytical results, supported by
numerical simulations, to show that the proposed coevolution-
ary dynamics can lead to the emergence and persistence of
polarization in a population, which is a typical phenomenon
of many social systems [44], [45]. Then, in Section V-B, we
will numerically illustrate how the phenomenon of pluralistic
ignorance, which is well-known and extensively studied in
the social psychology literature [30], [51], can emerge in a
population over time.

A. Polarization

Here, we investigate how the model may lead to the
emergence of stable polarized states, in which a portion of the
population opts for and supports one action, and the rest of the
population takes and supports the other one. Given the set of
agents V , we denote by (Vp,Vn) a partitioning of the agents
into two disjoint sets Vp and Vn satisfying Vp

⋂Vn = ∅,
Vp

⋃Vn = V and Vp ̸= ∅ and Vn ̸= ∅. With this notion
of a partition in place, we introduce the following definitions
of polarization in the network.

Definition 3: Given a state of the system z = (x,y) ∈
{−1, 1}n × [−1, 1]n, we say that

• the action vector x is polarized if there exists a partition
of the agents (Vp, Vn) such that xi = −1, for all i ∈ Vn

and xj = +1, for all j ∈ Vp.
• the opinion vector y is polarized if there exists a partition

of the agents (Vp, Vn) such that yi < 0, for all i ∈ Vn

and yj > 0, for all j ∈ Vp.
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• the state z is polarized if there exists a partition of the
agents (Vp, Vn) such that xi = −1 and yi < 0, for all
i ∈ Vn, and xj = 1 and yj > 0, for all j ∈ Vp.

• the state z∗ is a polarized equilibrium if it is a polarized
state, and it is an equilibrium of the coevolutionary model
in Eqs. (13)–(12).

Briefly, a state is polarized if the population is split into
two clusters, where individuals in the same cluster have the
same action, but different actions between different clusters.
While the opinions of individuals within the same cluster have
the same sign, the opinions are not necessarily of the same
magnitude (and yi does not have to be equal to +1 or −1).

In the following, we study the polarization problem under
the simplifying assumptions that i) the communication layer
and the influence layer coincide, ii) no action has a payoff
advantage, and iii) agents are not attached to any existing
prejudice. These assumptions are gathered in the following.

Assumption 3: We assume that A = W , α = 0, and γ = 0.

Under Assumption 3, the opinion and action updates rules
are simplified as follows{

yi(t+ 1) = (1− λ)
∑

j∈V
wijyj(t) + λS(δi(z(t))

xi(t+ 1) = S(δi(z(t)))
(17)

where

δi(z) = 2λβ(1− λ)
∑
j∈V

wijyj + (1− β)λ
∑
j∈V

wijxj . (18)

The following result provides a sufficient condition for
the existence of a polarized equilibrium, with the proof in
Appendix E.

Theorem 2: Consider the coevolutionary model on the two-
layer network G under Assumptions 1–3, in which individuals
update their opinions and actions according to Eq. (17).
Suppose there exists a partitioning of the agents (Vp,Vn) with

dp := min
i∈Vp

∑
j∈Vp

wij d̄p := max
i∈Vp

∑
j∈Vp

wij

dn := min
i∈Vn

∑
j∈Vn

wij d̄n := max
i∈Vn

∑
j∈Vn

wij

(19)

such that the following three conditions are verified:

λ > max

(
d̄p − dn

1 + d̄p − dn
,

d̄n − dp
1 + d̄n − dp

)
(20)

λ(dp + d̄n − 1) + dp − d̄n

1− (1− λ)(dp + d̄n − 1)
+

(1− β)(2dp − 1)

2β(1− λ)
> 0 (21)

and

λ(dn + d̄p − 1) + dn − d̄p
1− (1− λ)(dn + d̄p − 1)

+
(1− β)(2dn − 1)

2β(1− λ)
> 0. (22)

Then the coevolutionary model in Eq. (17) has a polarized
equilibrium z∗ with respect to the partitioning (Vp,Vn).

Theorem 2 indicates that a polarized equilibrium z∗ exists
with respect to a partitioning (Vp,Vn) if the three conditions of
Eqs. (20)–(22) are satisfied. While the latter two conditions are
not easy to digest, all three conditions can be easily computed.
However, the result provides no indication of the basin of

attraction for z∗. Next, we provide a more conservative
sufficient condition, which however allows to prove not only
the existence of a polarized equilibrium but also a notion a
region of attraction from a set of initial conditions. The proof
is reported in Appendix F.

Theorem 3: Consider a coevolutionary model on the two-
layer network G under Assumptions 1–3, in which individuals
update their opinions and actions according to Eq. (17).
Assume that there exists a partitioning of the agents (Vp, Vn)
such that
∑

j∈Vp
wij > max

(
1−2λ
1−λ , 1

2

(
1 + β(1−λ)

1−βλ

))
, for i ∈ Vp∑

j∈Vn
wij > max

(
1−2λ
1−λ , 1

2

(
1 + β(1−λ)

1−βλ

))
, for i ∈ Vn.

(23)
Then, if the initial condition z(0) is a polarized state, z(t) will
be polarized for any t ∈ Z+, and limt→∞ z(t) = z∗, where
z∗ is the polarized equilibrium with respect to the partition
(Vp,Vn).

Theorem 3 provides easier to check conditions, viz.
Eq. (23), for the existence of a polarized equilibrium z∗.
Moreover, under these conditions, a large region of attraction
for z∗ is identified, being the set of initial conditions z(0)
which is polarized with respect to the partition (Vp,Vn).
From another perspective, the set of polarized states with
respect to (Vp,Vn) is a positive invariant set of the system
dynamics. Eq. (23) provides insight into the role of the
model parameters on the emergence of polarized equilibria.
In fact, we observe that the conditions become monotonically
stricter as λ decreases and β increases. This seems to suggest
that polarization emerges more easily in scenarios in which
individuals give higher weight to observed actions rather than
shared opinions.

This result demonstrates that polarization can emerge and
become stable in a population where opinions and actions
coevolve. Such a finding is notable, since in the opinion
dynamics literature, polarization has been typically attributed
to antagonistic interactions under restrictive signed network
structure assumptions [46], [47] or strong biased assimila-
tion [48], [49]. Here, we show that when an individual’s
opinion coevolves with their action, polarization can emerge
purely through coordination and social influence, similar to
observations from other models with opinions and quantized
actions [31]–[33]. In the following example, we show via
simulation results that the behavior proved in Theorem 3 seems
to be resistant to small perturbations of the network and that
the region of attraction of polarized equilibria may be larger,
whereby polarization can emerge even from nonpolarized
initial states.

Example 1: We consider 20 interacting individuals di-
vided into two groups Vp = {1, . . . , 10} and Vn =
{11, . . . , 20}. Groups are generated as directed Erdős–Rényi
random graphs [53], where each link is present with proba-
bility p = 0.2, independent of the other edges. Then, the two
groups are connected by two links between two pairs of nodes
(one from each group), selected uniformly at random. Last,
weights are selected randomly from a uniform distribution
and rescaled such that the overall influence matrix is row-
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(c) Temporal evolution of the opinions.

Fig. 3: Network and simulation of Example 1. In (a) and (b),
the network and the actions are shown at time t = 0 and
t = 150, respectively. Nodes are colored in green if sgn(yi) =
xi = +1, in red if sgn(yi) = xi = −1, and in yellow if
sgn(yi) ̸= xi. In (c), the temporal evolution of the opinion are
shown to converge to a polarized scenario.

stochastic. The network obtained is presented in Fig. 3.
We set α = γ = 0, β = 0.5, and λ = 0.6. With

these parameters, the inequality conditions in Theorem 3 are
satisfied. However, Assumption 1 is not satisfied, since self-
loops are not present for all the nodes. Furthermore, we
initialize the system with z(0), where most of the nodes in
Vp have xi(0) = sgn(yi(0)) = +1 and most of the nodes in
Vn have xi(0) = sgn(yi(0)) = −1. However, we randomly
assign some exceptions to this rule, so that the initial state
z(0) is not polarized, as shown in Fig. 3a. We simulate the
system by selecting one agent uniformly at random at each
time step to activate and update their states, checking that all
agents activate at least once during the simulation.

While the initial state z(0) is outside the region of attraction
identified in Theorem 3, the numerical simulation reported in
Fig. 3 shows that the coevolutionary model still converges
to the polarized equilibrium with respect to (Vp,Vn). This
suggests the region of attraction for polarized equilibria may
be larger than that identified in our theoretical findings.

We conclude this section by presenting a special case in
which all the agents have a uniform influence at the partition-
level, that is, there exists a partition (Vp,Vn) such that∑

j∈Vp

wij = d, ∀ i ∈ Vp

∑
j∈Vn

wij = d, ∀ i ∈ Vn. (24)

In this scenario, a complete characterization of the polarized
equilibrium can be performed, showing the emergence of a
bipartite consensus state, in which all the agents in the same
partition have the same opinion. The proof is in Appendix G.

Corollary 2: Consider a coevolutionary model on the two-
layer network G under Assumptions 1–3, in which individuals
update their opinions and actions according to Eq. (17).
Suppose that there exists a partition (Vp,Vn) such that Eq. (24)
holds true for some d > 1/2. Then there exists a polarized
equilibrium in the form

y∗i = y+ ,∀ i ∈ Vp y∗j = y− ,∀ j ∈ Vn, (25)

with

y+ =
λ

1− (1− λ)(2d− 1)
y− = − λ

1− (1− λ)(2d− 1)
.

(26)

B. Pluralistic Ignorance
Here, we explore how the social psychological phenomenon

of pluralistic ignorance [51] can be observed as an emer-
gent behavior in our model. Pluralistic ignorance refers to
a situation whereby a significant number of individuals in a
population hold an incorrect assumption about the thoughts,
feelings, or opinions of other members. The most common
such situation is when a group of individuals underestimates
the number of others who hold similar opinions. Such a phe-
nomenon has been widely studied in the literature, with em-
pirical examples concerning overestimation of support among
white Americans for racial segregation in 1960s America [57],
or underestimation of the rejection of alcohol consumption
practices on university campuses in the 1990s [30].

In particular, we revisit the classical work of Prentice and
Miller [30], which reported field studies on the opinions
and behaviors of undergraduate students at Princeton Univer-
sity concerning the culture of rampant alcohol consumption.
In [30], the authors studied how individuals internalized social
norms when exposed to pluralistic ignorance over time. They
surveyed via telephone a random sample of 25 female and
25 male sophomore students on Princeton campus, first in
September at the beginning of the semester year, and then
again in December. The subjects were asked several questions
about Princeton’s alcohol policies, their own opinion toward
drinking alcohol, and their estimate of the average student’s
attitude. The students ranked their own comfort level and their
estimate of the average student’s comfort level with alcohol
drinking, using a number between 0 and 10.

In the following example, we show that with reasonable
choices of parameters, our model can qualitatively reproduce
the empirical data reported in the study described above.

Example 2: In order to apply our model to the work of
Prentice and Miller [30], we let y = [y⊤

f ,y
⊤
m]⊤, where

yf ,ym ∈ [−1, 1]25 are the vectors of attitudes (opinions) of
female and male subjects, respectively. In addition, we define
x = [x⊤

f ,x
⊤
m]⊤, where xf ,xm ∈ {−1, 1}25 represent the

vectors of behavior (actions) of female and male students,
respectively. The mean value of x, denoted by x̄, is a rea-
sonable choice to represent the “social norm”, as it measures
the average behavior of the society.

The initial states are reproduced randomly using a normal
distribution with the mean and standard deviation values
reported in [30, Study 3]. Then, the initial state values are
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Fig. 4: Simulation illustrating the emergence and resolution of
pluralistic ignorance among female and male agents, respec-
tively, closely following the findings in [30].

rescaled to fit the state space of our model: xi = −1 and
xi = +1 represent the rejection and embracing of heavy
alcohol consumption by agent i, respectively. Consistent with
our model definition, yi is individual i’s preference towards
the choices of rejecting or supporting alcohol consumption. In
addition, we set u = y(0).

Prentice and Miller discuss that “men are simply more
inclined to react to feeling deviant from the norm with confor-
mity” [30]. In our model, this can be reasonably interpreted
as λm > λf , since a larger λ means that observed actions
have a great impact on the payoff. In context, male individuals
strongly favor adopting the action currently in the majority
(the social norm), and in their opinion update they place more
weight on their own action, which is influenced by the social
norm. On the other hand, [30] also states that “men might be
expected to feel greater pressures to learn to be comfortable
with alcohol”. In our setting, this can be approached by
adjusting γm < γf . As u = y(0), γm < γf implies that
male subjects tend to be less attached to their initial opinion.

Considering the observations above, we set α = 0, λf =
0.2, λm = 0.6, βf = βm = 0.4, γf = 0.8, and γm = 0.3.
In addition, we generate a two-layer graph with uniformly
random weights to represent the student network; both layers
are Erdős–Rényi random graphs, with each link present with
probability p. We assume the influence layer denser relative
to the communication layer by setting p = 0.1 and p = 0.04,
respectively. This reflects that opinions are mostly private
and shared between few friends, while actions are public and
observed within the whole campus environment.

Figure 4 plots the temporal evolution of the mean values
of yf , ym, xf , and xm. According to [30], at the start of
their experiment in September, it was found that both male
and female students displayed strong pluralistic ignorance,
whereby the majority of students were privately against the
social norm of heavy alcohol consumption, but estimated
that their peers preferred heavy alcohol consumption, and
all individuals consumed alcohol to a greater degree than
they were comfortable with. In our simulation, we initialize
individuals’ opinions and behaviors with the same discrepancy.

Prentice and Miller reported that by December when they
interviewed the participants again, male participants had
tended to resolve pluralistic ignorance over time by inter-
nalization of the social norm, moving their private attitudes
to conform to strong drinking culture. In contrast, female

participants reacted with alienation by mostly retaining their
private beliefs, but continuing to participate in the social norm
of heavy alcohol consumption [30].

Our simulation is qualitatively similar to the outcomes
described by Prentice and Miller. In the simulation, the male
agents tend to internalize the social norm, x̄, by moving their
opinions, viz. ȳm to be closer to the social norm. On the other
hand, female agents remain attached to their initial opinion,
and their opinion, viz. ȳf remains significantly less supportive
of heavy alcohol consumption. Additional simulations, omitted
due to space constraints, confirm that our findings are robust
to small changes to the values of the model parameters, and
even heterogeneity among parameters.

VI. CONCLUSIONS

In this paper, we proposed a novel coevolutionary model
of actions and opinions that captures the complex interplay
between opinion formation and decision-making processes in
a social network, utilizing a game-theoretic framework. We
provided a rigorous analysis of the model, establishing finite-
time convergence of the actions and asymptotic convergence
for the opinions, for any initial condition. Then, we utilized
the coevolutionary model to explore various real-world phe-
nomena. Besides the emergence of unpopular norms, which
were studied on a simplified version of the model [39], [40],
the proposed model can represent stable polarization and the
emergence of pluralistic ignorance.

The vast range of real-world phenomena that our model can
represent and its amenability to perform rigorous analytical
studies pave the way for a wide horizon of future research.
First, our convergence result is limited to homogeneous scenar-
ios, and it should be generalized to heterogeneous populations,
as a key step toward studying real-world complex social
systems which may have high degrees of heterogeneity [53].
Second, our simulations suggest polarization can emerge due
to the coordination and social influence mechanisms, even
from nonpolarized initial states. Further analytical study of
the polarization phenomenon is needed to provide theoretical
support to our simulation findings. Importantly, novel mathe-
matical tools should be developed in order to study stability
properties of the polarized equilibria, possibly inspired by
the methods proposed in [40]. Third, effort should be placed
to provide a general characterization of the Nash equilibria
of the system (besides polarized equilibria) and, if multiple
stable equilibria are present, to understand how the network
topology and the model parameters affect their basins of
attraction. Fourth, several other complex social phenomena
might be tackled using our flexible model framework, from
diffusion of innovation [9], [17], [35] to the adoption of
social conventions and behaviors [8], [55]. Finally, our model
relies on the assumption that individuals make decisions by
optimizing a payoff function. Besides being grounded in
the social psychology literature and in existing models for
decision-making and opinion dynamics, the complexity of the
payoff function calls for a validation of the proposed model
against empirical data, similar to [58]. This, together with the
development of techniques to calibrate its parameters will be
crucial to enable its practical use in real-world problems.
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APPENDIX

A. Proof of Proposition 1

Note that as ζa ∈ {−1,+1}, we can determine the maxi-
mizers by simply comparing the maximum values obtained for
fi subject to ζa = −1 and ζa = +1, respectively. To begin,
we consider the case ζa = +1. Computing the derivative of
fi(+1, ζo) with respect to ζo, we obtain

f ′
i(+1, ζo) =− (1− λi)βi(1− γi)ζo

∑
j∈V

wij

+ (1− λi)βi(1− γi)
∑

j∈V
wijyj

− (1− λi)βiγi(ζo − ui)− λiβi(ζo − 1).

(27)

The second derivative of fi(+1, ζo) with respect to ζo is
f ′′
i (+1, ζo) = −βi < 0, which implies that fi(+1, s) is strictly

concave, and hence has a unique maximum. By using Fermat’s
(interior extremum) theorem, we solve f ′

i(+1, ζo) = 0 and
obtain the following maximizer:

ζ+o = (1− λi)(1− γi)
∑
j∈V

wijyj + (1− λi)γiui + λi. (28)

We are left with verifying that the maximizer belongs to the
opinion domain, that is, ζ+o ∈ [−1,+1]. Since λi ∈ [0, 1],
γi ∈ [0, 1], and W is stochastic, we have that ζo in Eq. (28) is a
convex combination of ui ∈ [−1, 1] and yj ∈ [−1, 1], ∀j ∈ V ,
and +1. It follows that ζ+o ∈ [−1,+1].

Next, consider ζa = −1. Let ζ−o be the maximizer of Eq. (7)
subject to ζa = −1. Similar to the above, we differentiate
fi(−1, ζo) with respect ζo, and by solving f ′

i(−1, ζo) = 0 for
ζo, we obtain

ζ−o = (1− λi)(1− γi)
∑
j∈V

wijyj + (1− λi)γiui − λi (29)

which can be shown to belong to the domain ζ−o ∈ [−1,+1],
similar to ζ+o .

Now, we are left with comparing the two maxima. Define

h = (1− λi)(1− γi)
∑

j∈V
wijyj + (1− λi)γiui. (30)

Then, we can write ζ+o = h+ λi and ζ−o = h− λi. Using the
definitions of ζ+o and ζ−o in Eq. (28) and Eq. (29), we compute

fi(+1,ζ+o )− fi(−1, ζ−o ) =

− 2(1− λi)(1− γi)λiβi

∑
j∈V

wij(h− yj)

− 2(1− λi)γiλiβi(h− ui) + 2λihβi(1− λi)

+
(1− βi)λi

2

∑
j∈V

aij
[
2xj + α(1 + xj)

]
(31)

Substituting the expression for h in Eq. (30) into the right
hand side of Eq. (31) and simplifying, we obtain:

fi(1, ζ
+
o )− fi(−1, ζ−o ) = 2λiβi(1− λi)(1− γi)

∑
j∈V

wijyj

+ 2λiβi(1− λi)γiui +
(1− βi)λi

2

∑
j∈V

aij
[
2xj + α(1 + xj)

]
.

(32)
This immediately yields that δi(z) = fi((+1, ζ+o )z) −
fi((−1, ζ−o ), z), where δi was defined in Eq. (8). The quantity

δi(z) being positive or negative is therefore equivalent to
the pair (+1, ζ+o ) or (−1, ζ−o ), respectively, being the unique
maximizer of fi for given z. The quantity being zero is
equivalent to fi having both as maximizers.

B. Proof of Lemma 1 and Corollary 1
From Assumption 1, we have wij = wji and aij = aji for

all i, j ∈ V . Combining this with the fact that all parameters
are homogeneous, we can consider a generic i ∈ V and write

Φ(z) =
∑

j∈V\{i}
ηaij

[
(1 + α)(1 + xj)(1 + xi)

+ (1− xi)(1− xj)
]
+

∑
k∈V\{i}

∑
l∈V\{i}

ηakl·

·
[
(1 + α)(1 + xl)(1 + xk) + (1− xk)(1− xl)

]
− 1

2

∑
j∈V

wij(yi − yj)
2 − 1

4

∑
k∈V\{i}

∑
l∈V\{i}

wkl(yk − yl)
2

− 1

2

∑
k∈V

γ

(1− γ)
(yk − uk)

2

− 1

2

∑
k∈V

λ

(1− λ)(1− γ)
(yk − xk)

2. (33)

Next, we consider two states z and z′ that differ only in
the ith component, with zi = ζ = (ζa, ζo) and zi

′ = ζ′ =
(ζ ′a, ζ

′
o). Then, using Eq. (33), we compute

Φ(z)− Φ(z′) =
∑

j∈V\{i}

ηaij
[
2xj + α(1 + xj)

]
(ζa − ζ ′a)

− 1

2

∑
j∈V\{i}

wij

[
(ζo − yj)

2 − (ζ ′o − yj)
2
]

− 1

2

γ

(1− γ)

[
(ζo − ui)

2 − (ζ ′o − ui)
2
]

− 1

2

λ

(1− λ)(1− γ)

[
(ζa − ζo)

2 − (ζ ′a − ζ ′o)
2
]
. (34)

Next, we evaluate fi(ζ, z)− fi(ζ
′, z), obtaining

fi(ζ, z)− fi(ζ
′, z) =

λ(1− β)

4

∑
j∈V\{i}

aij [2xj + α(1 + xj)](ζa − ζ ′a)

+
λ(1− β)

4
aii[2xi + α(1 + xi)](ζa − ζ ′a)

− 1

2
β(1− λ)(1− γ)

∑
j∈V\{i}

wij [(ζo − yj)
2 − (ζ ′o − yj)

2]

− 1

2
β(1− λ)γ[(ζo − ui)

2 − (ζ ′o − ui)
2]

− 1

2
λβ[(ζa − ζo)

2 − (ζ ′a − ζ ′o)
2]. (35)

Let [β(1−λ)(1− γ)]−1 = ξ > 0. For the case ζa = ζ ′a, we
have Φ(z)−Φ(z′) = ξ(fi(ζ, z)− fi(ζ

′, z)), from which the
statement of the lemma follows. Next, consider the case where
ζa ̸= ζ ′a, and without loss of generality, let ζ ′a = −1 and ζa =
+1 and xi = −1. Then, the last term on the right hand side
of Eq. (35) is given by −λ(1−β)aii. It follows from Eq. (34)
and Eq. (35) that Φ(z)−Φ(z′)−ξλ(1−β)aii = ξ(fi(ζ, z)−
fi(ζ

′, z)). Observe then, that fi(ζ, z)− fi(ζ
′, z) > 0 implies

Φ(z)− Φ(z′) > ξλ(1− β)aii > 0. (36)
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Suppose now, that ζ ′a = +1, ζa = −1 and xi = +1. Then,
the last term on the right of Eq. (35) is given by −λ(1 −
β)aii(1 + α). It follows from Eq. (34) and Eq. (35) that

Φ(z)−Φ(z′)−ξλ(1−β)aii(1+α) = ξ(fi(ζ, z)−fi(ζ
′, z)).

(37)
Observe then, that fi(ζ, z)− fi(ζ

′, z) > 0 implies

Φ(z)− Φ(z′) > ξλ(1− β)aii(1 + α) > 0 , (38)

which completes the proof of Lemma 1. Finally, the minimum
of Eq. (36) and Eq. (38) over all i ∈ V gives the bound in
Corollary 1, by noting α ≥ 0.

C. Proof of Lemma 2
We first prove there is a unique y∗ that is the equilibrium

of the opinion dynamics in Eq. (13) for a given (fixed) x∗.
Without loss of generality, assume that x∗ = [1⊤

r ,1
⊤
n−r]

⊤ for
some 0 ≤ r ≤ n. Observe from Eq. (13) that any equilibrium
y∗ must have entries y∗i such that

y∗i = (1− λ)
[
(1− γ)

∑
j∈V

wijy
∗
j + γui

]
+ λx∗

i (39)

or in vector form y∗ = (1 − λ)[(1 − γ)Wy∗ + γu] + λx∗,
where u = [u1, . . . , un]

⊤. Rearranging for y∗ yields [I −
(1 − λ)(1 − γ)W ]y∗ = (1 − λ)γu + λx∗. Since W is
stochastic and irreducible, the Perron–Frobenius Theorem [59]
establishes that W has a simple eigenvalue equal to 1, with
all other eigenvalues having modulus no greater than 1. It
follows that the spectral radius of (1−λ)(1− γ)W is strictly
less than 1, and thus I− (1−λ)(1−γ)W is invertible. Thus,
y∗ = [I − (1− λ)(1− γ)W ]−1[(1− λ)γu+ λx∗] is unique.

Next, we prove convergence to y∗, given the fixed action
vector x∗. Using a compact vector form, we verify that the
potential function Φ(z) can be expressed in quadratic form as

Φ(z) = −1

2

(
y⊤(I −W +L+G)y − 2y⊤Gu− 2y⊤Lx∗

+ (x∗)⊤Lx∗ + u⊤Gu
)
+ F(x∗) (40)

where L = λ
(1−λ)(1−γ)I , G = γ

(1−γ)I , and

F(x∗) =
∑
i∈V

∑
j ̸=i

η
aij
2

[
(1+α)(1+x∗j )(1+x∗i )+(1−x∗i )(1−x∗j )

]
.

According to [59], (I −W +L+G) is positive definite for
any λ ̸= 0 and γ ̸= 0 (c.f. Chapter 6, and the definition of
M -matrices). Therefore, Φ(z) = Φ([x,y]) is continuous in y,
and, for fixed x = x∗, bounded from above and from below,
i.e., Φ ≤ Φ([x∗,y]) ≤ Φ̄, where Φ̄ and Φ represent the value
of Φ([x,y]) at the global maximum and global minimum with
respect to y, constrained to x = x∗, respectively.

In Lemma 1, we proved that the coevolutionary game is
a generalized ordinal potential game with potential function
Φ. For convenience, denote Φ(t) := Φ(z(t)) = Φ([x∗,y(t)]).
By using z = z(t + 1) and z′ = z(t) in Eq. (1), it follows
that under the best-response update in Eq. (11), there holds
Φ(t+1)−Φ(t) > 0 if agent i is active at time t and yi(t+1) ̸=
yi(t). It follows from Assumption 2 that Φ(t+T )−Φ(t) ≥ 0
for all t ≥ 0 with equality if and only if y(t+ T ) = y(t). In
other words, Φ(t) must strictly increase over any time window

of period T unless yi(t + T ) = yi(t) for all i ∈ V . This
is because every agent activates at least once inside the time
window, and thus either at least one agent i changes its opinion
yi(t + T ) ̸= yi(t) or every agent has an unchanged opinion
over that time window. In the latter case, clearly the opinions
have reached an equilibrium, and the results above establish
there is a unique equilibrium vector y∗.

This implies that the sequence Φt ≜ {Φ(t)}∞t=0 is mono-
tonically increasing across every time period T , and as we
established earlier, it is bounded from above by the unique
global maximum Φ̄. It follows from the monotone convergence
theorem for sequences, that Φt converges asymptotically to Φ̄,
and hence limt→∞ y(t) = y∗ asymptotically.

D. Proof of Theorem 1

The proof centers around the potential function defined
in Eq. (15), and its properties established in Lemma 1 and
Corollary 1. We establish convergence by focusing on proving
that actions must converge to a steady state x∗ in a finite
number of time steps. Letting τ denote the time step for which
the action has converged, that is, x(t + 1) = x(t) = x∗ for
all t ≥ τ , convergence of the opinion vector y(t) follows
immediately from Lemma 2.

Note that Φ(z) is bounded from above and from below, and
let us denote the maximum and minimum value of Φ(z) by Φ̄
and Φ, respectively. With an abuse of notation, we write the
potential function as an explicit function of the time, that is
Φ(t) = Φ(z(t)). Assume without loss of generality that node
i ∈ V is active at time t. Then, z(t+1) may differ from z(t)
only in the ith row. Now, if individual i chooses to change their
action, i.e. xi(t+ 1) ̸= xi(t), then we know from Eq. (16) in
Corollary 1 that the difference in potential is bounded from
below by a positive constant, i.e., Φ(t+ 1)− Φ(t) > c > 0.

Recall from Assumption 2, that every individual will acti-
vate at least once in every time window [t; t + T ), t ∈ Z+.
Thus, there can be at most ⌊ Φ̄−Φ

c ⌋ time instants where the
active agent i has xi(t + 1) ̸= xi(t) for t < T̄ for some
T̄ ∈ {Z+∪∞}. If T̄ is finite, then convergence to a maximum
of Φ (though not necessarily the global maximum) must occur
and consequently x(t) converges to some x∗ associated with
the maximum in finite time, before T̄ .

If T̄ = ∞ on the other hand, this would imply that there
exist an infinitely long sequence of agent activations in which
xi(t + 1) = xi(t) for every active agent i, during which the
opinions converge asymptotically to some steady state vector
y∗ as detailed in Lemma 2, and then there exists an agent
j such that limt→∞ xj(t + 1) ̸= xj(t). That is, an agent
chooses to change their action after a long time period in which
no action has changed, while the opinions have reached to a
neighborhood of the opinion equilibrium. We are now going to
show such an infinitely long sequence cannot exist, by showing
that if there is a sufficiently long but finite sequence with no
action change, then it is not possible for any future action
change for any agent after this sequence.

To establish the contradiction, suppose that there is a finite
sequence of agent activations with no change in the actions,
except agent i who activates at the end of this sequence and
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changes action. Let t2 be the time step at end of this sequence,
and let t1, with t1 < t2, be the supremum time step inside this
sequence at which agent i was last active before t2. Without
loss of generality, assume xi(t1) = xi(t1 + 1) = −1 which
implies xi(t2 + 1) = +1 ̸= xi(t2) = xi(t1 + 1) = −1. Now,
Eq. (14) implies that δi(z(t1)) ≤ 0 while δi(z(t2)) > 0.
We are going to show that δi(z(t2)) being positive creates a
contradiction.

First, we consider the case δi(z(t1)) = 0, which implies

2λβ
[
(1− λ)(1− γ)

∑
j∈V

wijyj(t1) + (1− λ)γui

]
+

(1− β)λ

2

∑
j∈V

aij
[
2xj(t1) + α(1 + xj(t1))

]
= 0. (41)

Rearranging Eq. (13) and substituting it into the first term of
Eq. (41) with xi(t1 + 1) = −1, we can write Eq. (41) as

2λβ
[
yi(t1 + 1) + λ

]
+

(1− β)λ

2

∑
j∈V

aij
[
2xj(t1) + α(1 + xj(t1))

]
= 0. (42)

Now, positivity of δi(z(t2)) implies

2λβ(1− λ)(1− γ)
∑

j∈V
wijyj(t2) + 2λβ(1− λ)γui

+
(1− β)λ

2

∑
j∈V

aij
[
2xj(t2) + α(1 + xj(t2))

]
> 0. (43)

Similarly, by recalling Eq. (13) and with xi(t2+1) = +1, we
can write Eq. (43) as follows:

2λβ
[
yi(t2 + 1)− λ

]
+

(1− β)λ

2

∑
j∈V

aij
[
2xj(t2) + α(1 + xj(t2))

]
> 0. (44)

By hypothesis, xj(t2) = xj(t1) for all j ̸= i, which implies
that x(t2) = x(t1). Thus, we can rearrange Eq. (42) and
substitute it into the left hand side of Eq. (44) to obtain
2λβ[yi(t2 + 1) − λ − yi(t1 + 1) − λ] > 0. By taking this
sequence to be sufficiently long, then Lemma 2 guarantees
asymptotic convergence of y(t) to y∗, and thus y(t2+1) and
y(t1+1) are both in a small neighborhood of y∗. Further, we
have yi(t1 + 1) = y∗i + ε̂t1i and yi(t2 + 1) = y∗i + ε̂t2i with
|ε̂t2i | ≤ |ε̂t1i |. This allows us to write

2λβ
[
ε̂t2i − ε̂t1i − 2λ

]
> 0. (45)

Noting that ε̂t2i − ε̂t1i ≤ 2|ε̂t1i |, it follows that for a sufficiently
small ε̂t1i (as occurs when there is a sufficiently long sequence
of agent activations with no actions changing), the left of
Eq. (45) cannot be positive, which results in a contradiction.

Now, we consider the case δi(z(t1)) < 0. Again, by
hypothesis, xj(t2) = xj(t1) for all j ̸= i. Note that this
implies that x(t2) = x(t1). Using this and adding and
subtracting 2λβ(1−λ)(1−γ)

∑
j∈V wijyj(t1) to the left hand

side of Eq. (43), we obtain

2λβ(1− λ)(1− γ)
∑
j∈V

wij(yj(t2)− yj(t1)) + δi(z(t1)) > 0

(46)

Similar to the above, if the sequence in question is sufficiently
long, then Lemma 2 guarantees asymptotic convergence of
y(t) to y∗, and also that y(t1) and y(t2) are in a small
neighborhood of y∗. Moreover, yi(t1) = y∗i +εt1i and yi(t2) =
y∗i + εt2i with |εt2i | ≤ |εt1i |. Hence, we can write Eq. (46) as

2λβ(1− λ)(1− γ)
∑
j∈V

wij(ε
t2
j − εt1j ) + δi(z(t1)) > 0 (47)

Note that δi(z(t1)) < 0 and
∑

j∈V wij(ε
t2
j − εt1j ) ≤

2|∑j∈V wijε
t1
j |. As a result, for a sufficiently small εt1j , which

is guaranteed if the sequence is sufficiently long, the left hand
side of Eq. (47) can never be positive. Therefore, δi(z(t2)) > 0
cannot hold, which implies that the action xi(t2 + 1) in fact
does not change from xi(t2).

To conclude, we showed that there cannot exist an infinitely
long sequence of agent activation such that the actions do not
change, while the opinions are converging asymptotically to
its unique equilibrium y∗. This implies that the actions change
at most ⌊ Φ̄−Φ

c ⌋ times in a finite number of time steps; with
the actions converging in finite time, asymptotic convergence
of the opinions follows from Lemma 2.

E. Proof of Theorem 2
The proof is comprised of two parts. First, we prove that

given a fixed action vector x∗ that is polarized with respect to
a partitioning (Vp,Vn), as defined in Definition 3, and under
the conditions in Eq. (20), the unique vector y∗ that satisfies
the equilibrium conditions for Eq. (17) is polarized. Second,
we show that conditions in Eq. (21) and Eq. (22) guarantee that
the action vector x∗ in Part 1 is invariant under Eq. (17), which
implies that z∗ is a polarized equilibrium of the coevolutionary
model.

Part 1: Let x∗ be an action vector that is polarized with
respect to a partitioning (Vp,Vn). Define y+m = mini∈Vp y

∗
i

and y−m = mini∈Vn y∗i , where y∗ is the unique equilibrium
opinion vector if x∗ was fixed (see Lemma 2). From Eq. (17),
the equilibrium evaluates to be

y∗i = λS(δi(z))+ (1−λ)

( ∑
j∈Vp

wijy
∗
j +

∑
k∈Vn

wiky
∗
k

)
. (48)

It follows that y+m ≥ y−m and

y+m ≥ λ+ (1− λ)
[
dpy

+
m + (1− dp)y

−
m

]
(49)

and
y−m ≥ −λ+ (1− λ)

[
d̄ny

−
m + (1− d̄n)y

+
m

]
. (50)

Rearranging Eq. (50) and substituting in Eq. (49), and then
solving for y+m yields

y+m ≥ λ
1− (1− λ)(1 + d̄n − dp)

1− (1− λ)(d̄n + dp)− (1− λ)2(1− d̄n − dp)
.

(51)
Expanding and simplifying the denominator on the right-hand-
side of Eq. (51) yields λ

(
1 + (1− λ)(1− d̄n − dp)

)
. As d̄n <

1 by definition, it follows that 1 + (1 − λ)(1 − d̄n − dp) >
1 − (1 − λ)dp. Further, dp < 1 by definition, which implies
(1−λ)dp < 1. Thus, 1+(1−λ)(1−d̄n−dp) > 1−(1−λ)dp >
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0. As the denominator on the right-hand-side of Eq. (51) is
positive, the right-hand-side of Eq. (51) is positive if and only
if 1− (1− λ)(1 + d̄n − dp) > 0 or

λ > (d̄p − dn)/(1 + d̄p − dn). (52)

That is, y∗i > 0 for all i ∈ Vp if Eq. (52) holds. Using
analogous arguments, but for the quantities y+M = maxi∈Vp

y∗i
and y−M = maxi∈Vn

y∗i , it follows that y∗i < 0,∀ i ∈ Vn if

λ > (d̄n − dp)/(1 + d̄n − dp). (53)

This secures Eq. (20).
Part 2: We now show that Eqs. (21)–(22) are sufficient for

the x∗ polarized with respect to the partitioning (Vp,Vn) to
be an equilibrium.

For all i ∈ Vp and t ≥ 0, xi(t) = +1 = xi(t+ 1) = +1 if
and only if δi(z(t)) > 0, which from Eq. (18) is implied by

2λβ(1−λ)(dpy
+
m+(1−dp)y

−
m)+(1−β)λ(2dp−1) > 0, (54)

where y−m and y+m were defined in Part 1 of this proof. Noting
Eq. (17) and Eq. (49), and simplifying the term λ, we write
Eq. (54) as

2β(y+m − λ) + (1− β)(2dp − 1) > 0. (55)

Substituting y+m from Eq. (51) and simplifying yields Eq. (21).
Following a similar argument, for any i ∈ Vn and all t ≥ 0,

xi(t) = −1 and xi(t+1) = −1 if and only if δi(x(t), y(t)) <
0, which from Eq. (18) is implied by

2λβ(1−λ)(dny
−
M+(1−dp)y

+
M )−(1−β)λ(2dn−1) < 0 (56)

where y−M and y+M were defined in Part 1 of this proof.
Utilizing again Eq. (17), we can write Eq. (56) as 2β(y−M +
λ)− (1−β)(2dn−1) < 0. Finally, substituting the expression
for y−M , computed to derive Eq. (53), we obtain Eq. (22).

F. Proof of Theorem 3

Assuming that x(t) and y(t) are polarized for a given t ∈
Z+, we start by showing that if{∑

j∈Vp
wij >

1
2

(
1 + β(1−λ)

1−βλ

)
, i ∈ Vp,∑

j∈Vn
wij >

1
2

(
1 + β(1−λ)

1−βλ

)
, i ∈ Vn

(57)

holds, then the action vector x(t+ 1) will be polarized; then
we show that if also{∑

j∈Vp
wij >

1−2λ
1−λ , i ∈ Vp,∑

j∈Vn
wij >

1−2λ
1−λ , i ∈ Vn

(58)

holds, then the opinion vector y(t+1) will also be polarized.
Hence, by induction, if z(0) is polarized, then z(t) will be
polarized, for all t ∈ Z+. Finally, Theorems 1 and 2 are
leveraged to guarantee convergence to an equilibrium and that
such equilibrium is polarized, respectively.

Let us consider an arbitrary time step t, at which an agent
i activates, and suppose that the system is in a polarized state
z(t) = z with respect to a partition (Vp,Vn). We start by
showing that if Eq. (57) holds, then xi(t + 1) = xi(t), and
thus the action vector x remains polarized. We demonstrate

the computations for agent i ∈ Vp, with the arguments for
agent i ∈ Vn being almost identical and thus omitted.

Suppose that the agent active at time t is agent i ∈ Vp, which
implies that xi(t) = +1. Now, agent i will not change action
if sgn(δi(z(t))) ≥ 0. Considering the partitioning (Vp,Vn),
and dropping the time argument t for convenience, we can
write Eq. (18) as:

δi(z) = p
∑
j∈Vp

wijyj+p
∑
k∈Vn

wikyk+q
( ∑

j∈Vp

wij−
1

2

)
(59)

where p = 2λβ(1 − λ) and q = 2λ(1 − β). Since yk ∈
[−1, 0), ∀k ∈ Vn and yj ∈ (0,+1], ∀j ∈ Vp, Eq. (59) is
implied by

δi(z) ≥ −p
∑

k∈Vn

wik + q
(∑

j∈Vp

wij −
1

2

)
. (60)

We know that
∑

k∈Vn
wik = 1 − ∑

j∈Vp
wij because W is

stochastic. Thus, Eq. (60) is further implied by

δi(z) ≥ (p+ q)
∑

j∈Vp

wij −
(
p+

1

2
q
)

(61)

It follows that∑
j∈Vp

wij ≥
1

2

(
1 +

p

p+ q

)
=

1

2

(
1 +

β(1− λ)

1− βλ

)
(62)

implies δi(z) ≥ 0, which yields xi(t + 1) = xi(t) = +1.
Following a similar path for i ∈ Vn, we conclude that the
action vector at x(t+1) remains polarized with respect to the
partitioning (Vp,Vn).

Next, we prove that if Eqs. (57) and (58) holds, then
sgn(yi(t + 1)) = sgn(yi(t)), and thus y(t + 1) is polarized
with respect to the same partitioning (Vp,Vn) just as y(t).
Again, we consider agent i ∈ Vp being the active agent at
time t, and omit the computations for i ∈ Vn as they follow
a similar path.

Consider agent i ∈ Vp as the active agent at time t. Since
Eq. (57) holds, then δi(z(t)) ≥ 0, as detailed above. Then,
with yk(t) ∈ [−1, 0), ∀k ∈ Vn, and yj(t) ∈ (0,+1], ∀j ∈ Vp,
observe that Eq. (13) implies that

yi(t+ 1) ≥ (1− λ)
(
−∑

k∈Vn
wik

)
+ λ

= (1− λ)
(∑

j∈Vp
wij − 1

)
+ λ

(63)

where the latter holds since
∑

j∈Vn
wij = 1 − ∑

j∈Vp
wij .

Thus, yi(t + 1) > 0 is implied by the right-hand side of
Eq. (63) being strictly positive, and this holds if the first
condition in Eq. (58) holds. Note that Eq. (58) always holds
if λ > 1

2 because wij are nonnegative. This, combined with
Eq. (57), secures Eq. (23).

An induction argument can then used to guarantee that z(t)
will be polarized, for any t ≥ 0, if z(0) is polarized with
respect to the partition (Vp,Vn) and Eq. (23) holds. Finally,
Theorem 1 —which can be applied since Assumptions 1–2
hold— guarantees that convergence whereby limt→∞ z(t) →
z∗. Since z(t) is polarized with respect to (Vp,Vn), and
because Eq. (23) verifies conditions (20)–(22) of Theorem 2
(which can be applied since Assumptions 1–3 hold), then z∗

must be polarized with respect to (Vp,Vn).
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G. Proof of Corollary 2
First, observe that if d > 1/2, then Eqs. (20)–(22) hold, and

Theorem 2 thus establishes that the system has a polarized
equilibrium z∗ = (x∗,y∗) with respect to the partition
(Vp,Vn). According to Lemma 2, y∗ is unique, and thus we
need only to verify that y∗ satisfies the expression given in
Eqs. (25)–(26). Under Eq. (24), it is straightforward to verify
from Eq. (17) (by considering the equilibrium equations) that
y∗ as defined by Eq. (25) satisfies the system of equations{

y+ = (1− λ)(dy+ + (1− d)y−) + λ
y− = (1− λ)(dy− + (1− d)y+)− λ

(64)

and whose solution is Eq. (26).
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