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Abstract—In role-playing games (RPGs), players are called
upon to assume the role of a character moving in an imagi-
nary environment and facing several challenges. Their success
or failure often depends on randomizers like cards or dice.
Regarding the latter, the most commonly used in RPGs are the
Platonic solids with the addition of the ten-sided die. They are
commonly simulated through classical computers, however, since
true randomness is not in their nature, they can only generate
pseudorandom numbers. On the contrary, quantum computers
exploit the nondeterministic nature of quantum mechanics, so
they are perfect candidates for truly random simulations in games
of chance. For this reason, this paper proposes and tests various
quantum circuits for sampling uniformly distributed discrete
values within a fixed range, corresponding to the number of
faces of the dice. The simulations reveal the pure randomness
of the output of the implemented circuits. They were then used
to generate random numbers within a three-dimensional dice-
rolling game.

Index Terms—Games, Programming, Quantum computing,
Random number generation, Simulation

I. INTRODUCTION

In a role-playing game (RPG), players create and de-
velop characters with unique abilities, personalities, and back-
grounds, and then participate in a shared narrative [1]. Typi-
cally players use their character’s abilities to overcome obsta-
cles, such as combat or other challenges, occurring during the
exploration of a fictional world. The outcome of the game
is affected only in part by the choices and actions of the
players. Other influencing factors are the directions given by
the game master, who acts as a referee and storyteller, and
the system of rules that govern how the game is played.
Moreover, randomness plays a key role in the game, because
it determines the success or failure of the players’ actions.
In particular, randomness is usually generated by means of
dice. Besides the 6-sided die, all convex regular polyhedra,
known as Platonic solids, are used: tetrahedron (4 faces), cube
(6), octahedron (8), dodecahedron (12), and icosahedron (20).
Another common die is the pentagonal trapezohedron (10).
In this context, also random number generator (RNG) can be
a useful support for the players, but at the same time is a
critical tool, due to its frequent use and its impact on the game
mechanics. Commonly, random values are generated by means
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of algorithms implemented in computer programs. Some of the
most relevant generators are the linear congruential generator,
Mersenne Twister, XOR shift, and well equidistributed long-
period linear (WELL) [2], [3]. More properly, these algorithms
are called pseudorandom number generators (PRNG), because
they generate pseudorandom values, i.e., values that have some
statistical properties similar to truly random numbers but are
computed in a deterministic way. In particular, PRNGs work
by starting with a seed value and using a mathematical formula
to generate the pseudorandom sequence. Besides predictability,
pseudorandom numbers have other shortcomings compared to
true random numbers [4], some of which include periodicity,
bias towards certain values, and correlation of successive
values. In this paper, the weakness of pseudorandom numbers
is solved by exploiting quantum computing to generate truly
random numbers. Quantum mechanics is based on probabilis-
tic results, making it a perfect randomness source that can be
harnessed to generate truly random numbers [5].

Although several quantum random number generators have
been recently discussed in the scientific literature [6], [7], to
the best of the authors’ knowledge, this paper is the first one
to describe quantum circuits optimized for the generation of
random numbers within the range of the admissible values
of RPG dice. They were subsequently utilized for generating
random numbers in a three-dimensional dice game.

II. METHODOLOGY

The Internet offers some examples regarding the quantum
implementation of RPGs dice [8], [9]. Such approaches rely on
the simple use of superposition obtained through Hadamard
gates applied to all N qubits so that the generated num-
ber is between 0 and 2VV. Subsequently, techniques such as
normalization, executing the circuit multiple times to count
the states equal to 1, are used to scale values to the correct
range. The problem with these techniques is that such interval
transformation creates an imbalance in number assignment,
causing some of them to be more likely than others.

The approach proposed in this paper aims to overcome this
problem by simulating RPGs dice through circuits that return
values falling directly into the desired range. Creating 4 and 8
sided dice is straightforward as these numbers are powers of
two, so Hadamard gates can be used as noted above. Things
become a bit complicated for dice with 6, 10, 12, and 20 sides,
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Fig. 1. Quantum circuit generating an equiprobable value between 1 and 6.
Starting from the left and going to the right, it is possible to see the Hadamard
gate (denoted with a blue square with an H inside), the rotation gate with
respect to the X axis (denoted with a purple square with an Rx), the Toffoli
gate (denoted with a plus contained inside a purple circle and connected with
two other points) the NOT gate (denoted by a green square with an X inside)
and finally the measurement gate (denoted by a black square).
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since these numbers do not have this property. Therefore,
operations must be performed to reduce to 0 the probability
that the unwanted states are obtained.

A. Quantum circuit for 6-sided die

Six states can be represented using a minimum of 3 qubits
since they allow to represent 23 = 8 different states, a
higher number than necessary. If these qubits are put into
superposition, 8 equally probable states will be produced, so 2
more than needed. For this reason, to describe the behavior of
a 6-sided die it is necessary that the probability of obtaining
them must be equal to 0, while all the others have the same
probability. Fig. 1 shows a recently proposed circuit that is
capable of representing 6 equally probable states [10] and
that can be adapted for this case. It was developed using
a Monte Carlo technique with the aim of implementing a
quantum random player for the Morra game. The probabilities
of obtaining the different states are the following:

[0.16666666 0.16666666 0.16666666 0.16666666
0.16666667 0.16666667 0.00000000 0.00000000]

It can be found that starting from the 7th decimal place, the
probability begins to diverge slightly. Changing the rotation
made by the RX gate from /5675 t0 Termagr77s IMproves
the chances of getting states 000, 001, 010, 011, 100, and 101,
which are now equal up to the 7th decimal place:

[0.16666667 0.16666667 0.16666667 0.16666667
0.16666667 0.16666667 0.00000000 0.00000000]

Therefore, the circuit having this small modification will be
used to roll the 6-sided die. Fig. 2 shows the results obtained
following the execution of the circuit on the IBM® Aer
simulator. It was executed twice, each for 16384 shots: the
first time without noise (Noiseless), while the second time it
was executed with IBMQ Jakarta noise model, a real quantum
computer (Noisy). As it is possible to see, noise allows for
states that would otherwise be absent. However, its effect can
be reduced thanks to mitigation algorithms (Mitigated), which
were added to the previously obtained Noisy results.
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Fig. 2. Comparison of the Noiseless, Noisy, and Mitigated results obtained
by running the 6-sided die quantum circuit for 16384 shots on the IBM® Aer
Simulator.
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Fig. 3. Quantum circuit generating an equiprobable value between 1 and 10.
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B. Quantum circuit for 10-sided die

The 10-sided die can be described using as little as 4 qubits.
If put into superposition, they allow representing up to 2* = 16
different states. Since this number is higher than necessary,
the probability to obtain 6 of these states must be equal to
0. One of the possible circuits that are capable to represent
10 different equally probable states is depicted in Fig. 3. It
was developed starting from the five-values number generator
circuit presented in [10] and making the following changes:

o the original RY" gate rotation was {yg==¢5- It returns the
following probabilities of obtaining the various states:

[2.00000011E—1 2.00000011E—1 2.00000011E—1
2.00000011E—1 1.99999957E—1 8.33296990E—34
0.00000000 0.00000000]

L - . .
Settlng. 1.t'to Tiisr6o6sss instead returns the following
probabilities:

[2.00000000E—1 2.00000000E—1 2.00000000E—1
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Fig. 4. Comparison of the Noiseless, Noisy, and Mitigated results obtained
by running the 10-sided die quantum circuit for 16384 shots on the IBM®
Aer Simulator.

2.00000000E—1 2.00000000E—1 7.53110158E—34

0.00000000 0.00000000]

The improvement is evident as the probability to obtain
the states 000, 001, 010, 011, and 100 are now equal
up to 8 decimal places. However, at present, it has not
been possible to completely eliminate the probability of
obtaining the 101 state, which is however extremely low;

« another qubit was added and then put in superposition
through a Hadamard gate;

« the remaining gates have been adjusted to return equally
probable states that are close to each other.

These modifications, shown in Fig. 3, have allowed both
to improve the results and to obtain a circuit capable of
representing the roll of a 10-sided die. Fig. 4 shows the results
obtained executing this circuit on the IBM® Aer simulator.
As for the quantum circuit for 6-sided die, it was executed
a first time for 16384 different shots without the addition of
noise (Noiseless), and a second time for another 16384 shots
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Fig. 5. Quantum circuit generating an equiprobable value between 1 and 12.
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Fig. 6. Comparison of the Noiseless, Noisy, and Mitigated results obtained
by running the 12-sided die quantum circuit for 16384 shots on the IBM®
Aer Simulator.

following the addition of the noise present in IBMQ Jakarta
(Noisy). Again, noise brings up states that should not normally
be present. Mitigation algorithms (Mitigated) can be used to
reduce its effect.
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Fig. 7. Quantum circuit generating an equiprobable value between 1 and 20.

C. Quantum circuit for 12-sided die

As with the previous case, the representation of twelve
states also requires the use of a minimum of 4 qubits. If
pushed to superposition, 16 equally probable states will be
obtained. Since 4 of these states are unwanted, the probability
of obtaining them must be set to 0. The same technique used
for the 6-sided die can be used to obtain a circuit capable
of doing this. In fact, the number 12 can be obtained by
multiplying 6 by 2. It is therefore possible to obtain a circuit
able to generate 12 equally probable numbers which can be
used to represent the 12-sided die starting from the one used to
generate 6, adding another qubit put in superposition through
a Hadamard gate, and adapting the remaining ports. The final
circuit and the results obtained by running it on the IBM® Aer
simulator are shown in Figs. 5 and 6.

D. Quantum circuit for 20-sided die

The 20-sided die can be described using a minimum of 5
qubits: if put into superposition, they allow representing 2° =
32 different states. To achieve the desired goal, the probability
of getting 12 of these states must be set to 0. It is possible
to use the same technique used previously as the number 20
can be obtained by multiplying 5 by two by two times or by
multiplying 10 by two. It can therefore be obtained starting
from the quantum circuit for 10-sided die, adding a further
qubit put in superposition and adapting the remaining gates.
The resulting circuit is depicted in Fig. 7. For this last case,
the results obtained by executing it on the IBM® Aer simulator
have been omitted due to the large size of the resulting image,
induced by the large number of states present.

E. Interactive 3D Quantum Dice Roller

The described quantum circuits were used to generate
random numbers for a dice rolling game, called Interactive 3D
Quantum Dice Roller [11]. It is based on a modified version
of the original Anton Natarov’s 3D dice roller, where number
generation has been replaced with a quantum implementation
[12] [13]. The user can select one or more dice according
to how many dice it wants to roll. The same die can be

chosen multiple times by clicking on it repeatedly. The Clear
button removes a previously chosen die. Dice are thrown by
clicking on the Throw button, after which a loading interface
will appear, hiding the operations necessary to execute the
circuits on the IBM® server. When the results are received,
an animation with dice moving shows the random number
generated by the quantum device. For practical reasons, the
application is set to be executed using the IBM® QASM
simulator, which reduces the waiting time and avoids errors
due to quantum noise.

IIT. CONCLUSIONS

In this paper, 6 different circuits for the representation
of some of the commonly used dice for role-playing games
have been discussed. While those with 4 and 8 faces are
of immediate realization, the others have required a more
careful study. The random number generation efficiency was
subsequently tested using the IBM® Aer simulator with and
without the noise from a real quantum computer. Therefore,
an attempt was made to reduce noise at least in terms of
the component induced by the measurement phase. Finally,
they were used within an application to generate the random
numbers of RPGs dice rolled by players. In the future, the
authors of this paper plan to continue their research on the
adaptation of games to the world of quantum computing.
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