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  Abstract— Muscle force production is the result of a 

sequence of electromechanical events that translate the neural 

drive issued to the motor units (MUs) into tensile forces on the 

tendon. Current technology allows this phenomenon to be 

investigated non-invasively. Single MU excitation and its 

mechanical response can be studied through high-density 

surface electromyography (HDsEMG) and ultrafast ultrasound 

(US) imaging respectively. In this study, we propose a method to 

integrate these two techniques to identify anatomical 

characteristics of single MUs. Specifically, we tested two 

algorithms, combining the tissue velocity sequence (TVS, 

obtained from ultrafast US images), and the MU firings 

(extracted from HDsEMG decomposition). The first is the Spike 

Triggered Averaging (STA) of the TVS based on the occurrences 

of individual MU firings, while the second relies on the 

correlation between the MU firing patterns and the TVS spatio-

temporal independent components (STICA). A simulation 

model of the muscle contraction was adapted to test the 

algorithms at different degrees of neural excitation (number of 

active MUs) and MU synchronization. The performances of the 

two algorithms were quantified through the comparison between 

the simulated and the estimated characteristics of MU territories 

(size, location). Results show that both approaches are negatively 

affected by the number of active MU and synchronization levels. 

However, STICA provides a more robust MU territory 

estimation, outperforming STA in all the tested conditions. Our 

results suggest that spatio-temporal independent component 

decomposition of TVS is a suitable approach for anatomical and 

mechanical characterization of single MUs using a combined 

HDsEMG and ultrafast US approach. 

 

I. INTRODUCTION 

Surface electromyography (sEMG) and ultrasound (US) 

imaging are used to assess electrical and structural muscle 

properties respectively. Both techniques underwent 

significant advancements in the last two decades, providing 

researchers and clinicians with new tools to investigate the 

neural and mechanical determinants of muscle force 

production. The detection and processing of sEMG signals 

from multiple muscle locations (high-density surface 

Electromyography; HDsEMG) enabled to describe muscle 

active contribution to motor tasks both at global level and at 

single motor unit (MU) level, through decomposition 
algorithms [1], [2]. The high spatial resolution of B-mode US 
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image sequences, classically used to extract structural and 

anatomical muscle properties [3], has been recently 
complemented with high temporal resolution (frame rates up 

to few ksps) [4], opening new perspectives on the 
investigation of mechanical events taking place within short 

time scales (tens of ms) in the muscle. In this regard, reports 

in literature showed that the analysis of cross-sectional tissue 

velocity sequences extracted from ultrafast US [5] allows to 

access anatomical and mechanical characteristics of single 

MUs [6]. The progress in both fields suggests that the 
integration of HDsEMG and high frame rate US has the 

capability to provide a complete description of the electrical 
and physical (mechanical and anatomical) MU properties. 

Moreover, since the two techniques measure different aspects 

of the same physiological phenomenon, their combination has 

the potential to improve the current algorithms based on both 

techniques individually [7]. Here we propose an integrated 

HDsEMG - Ultrafast US approach to identify anatomical 
characteristics of single MUs. Briefly, the method extracts 

single MU firings from HDsEMG [2] and the use of this 

information to identify the corresponding muscle movements 

(hereafter referred to as MU twitching areas) in US images. 

The specific aim of this study is to compare two possible 

methods to perform this integration. The first one is the Spike 

Triggered Averaging (STA) of the tissue velocity sequence 

based on the occurrences of individual MU firings, as 
previously proposed for single MU analysis of 

mechanomyograms [8]. The second one is based on the 

Spatio-Temporal Independent Components Analysis 

(STICA) of the tissue velocity sequences, recently suggested 

for the processing of ultrafast US muscle images [6]. The 

comparison of these two approaches was performed in a 

simulated environment in order to control the conditions 

leading to the generation of the MU firing patterns and tissue 

velocity sequences. Specifically, we compared the 

performance of the two methods in a simulated fusiform 

muscle by modulating two relevant parameters of muscle 

contraction: the degree of neural excitation (i.e. number of 

active MUs) and the level of MU synchronization  (i.e. degree 

of dependency between firing instants of different MUs). The 

results of this study are expected to provide quantitative 

evidence on the suitability of the two proposed approaches for 

anatomical and mechanical characterization single MUs. 
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II. METHODS 

The block diagram of the proposed approach is shown in 
Figure 1. The method combines the firing pattern of active 
MUs (decomposed from HDsEMG) and the tissue velocity 
sequence (obtained from ultrafast US imaging) to identify the 
MU twitching areas in the muscle cross section. Two 
algorithms based on spike triggered averaging (STA) and 
spatio-temporal Independent Components Analysis (STICA) 
were implemented and tested on simulated data (section B). 

1) Spike-Triggered Averaging (STA) approach 
For each MU we averaged 125-ms epochs of the tissue 

velocity sequence following every firing instant [8]. We 
therefore obtained an averaged velocity sequence in which the 
contribution of the considered MU was emphasized over the 
others. After removing the mean value from this averaged 
sequence, we identified the frame at which the maximum 
velocity occurred. The velocity sequence was averaged across 
the 20 frames around the maximum (10 frames before and 10 
frames after) time sample to obtain a single image. A global 
thresholding (70% of the maximum) was applied to this image 
to segment the MU twitching area.  

2) Spatiotemporal independent component analysis 

(STICA) approach 
We applied STICA to the tissue velocity sequences by 

extracting regions of interest (ROI) from the image sequences 
[6]. Singular value decomposition was applied to every ROI 
retaining the 50 most significant components and finally 
optimizing spatio-temporal independence between 
components through independent component analysis over 
space and time. Afterwards, for each MU we computed the 
convolution between its firing instants and a synthetic 
waveform representing the velocity of contracting fibers in the 
superficial-deep axis [4]. This convolution produced what we 
refer to as the train of MU velocity twitches. We computed the 
cross-correlation between these trains and each of the temporal 
independent components obtained for each ROI. For each ROI 
we selected the component with the maximum correlation 

within a ±20 ms time lag. This procedure provided a map of 
correlation coefficients for each decomposed MU, in which 
each pixel represented a ROI and its color is scaled with the 
peak of the cross-correlation. We segmented the correlation 
map to retain ROIs with correlation values higher than 50% 
and then identified the largest group (cluster) of connected 
ROIs providing the greatest mean correlation value. The 
spatial components of the ROIs corresponding to the identified 
cluster were summed to obtain the spatial representation of 
single MUs in the image. Similarly to the STA approach, a 
global thresholding 70% of the maximum) was applied to this 
image to determine the MU twitching area. 

B. Simulation Model 

The performance of the two approaches described in the 
previous section were assessed in simulated conditions. We 
simulated the MU firing patterns and the tissue velocity 
sequences of a muscle contracting at four contraction levels 
with two degrees of MU synchronization. The simulations 
were based on a cylindrical volume conductor model with 
skin-parallel fibers [9]. The simulated muscle had an elliptical, 
physiological cross-sectional area of 598 mm2 (Fig. 2a) and 
80,000 muscle fibers uniformly distributed in the muscle 
cross-section (i.e. fiber density of about 135 fib/mm2). A 
population of 200 MUs (Fig. 2a) with circular territory 
randomly distributed throughout the muscle (number of MU 
fibers ranged from 150 to 1500) was simulated. 

1) MU firing patterns 
A model of recruitment of MUs [10] was applied to 

simulate the firing patterns of active MUs during four 10-s 
steady contractions at constant percentage of maximum 
voluntary contraction (MVC). We simulated a total number of 
32, 74, 106 and 138 active MUs for 2%, 5%, 10% and 20% 
MVC respectively. For each contraction we implemented 2 
degrees of synchronization between active MUs by modifying 
the firing patterns with the procedure proposed by Yao et al 
[11]. A medium level (15%) and a very high level (25% ) [12] 
of MU synchronization were considered.  

 

Figure 1.  Method for the detection of MU twitching territories through the integration of HDsEMG and ultrafast US.  The method combines firing pattern of 

active MUs (decomposed from HDsEMG) and the analysis of the cross-sectional tissue velocity sequences (estimated from ultrafast US sequences) to identify 

single MU displacement areas (MU twitching territories) in the muscle cross sections. Two approaches can be adopted to implement this integration. The first 

one is based on spike triggered averaging (STA, red box) and the second one on spatio-temporal independent component analysis (STICA, blu box). 
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2) Tissue velocity sequences  
Tissue velocity sequences (TVS) were simulated at 1024 

fps. The size of the images was 128 ×128 pixels, 
corresponding to a spatial resolution of 0.3 mm for a field of 
view of 40 mm × 40 mm (Fig. 2c). The interferential tissue 
velocity sequence of the simulated contractions was obtained 
by combining the MU firing patterns and a model of 
mechanical responses of single MUs. This model describes the 
spatiotemporal velocity profiles of the MU fibers in the muscle 
cross-section in response to a single firing. Briefly, for each 
MU we considered the normalized velocity twitch 
representing the contraction (positive) and relaxation 
(negative) phases of a group of excited fibers (Fig. 2b) [4]. We 
associated this velocity twitch to each pixel of the tissue 
velocity sequence included in the MU territory and we scaled 
its amplitude with the area of the territory using a quadratic 
law [4].  To simulate the passive transmission of velocity to 
the surrounding non-active fibers, we used a bidimensional 
exponential decay centered on the MU territory to scale the 
amplitude of the velocity twitches of the pixels outside the MU 
territory. The decay rate varied between MU and was defined 
so that the tissue velocity at a distance of twice the MU 
territory radius was 50% of the velocity at the center of the 
territory. 

C. Performance Evaluation 

The comparison between the MU twitching territories 
computed with STA and STICA and the simulated ones was 
based on geometrical variables (errors of center and area 
estimations). Specifically, we considered: (i) the Euclidean 
distance between the center of the simulated and the computed 
territories and (ii) the absolute difference between the area of 
computed and simulated MU territories, divided by the size of 
the simulated one. Finally, we calculated the relative number 
of MU territories correctly identified w.r.t. to the total number 

of simulated MUs. A MU territory was regarded as correctly 
identified if the variables Recall and the Precision [13] were 
both greater than 0.4.  

D. Statistical analysis 

The errors of centers/areas estimations were merged into 
two datasets according to the method (STA or STICA) and 
analyzed with one-way ANOVA (factor: ‘‘method”). The 
effect of the factors “force level” and “synchronization level” 
were tested with a 2-way ANOVA separately on the method 
and type of error. Post-hoc assessments were conducted using 
Bonferroni test whenever a main effect was verified. 
Significance was set at p < 0.05.  

III.  RESULTS AND DISCUSSION  

Figure 3a shows the comparison between a representative, 
simulated MU territory and the correspondent estimates in two 
different conditions. The left image refers to a 2% MVC 
contraction with 15% Synchronization (good identification of 
MU territory; Precision = 0.78 and Recall = 0.79), while the 
right one to a 20% MVC contraction with 25% 
Synchronization (poor identification of MU territory; 
Precision = 0.12 and Recall = 0.35). Based on the criteria 
described in section C, the left MU was correctly identified, 
while the right one was regarded as a wrong identification.  

Group analyses confirmed the single case observation 
depicted in Figure3a. Indeed, both the contraction level and the 
degree of synchronization degraded the performance of MU 
territory identification in terms of territory estimation errors 
(Figure 3c) and consequently also the percentages of correct 
identification (Figure 3b). This result was due to the larger 
number of sources (MUs) activated for higher contraction 
levels (see B1) and to the reduced independency between their 
activation instants, associated with the higher degree of 
synchronization. Both these aspects are well known factors 
compromising the capability of STA and STICA to isolate the 
constituting contributions of the global signal and suggest a 
limited applicability of these methods for high contraction 
levels.  

The comparison between the two methods showed that 
STICA was able to correctly identify a larger number of MU 
territories than STA (Figure 3b). A significant effect of the 
contraction level and degree of MU synchronization was 
observed for both methods. However, the percentage of correct 
MU identification decreased to a lower extent for STICA (78% 
to 34%) than for STA (37% to 1%) between 2% and 20% 
MVC. Similar results were observed for the comparison at 
different levels of MU synchronization.  While the percentage 
of correct identification decreased of 3% (at 2%MVC) and 
13% (at 20% MVC) for STICA, STA failed (i.e. 0% of MU 
detected) for 10% and 20% MVC. 
Boxplots in Figure 3c show the errors on centers (top panels) 
and areas (bottom panels) of the MU territory estimates 
obtained with STICA (blue) and STA (red), for the considered 
contraction and synchronization levels. STICA approach 
provided lower errors in identifying both MU territories 
centers and areas for all tested conditions, as demonstrated by 
a statistically significant differences with respect to the STA 
approach (p < 0,05). Center and area errors increased with 
contraction and synchronization levels to a greater extent for 
STA than for STICA. This evidence, together with the 

  

Figure 2.  a) Distribution of MU territories (area range 5 - 44 mm2) in the 

muscle cross-section. b) Normalized velocity profile of the tissue velocity 

simulation model [6]. c) example of a frame of the simulated TVS at 2% 

MVC with the location of the 32 active MUs (gray circles). 
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percentage of correct identification, suggests that STICA is 
less affected by the increasing number of active MUs than 
STA.  
Overall, our results showed that STICA provides a more robust 
MU territory estimation than STA, likely because it exploits 
both spatial and temporal information of the sources. It is 
important to note that since the two approaches rely on the 
linear summation of the individual MU contributions, possible 
non linearities affecting experimental signals may degrade the 
described performance.  

IV. CONCLUSIONS 

In this study we compared two approaches (STA and 
STICA) to identify MU twitch territories from the tissue 
velocity sequences detected in muscle cross-sectional images. 
We showed that STICA outperformed STA in identifying the 
location of MU territories at different contraction and 
synchronization levels. Our results provide quantitative 
evidence on the suitability of the two proposed approaches for 
anatomical mechanical characterization of single MUs using a 
combined HDsEMG and ultrafast US approach. 
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Figure 3. a)  Two examples of MU territory estimates (white and green pixels) superimposed to the simulated ones (white and pink pixels). White areas 

include the correctly identified pixels (true positive), while pink and green areas denote the false negative and false positive pixels respectively. The crosses 

indicate the center of identified (red) and simulated (blue) MU terrirory. b) Percentage of the correctly identified MU territories w.r.t. the number of active 

MUs for the two methods (STICA and STA) applied to simulated contractions at different contraction and MU synchronization levels. c) Boxplots of center 

and area errors for methods, contractions and synchronization levels. 
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