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Abstract
A numerical method for coupled 3D-1D problems with discontinuous solutions at
the interfaces is derived and discussed. This extends a previous work on the subject
where only continuous solutions were considered. Thanks to properly defined function
spaces awell posed 3D-1D problem is obtained from the original fully 3D problem and
the solution is then found by a PDE-constrained optimization reformulation. This is a
domain decomposition strategy in which unknown interface variables are introduced
and a suitably defined cost functional, expressing the error in fulfilling interface condi-
tions, is minimized constrained by the constitutive equations on the subdomains. The
resulting discrete problem is robust with respect to geometrical complexity thanks to
the use of independent discretizations on the various subdomains. Meshes of different
sizes can be used without affecting the conditioning of the discrete linear system, and
this is a peculiar aspect of the considered formulation. An efficient solving strategy is
further proposed, based on the use of a gradient based solver and yielding a method
ready for parallel implementation. A numerical experiment on a problem with known
analytical solution shows the accuracy of the method, and two examples on more
complex configurations are proposed to address the applicability of the approach to
practical problems.
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1 Introduction

The present work deals with simulations in domains with embedded cylindrical, or
nearly cylindrical inclusions, with cross-section sizes much smaller than their length
and than the domain scale. This kind of problem is typical of a large variety of appli-
cations, ranging from the study of living tissues, where the inclusions are constituted,
e.g., by the capillaries or by the vessels of the lymphatic system [2, 12, 18], to the
study of the interaction between plant roots and the soil [10, 20], or fibre-reinforced
materials [16, 21], and geological applications [3, 6, 7]. In these cases, it is often con-
venient to treat the inclusions as one dimensional objects, thus actually collapsing the
cross-sections on the centrelines, avoiding the complexity and the overhead of gen-
erating good quality meshes in the interior of the small inclusions. Such geometrical
reduction is however non-trivial from a mathematical standpoint as it ends up in a 3D
problem which is coupled to problems on the 1D domains, and non standard function
spaces need to be used to allow the definition of a well posed trace operator for 3D
functions on 1D manifolds.

An analysis of 3D problems with singular source terms is available in [4, 5], where
the solution is placed in suitable weighted Sobolev spaces. In [4] a finite element
based approach is used to solve the problem and optimal convergence trends for the
error are observed in the used spaces. Problems with singular source terms are also
considered in [22], where Dirac delta sources are replaced by regularizing terms,
compactly supported. Regularizing techniques are suggested also in [9], and in [11]
where line source terms are approximated by suitable kernel functions that distribute
the source in a three dimensional neighbourhood of the line. A splitting technique
is proposed in [8], where the solution is seen as the sum of a known low regularity
term and a regular correction term that is computed solving an elliptic problem with
source term and boundary data depending on a chosen extension operator for the
singular source. In [13] a lifting technique is employed for the singular source term,
whereas a domain decomposition approach based on the use of Lagrange multipliers
is suggested in [14]. The derivation of a coupled 3D-1D problem, starting from an
original equidimensional formulation is proposed in [15], under suitable assumptions
on the behavior of the solution in the inclusions that allow the definition of averaging
operators.

Here an extension of the approach described in [1] for 3D-1D coupled elliptic prob-
lems is proposed, allowing to deal with discontinuous solution at the interfaces. This
is relevant for a large variety of practical applications, as e.g. in many biological pro-
cesses, where the boundary between the 3D and the 1D domains is a semi-permeable
membrane and the Starling equation applies [2, 11, 14, 15]. Discontinuous solutions
also arise in the application of 3D-1D coupled models for the simulation of plant
roots-soil interaction [10, 20] or in modeling natural and artificial wells in geological
reservoirs [3, 7]. Similarly to [1], a well posed 3D-1D coupled problem is derived from
the original 3D-3D problem through an appropriate choice of the functional space for
the solution, which allows to define extension and trace operators between spaces on

123



Numerical Algorithms

3Dand1Ddomains. Further, a domain decomposition approach is employed, introduc-
ing additional interface unknowns to decouple the 3D problem from the problems on
the 1D inclusions, and a cost functional is designed such that the solution is obtained
as the minimum of the functional constrained by the constitutive equations on the
subdomains. The original work in [1] deals with continuous solution at the boundary
between the 3D and the 1D domains. Here, while keeping the same structure of this
original method, different interface variables are introduced for the domain decom-
position process, which result in a novel setting for the PDE constrained optimization
problem described. In the approach proposed in [1], the control variables of the opti-
mization approach represent the flux and the trace of the solution on the 1D interfaces,
equal for the 3D and 1D solution. Here, instead, the interface variables are the two
different traces of the solution at the interfaces. This difference has an impact on the
definition of the functional and on the variables the functional depends on. The prob-
lem is discretized using finite elements on non conforming meshes, thus providing a
great flexibility in the choice of the meshes that can be independently defined on each
subdomain, and a numerical scheme suitable for parallel computing is obtained thanks
to the use of domain decomposition combined to a gradient scheme for solving the
resulting discrete problem. Despite the differences in problem formulation, the dis-
cretization of the method can be handled in a way similar to the one in [1], within the
proposed framework, requiring different discrete operators, but keeping unchanged
the overall structure of the method.

The problem considered is presented in Section 2 in equi-dimensional form, and in
Section 3 its 3D-1D formulation is derived in weak form in ad-hoc function spaces.
The problem is re-written as a PDE constrained optimization problem in Section 4,
and presented in discrete form in Section 5. The approach used to solve the obtained
linear system is discussed in Section 6, whereas some numerical tests are reported in
Section 7 and finally conclusions are reported in Section 8.

2 Notation and formulation of the fully 3D coupled problem

Let�⊂R
3 be a convexdomain inwhich ageneralized cylinder�⊂R

3 is embedded.We
denote by � = {λ(s), s ∈ (0, S)} the centerline of �, while � = {�(s), s ∈ [0, S]}
is the lateral surface of �. In the following we assume, for simplicity, that � is a
rectilinear segment in the three-dimensional space. We denote by �(s) the transversal
sections of the cylinder as s ranges in the interval [0, S] and by �(s) their boundary.
We suppose the sections to have an elliptic shape, with R(s) being the maximum axes
length of the ellipse centered in λ(s). For the two extreme sections of the cylinder we
adopt the compact notation �0 = �(0) and �S = �(S). For the derivation of the
model problem we assume that �0 and �S lie on the boundary ∂�, but the extension
to more general cases is straightforward. The portion of � that does not include the
cylinder is denoted by D = � \ �. We define ∂De = ∂� \ {�0 ∪ �S}, referring to it
as the external boundary of D, with ∂D = ∂De ∪ �. In case the extreme sections of
� were inside �, ∂De would coincide with ∂�.
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Let us now consider the following diffusion problem, with unknown pressures u in
D and ũ in �:

3D-problem on D:
− ∇ · (K∇u) = f in D (1)

u = 0 on ∂De (2)

K∇u · n = β(ũ|� − u|� ) on � (3)

3D-problem on �:
− ∇ · (K̃∇ũ) = g in � (4)

ũ = 0 on �0 ∪ �S (5)

K̃∇ũ · ñ = β(u|� − ũ|� ) on � (6)

Vectors n and ñ = −n are the outward pointing unit normal vectors to �, respec-
tively for D and�; K , K̃ and β are positive scalars, while f and g denote source terms.
For the sake of simplicity we consider homogeneous Dirichlet boundary conditions
on �0 and �S and on ∂De. Equations (3) and (6) allow us to couple the two problems
imposing flux conservation. According to these equations, the flux across � is directly
proportional to the jump of the pressures, with β denoting the permeability coefficient
of the membrane �. Different coupling conditions could be considered, for example
adding a pressure continuity constraint and consequently not linking the flux definition
to the pressure jump, as done in [1]. The choice of the interface condition depends of
course on the properties of the interface, and thus on the kind of application.

Let us now suppose that R is much smaller than the size of � and than the lon-
gitudinal length L of the cylinder itself, in particular. This allows us to assume that
the variables defined on � or on � are actually only functions of the coordinate s,
considering negligible their variation on the cross-sections of the inclusion. This is the
key point that allows us, in the next section, to work out a well-posed 3D-1D coupled
problem from equations (1)-(6).

3 Variational formulation of the 3D-1D problem

A 3D-1D coupled problem is obtained from problem (1)-(6), after writing it in varia-
tional form in suitable function spaces, as here described. Let us, thus, introduce the
spaces

H1
0 (D) =

{
v ∈ H1(D) : v|∂De = 0

}
,

H1
0 (�) =

{
v ∈ H1(�) : v|�0

= v|�S
= 0

}
,

H1
0 (�) =

{
v ∈ H1(�) : v(0) = v(S) = 0

}
,

a trace operator

γ� : H1(D) ∪ H1(�) → H
1
2 (�), such that γ�v = v|� ∀v ∈ H1(D) ∪ H1(�)
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and two extension operators

E� : H1(�) → H1(�) and E� : H1(�) → H
1
2 (�)

such that, given v̂ ∈ H1
0 (�), E� v̂(s) and E� v̂(s) are the uniform extension of v̂(s)

respectively to �(s) and to �(s). We observe that E� = γ� ◦ E� . Once denoted by V̂
the space H1

0 (�), let us further consider the spaces:

Ṽ = {v ∈ H1
0 (�) : v = E� v̂, v̂ ∈ V̂ },

H� = {v ∈ H
1
2 (�) : v = E� v̂, v̂ ∈ V̂ },

VD =
{
v ∈ H1

0 (D) : γ�v ∈ H�
}

,

such that functions in Ṽ and in H� are respectively the uniform extension to � and
� of functions in V̂ and functions in VD have trace on � belonging toH� . Functions
in such spaces fit the assumptions we have made on the negligible variation of the
variables on the cross-sections of � and �. Denoting by (·, ·)X the scalar product on
a generic space X , the variational formulation of problem (1)-(6) can be written as:
find (u, ũ) ∈ VD × Ṽ such that

(K∇u,∇v)L2(D) − (
β(γ� ũ − γ�u), γ�v

)
H� = ( f , v)L2(D) ∀v ∈ VD (7)

(K̃∇ũ,∇ṽ)L2(�) + (
β(γ� ũ − γ�u), γ�v

)
H� = (g, ṽ)L2(�)∀ṽ ∈ Ṽ (8)

Let us introduce two auxiliary variables ψD , ψ� ∈ H� , in order to formally decouple
the two equations. Denoting by X ′ the dual of the generic space X , the problem is thus
rewritten as: find (u, ũ) ∈ VD × Ṽ , ψD ∈ H� and ψ� ∈ H� such that

(K∇u,∇v)L2(D) + (
βγ�u, γ�v

)
H� − (

βψ�, γ�v
)
H� = ( f , v)L2(D) ∀v ∈ VD (9)

(K̃∇ũ,∇ṽ)L2(�) + (
βγ� ũ, γ� ṽ

)
H� − (

βψD , γ� ṽ
)
H� = (g, ṽ)L2(�)∀ṽ ∈ Ṽ (10)

〈
γ�u − ψD , η

〉
H�,H� ′ = 0 ∀η ∈ H� ′

(11)

〈
γ� ũ − ψ�, η

〉
H�,H� ′ = 0 ∀η ∈ H� ′

. (12)

Let us remark that Equations (9)-(10) could also be written as

(K∇u,∇v)L2(D) + (
βψD , γ�v

)
H� − (

βψ�, γ�v
)
H� = ( f , v)L2(D) ∀v ∈ VD

(K̃∇ũ,∇ṽ)L2(�) + (
βψ�, γ� ṽ

)
H� − (

βψD , γ� ṽ
)
H� = (g, ṽ)L2(�) ∀ṽ ∈ Ṽ .
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However, formulation (9)-(10) is preferred, as it allows to have an empty Dirichlet
boundary on either ∂De or�0, �s . This is a desired property for domain decomposition
purposes.

Thanks to the adopted functional spaces, problem (9)-(12) can be easily reduced to
a 3D-1D coupled problem. Let us observe that, given η ∈ H� ′

and ρ ∈ H�

〈ρ, η〉H�,H� ′ =
∫

�

ρη d� =
∫ S

0

( ∫

�(s)
ρη dl

)
ds.

Since ρ ∈ H� , there exists ρ̂ ∈ V̂ such that E� ρ̂ = ρ and thus
∫
�(s) ρ dl = |�(s)|ρ̂(s).

Hence we can introduce η ∈ V̂ ′ such that

∫ S

0

( ∫

�(s)
ρη dl

)
ds =

∫ S

0
|�(s)|ρ̂(s)η(s) ds = 〈

ρ̂, |�(·)|η〉V̂ ′,V̂ ,

where |�(s)| is the section perimeter size at s ∈ [0, S]. Similarly, if we consider
ρ,w ∈ H� , then

(ρ,w)H� =
∫ S

0
|�(s)|ρ̂(s)ŵ(s) ds = (|�(·)|ρ̂, ŵ

)
L2(�)

with E� ρ̂ = ρ and E� ŵ = w. Finally let us observe that

(K̃∇ũ,∇ṽ)L2(�) =
∫

�

K̃∇ũ∇ṽ dσ =
∫ S

0
K̃ |�(s)|dû

ds

d v̂

ds
ds

where û, v̂ ∈ V̂ are such that ũ = E� û, ṽ = E� v̂ and |�(s)| is the section area
at s ∈ [0, S]. Problem (9)-(12) can now be rewritten as a reduced 3D-1D coupled
problem: Find (u, û) ∈ VD × V̂ , ψ̂D ∈ V̂ and ψ̂� ∈ V̂ such that:

(K∇u,∇v)L2(D) + (|�(·)|βǔ, v̌
)
L2(�)

−(|�(·)|βψ̂� , v̌
)
L2(�)

= ( f , v)L2(D)

∀v ∈ VD, v̌ ∈ V̂ : γ�v = E� v̌
(13)

(
K̃ |�(·)|dû

ds
,
d v̂

ds

)
L2(�)

+ (|�(·)|βû, v̂
)
L2(�)

− (|�(·)|βψ̂D , v̂
)
L2(�)

= (|�(·)|g, v̂)L2(�)

∀v̂ ∈ V̂

(14)

〈
|�(·)|(ǔ − ψ̂D ), η

〉
V̂ ,V̂ ′ = 0γ�u = E� ǔ,∀η ∈ V̂ ′ (15)

〈
|�(·)|(û − ψ̂� ), η

〉
V̂ ,V̂ ′ = 0∀η ∈ V̂ ′ (16)

with g(s) = 1
|�(s)|

∫
�(s) g dσ , being g sufficiently regular.
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4 PDE-constrained optimization problem

Conditions (15) and (16) can be replaced by the minimization of a cost functional
mimicking the error committed in the fulfillment of such constraints. At this aim let
us define

J (ψ̂D , ψ̂� ) = 1

2

(
||γ�u(ψ̂� ) − ψD ||2H� + ||γ� ũ(ψ̂D ) − ψ� ||2H�

)

= 1

2

(
||γ�u(ψ̂� ) − E� ψ̂D ||2H� + ||γ�E� û(ψD ) − E� ψ̂� ||2H�

) (17)

to beminimized constrained by (13) and (14). In order towork out the PDE-constrained
optimization formulation of the problem in a compact form, let us define the linear
operators A : VD → V ′

D , Â : V̂ → V̂ ′, S : V̂ → V ′
D and D̂ : V̂ → V̂ ′ such that, for

any u ∈ VD, ǔ ∈ V̂ : γ�u = E� ǔ, û ∈ V̂ , ψ̂� , ψ̂D ∈ V̂ :

〈Au, v〉V ′
D,VD

= (K∇u,∇v)L2(D) + (|�(·)|βǔ, v̌
)
L2(�)

v ∈ VD, v̌ ∈ V̂ : γ�v = E� v̌
(18)

〈
Âû, v̂

〉
V̂ ′,V̂ =

(
K̃ |�(·)|dû

ds
,
d v̂

ds

)
L2(�)

+ (|�(·)|βû, v̂
)
L2(�)

v̂ ∈ V̂ (19)

〈
Sψ̂� , v

〉
V ′
D,VD

= (|�(·)|βψ̂� , v̌)L2(�) v ∈ VD, v̌ ∈ V̂ : γ�v = E� v̌ (20)

〈
D̂ψ̂D , v̂

〉
V̂ ′,V̂

= (|�(·)|βψ̂D , v̂)L2(�) v̂ ∈ V̂ . (21)

The respective adjoints will be denoted as A∗ : VD → V ′
D , Â

∗ : V̂ → V̂ ′, S : VD →
V̂ ′ and D̂∗ : V̂ → V̂ ′. If we further define

F ∈ V ′
D s.t. F(v) = ( f , v)L2(D), v ∈ VD (22)

G ∈ V̂ ′ s.t. G(v̂) = (|�(·)|g, v̂)L2(�), v̂ ∈ V̂ , (23)

equations (13)-(14) can be written as:

Au − Sψ̂� = F (24)

Âû − D̂ψ̂D = G. (25)

Finally, the PDE-constrained optimization problem can be written as

min
ψ̂D ,ψ̂

�
∈V̂

J (ψ̂D , ψ̂� ) subject to (24) − (25) (26)

We now provide some results on the optimal control and the stepsize of the steepest
descent method for Problem (26).
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Proposition 1 Let us consider the trace operator γ� : VD → H� and the extension
operators E� : V̂ → Ṽ and E� = γ� ◦ E� : V̂ → H� , whose respective adjoints are
γ ∗

�
: H� ′ → V ′

D, E�
∗ : Ṽ ′ → V̂ ′ and E∗

�
: H� ′ → V̂ ′ and let V̂ : V̂ → V̂ ′ and

H� : H� → H� ′
be Riesz isomorphisms. Then the optimal control (ψ̂D , ψ̂� ) that

provides the solution to (26) is such that

−1
V̂

(E∗
�
H� (E� ψ̂D − γ�u(ψ̂� )) + D̂∗ p̂) = 0 (27)

−1
V̂

(E∗
�
H� (E� ψ̂� − E� û(ψ̂D )) + S∗ p) = 0 (28)

where p ∈ VD and p̂ ∈ V̂ are the solutions respectively to

A∗ p = γ ∗
�
H� (γ�u(ψ̂� ) − E� ψ̂D ) (29)

Â∗ p̂ = E∗
�
H� (E� û(ψ̂D ) − E� ψ̂� ) (30)

Proof Let us compute the Fréchet derivatives of J with respect to the control variables
ψ̂D and ψ̂� . To this end, we introduce the increments δψ̂D , δψ̂� ∈ V̂ and we recall
that, for � = D, �, there exists δψ� ∈ H� : δψ� = E� δψ̂�. We have:

∂ J

∂ψ̂D

(
ψ̂D + δψ̂D , ψ̂�

) =
(
γ�u(ψ̂� ) − ψD , −δψD

)
H�

+
(
γ� ũ(ψ̂D ) − ψ� , γ� ũ(δψ̂D )

)
H�

=
(
E� ψ̂D − γ�u(ψ̂� ),E� δψ̂D

)
H�

+
(
γ�E� û(ψ̂D ) − E� ψ̂� , γ�E� û(δψ̂D )

)
H�

=
=
〈
E∗

�
H� (E� ψ̂D − γ�u(ψ̂� )), δψ̂D

〉
V̂ ′,V̂

+
〈
E∗

�
H� (E� û(ψ̂D ) − E� ψ̂� ), û(δψ̂D )

〉
V̂ ′,V̂

=
〈
E∗

�
H� (E� ψ̂D − γ�u(ψ̂� )), δψ̂D

〉
V̂ ′,V̂

+
〈
Â∗ p̂, Â−1 D̂δψ̂D

〉
V̂ ′,V̂

=

=
〈
E∗

�
H� (E� ψ̂D − γ�u(ψ̂� )), δψ̂D

〉
V̂ ′,V̂

+
〈
D̂∗ p̂, δψ̂D

〉
V̂ ′,V̂

=

=
(
−1

V̂
(E∗

�
H� (E� ψ̂D − γ�u(ψ̂� )) + D̂∗ p̂), δψ̂D

)
L2(�)

;

∂ J

∂ψ̂�

(ψ̂D , ψ̂� + δψ̂� ) =
(
γ�u(ψ̂� ) − ψD , γ�u(δψ̂� )

)
H�

+
(
γ� ũ(ψ̂D ) − ψ� , −δψ�

)
H�

=
〈
γ ∗

�
H� (γ�u(ψ̂� ) − E� ψ̂D ), u(δψ̂� )

〉
V ′
D ,VD

+
(
E� ψ̂� − γ�E� û(ψ̂D ),E� δψ̂�

)
H�

=

=
〈
A∗ p, A−1Sδψ̂�

〉
V ′
D ,VD

+
〈
E∗

�
H� (E� ψ̂� − E� û(ψ̂D )), δψ̂�

〉
V̂ ′,V̂

=

=
〈
S∗ p, δψ̂�

〉
V̂ ′,V̂

+
〈
E∗

�
H� (E� ψ̂� − E� û(ψ̂D )), δψ̂�

〉
V̂ ′,V̂

=

=
(
−1

V̂
(S∗ p + E∗

�
H� (E� ψ̂� − E� û(ψ̂D )), δψ̂�

)
L2(�)

,

which yield the thesis.
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From the derivatives computed in Proposition 1, we now define the quantities

δψ̂D = −1
V̂

(E∗
�
H� (E� ψ̂D − γ�u(ψ̂� )) + D̂∗ p̂) ∈ V̂ (31)

δψ̂� = −1
V̂

(E∗
�
H� (E� ψ̂� − E� û(ψ̂D )) + S∗ p) ∈ V̂ . (32)

Then the following proposition holds:

Proposition 2 Given the variable X , let us increment it by a step ζ δX , where δX =
(δψ̂D , δψ̂� ). The steepest descent method corresponds to the stepsize ζ = −N

D with

N =
(
δψ̂D , δψ̂D

)
L2(�)

+
(
δψ̂� , δψ̂�

)
L2(�)

D =
〈
Sδψ̂� , δ p

〉
V ′
D,VD

−
〈
E∗

�
H� (γ�δu−E� δψ̂D ), δψ̂D

〉
V̂ ′,V̂

+
〈
D̂δψ̂D , δ p̂

〉
V̂ ′,V̂

+

−
〈
E∗

�
H� (E� δû − E� δψ̂� ), δψ̂�

〉
V̂ ′,V̂

and where
δu = u(δψ̂� ) = A−1Sδψ̂� ∈ VD,

δû = û(δψ̂D ) = Â−1 D̂δψ̂D ∈ V̂

and δ p ∈ VD, δ p̂ ∈ V̂ are such that:

A∗δ p = γ ∗
�
H� (γ�δu − E� δψ̂D )

Â∗δ p̂ = E∗
�
H� (E� δû − E� δψ̂� )

Proof It is sufficient to set to zero the derivative ∂ J (X+ζ δX )
∂ζ

. In the computation that
follows we adopt the lighter notation:

u = u(ψ̂� ); δu = u(δψ̂� ); û = û(ψ̂D ); δû = û(δψ̂D ).

J (X + ζ δX ) = J (ψ̂D + ζ δψ̂D , ψ̂� + ζ δψ̂� ) =

= 1

2

(
γ�u(ψ̂� + ζ δψ̂� ) − ψD − ζ δψD , γ�u(ψ̂� + ζ δψ̂� ) − ψD − ζ δψD

)
H�

+ 1

2

(
γ� ũ(ψ̂D + ζ δψ̂D ) − ψ� − ζ δψ� , γ� ũ(ψ̂D + ζ δψ̂D ) − ψ� − ζ δψ�

)
H�

=

= 1

2

(
γ�u + ζγ� δu − E� ψ̂D − ζE� δψ̂D , γ�u + ζγ� δu − E� ψ̂D − ζE� δψ̂D

)
H�

+

+ 1

2

(
γ�E� û + ζγ�E� δû − E� ψ̂� − ζE� δψ̂� , γ�E� û + ζγ�E� δû − E� ψ̂� − ζE� δψ̂�

)
H�

= J (ψ̂D , ψ̂� ) + ζ
(
γ�u − E� ψ̂D , γ� δu − E� δψ̂D

)
H�

+ ζ
(
E� (û − ψ̂� ),E� (δû − δψ̂� )

)
H�

+ ζ 2

2

(
γ� δu − E� δψ̂D , γ� δu − E� δψ̂D

)
H�

+ ζ 2

2

(
E� (δû − δψ̂� ),E� (δû − δψ̂� )

)
H�

123



Numerical Algorithms

∂ J (X + ζ δX )

∂ζ
=
(
γ�u − E� ψ̂D , γ� δu − E� δψ̂D

)
H�

+
(
E� (û − ψ̂� ),E� (δû − δψ̂� )

)
H�

+

+ ζ
(
γ� δu − E� δψ̂D , γ� δu − E� δψ̂D

)
H�

+ ζ
(
E� (δû − δψ̂� ),E� (δû − δψ̂� )

)
H�

= 0

⇒ ζ = −
(
γ�u − E� ψ̂D , γ� δu − E� δψ̂D

)
H�

+
(
E� û − E� ψ̂� ,E� δû − E� δψ̂�

)
H�(

γ� δu − E� δψ̂D , γ� δu − E� δψ̂D

)
H�

+
(
E� δû − E� δψ̂� ,E� δû − E� δψ̂�

)
H�

Rearranging properly the terms we get ζ = −N
D with

N =
〈
A∗ p, A−1Sδψ̂�

〉
V ′
D,VD

−
〈
E∗

�
H� (γ�u − E� ψ̂D ), δψ̂D

〉
V̂ ′,V̂

+
+
〈
Â∗ p̂, Â−1 D̂δψ̂D

〉
V̂ ′,V̂

−
〈
E∗

�
H� (E� û − E� ψ̂� ), δψ̂�

〉
V̂ ′,V̂

=

=
〈
S∗ p, δψ̂�

〉
V̂ ′,V̂

−
〈
E∗

�
H� (γ�u − E� ψ̂D ), δψ̂D

〉
V̂ ′,V̂

+
〈
D̂∗ p̂, δψ̂D

〉
V̂ ′,V̂

+
−
〈
E∗

�
H� (E� û − E� ψ̂� ), δψ̂�

〉
V̂ ′,V̂

=

=
(
δψ̂D , δψ̂D

)
L2(�)

+
(
δψ̂� , δψ̂�

)
L2(�)

and

D =
〈
A

−1
Sδψ̂� , A

∗
δ p
〉
VD,V ′

D

−
〈
E∗

�
H� (γ�δu − E� δψ̂D ), δψ̂D

〉
V̂ ′,V̂

+
+
〈
Â

−1
D̂δψ̂D , Â∗δ p̂

〉
V̂ ,V̂ ′ −

〈
E∗

�
H� (E� δû − E� δψ̂� ), δψ̂�

〉
V̂ ′,V̂

=

=
〈
Sδψ̂� , δ p

〉
V ′
D,VD

−
〈
E∗

�
H� (γ�δu − E� δψ̂D ), δψ̂D

〉
V̂ ′,V̂

+
〈
D̂δψ̂D , δ p̂

〉
V̂ ′,V̂

+

−
〈
E∗

�
H� (E� δû − E� δψ̂� ), δψ̂�

〉
V̂ ′,V̂

that yields the thesis.

5 Discrete matrix formulation

In this section wework out the discretematrix formulation of problem (26). In general,
the 3D-1D coupling does not present particular issues in the discrete framework.
Nonetheless our approach has the additional advantage of allowing for the use of non
conforming meshes: thanks to the optimization framework, the partitions of the 1D
inclusions can be defined in a completely independent manner from the surrounding
3D mesh, without any theoretical or practical constraint on mesh sizes. Further, the
proposed formulation provides the direct computation of interface variables, and it
allows to decouple the 3D problem from the 1D problems, thus paving the way to
the use of possibly different constitutive equations and to the application of efficient
solvers based on parallel computing techniques.

123



Numerical Algorithms

For the sake of generality,we considerI segments of different length and orientation
crossing the domain �. The segments are defined as �i = {λi (s), s ∈ (0, Si )}, i =
1, ..., I and they represent the centerlines of I cylindrical inclusions �i .

The proposed approach can easily handle intersections among inclusions centre-
lines. Intersecting segments are split into sub-segments in correspondence of their
intersection point q. In this way, q always corresponds to a segment endpoint, in which
pressure continuity and flux conservation are constrained. It is to remark that a variety
of intersection modes is possible for the original three dimensional inclusions. As an
example, 3D inclusions might partially overlap whereas the corresponding centrelines
might not intersect. By considering here only intersections between centrelines, we
implicitly assume that the intersection volume of the corresponding three dimensional
inclusions is small and can be reduced to a point in the scale of the domain. A deeper
investigation on the treatment of different intersection models is out of the scope of
the present work.

After having extended the domain D to the whole �, let us consider a tetrahedral
mesh T of domain �, on which we define Lagrangian finite element basis functions
{ϕk}Nk=1, such that U = ∑N

k=1Ukϕk is the discrete approximation of pressure u. On
each segment �i we build three different partitions, independent from each other and

from T . We denote them by T̂i , τ D
i and τ�

i and we define the basis functions
{
ϕ̂i,k

}N̂i
k=1

on T̂i ,
{
θD
i,k

}ND
i

k=1
on τ D

i and
{
θ�
i,k

}N�
i

k=1
on τ�

i , with N̂i , ND
i and N�

i denoting the number

of DOFs of the discrete approximations of the variables ûi , ψ̂D ,i and ψ̂�,i respectively.
Such approximations are defined as

Ûi =
N̂i∑
k=1

Ûi,k ϕ̂i,k, �D
i =

ND
i∑

k=1

�D
i,k θD

i,k, ��
i =

N�
i∑

k=1

��
i,k θ�

i,k .

We then define the following matrices:

A ∈ R
N×N s.t. (A)kl =

∫

�

K∇ϕk∇ϕl dω +
I∑
i=1

∫

�i

βi |�i (s)|ϕk |�i
ϕl |�i

ds

Âi ∈ R
N̂i×N̂i s.t. ( Âi )kl =

∫

�i

K̃i |�i (s)|dϕ̂i,k

ds

dϕ̂i,l

ds
ds +

∫

�i

βi |�i (s)|ϕ̂i,k ϕ̂i,l ds

D̂i
β ∈ R

N̂i×ND
i s.t. (D̂β

i )kl =
∫

�i

βi |�i (s)|ϕ̂i,k θD
i,l ds

Siβ ∈ R
N×N�

i s.t. (Sβ
i )kl =

∫

�i

βi |�i (s)|ϕk |�i
θ�
i,l ds,

and the vectors

f ∈ R
N s.t. fk =

∫

�

f ϕk dω, gi ∈ R
N̂i s.t. (gi )k =

∫

�i

|�i (s)|g ϕ̂i,k ds.
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Setting N̂ = ∑I
i=1 N̂i , ND = ∑I

i=1 N
D
i and N� = ∑I

i=1 N�
i , we can group the

matrices as follows:

D̂
β = diag

(
D̂1

β
, ..., D̂β

I
)

∈ R
N̂×ND Sβ = [

S1β, S2β, ..., SIβ
] ∈ R

N×N�

and

Â =
[
diag

(
Â1, ..., ÂI

)
QT

Q 0

]
=
[
Â� QT

Q 0

]

where matrix Q simply equates the DOFs at the extrema of connected sub-segments
and allow us to enforce continuity through Lagrange multipliers. Let us observe how
Â = Â� in case no intersections occur among segments. Finally we can write

AU − Sβ�� = f (33)

ÂÛ − D̂
β
�D = g (34)

with

Û =
[
Û T
1 , ..., Û T

I
]T ∈ R

N̂ ; g = [gT1 , gT2 , ..., gTI ]T ∈ R
N̂

�D =
[
(�D

1 )T , ..., (�D
I )T

]T ∈ R
ND ; �� =

[
(��

1 )T , ..., (��
I )T

]T ∈ R
N� .

The discrete functional is derived from (17) replacing the norms inH� with norms in
L2(�) and summing over the I inclusions. First we define matrices

Gi ∈ R
N×N s.t. (Gi )kl =

∫

�i

ϕk |�i
ϕl |�i

ds,

Ĝi ∈ R
N̂i×N̂i s.t. (Ĝi )kl =

∫

�i

ϕ̂i,k ϕ̂i,l ds,

MD
i ∈ R

ND
i ×ND

i s.t. (MD
i )kl =

∫

�i

θD
i,k θD

i,l ds,

M�
i ∈ R

N�
i ×N�

i s.t. (M�
i )kl =

∫

�i

θ�
i,k θ�

i,l ds,

Di ∈ R
N×ND

i s.t. (Di )kl =
∫

�i

ϕk |�i
θD
i,l ds,

Ŝi ∈ R
N̂i×N�

i s.t. (Ŝi )kl =
∫

�i

ϕ̂i,k θ�
i,l ds,

and then

G =
I∑
i=1

Gi ∈ R
N×N Ĝ = diag

(
Ĝ1, ..., ĜI

)
∈ R

N̂×N̂

MD =diag
(
MD

1 , ..., MD
I
)

∈ R
ND×ND , M� =diag

(
M�

1 , ..., M�
I
)

∈ R
N�×N�

123



Numerical Algorithms

D = [D1, D2, ..., DI ] ∈ R
N×ND Ŝ = diag

(
Ŝ1, ..., ŜI

)
∈ R

N̂×N�

The discrete cost functional then reads:

J̃ = 1

2

(
UTGU −UT D�D − �T

DDTU + �T
DM

D�D+

+ Û T ĜÛ − Û T Ŝ�� − �T
� Ŝ

T
Û + �T

�M���

) (35)

Finally, the discrete matrix formulation of the 3D-1D problem can be written as:

min
(�D,��)

J̃ (�D, ��) subject to (33) − (34) (36)

We remark that the above derivation of the matrices for the discrete problem requires,
first, to compute the intersections between the segments and the elements of the 3D
mesh. This process can be performed very efficiently by exploiting information on
cell neighborhood. Once such intersections are computed, line integrals are evaluated
using composite 1D quadrature rules and, finally, standard assembly operations for
finite elements matrices are performed. No modifications of mesh element vertices
nor of segment points is required, and each segment can be processed independently
from the others. The entire process also applies to higher order discretizations.

First order optimality conditions for problem (36) are collected in the saddle-point
system

K=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

G 0 −D 0 AT 0

0 Ĝ 0 −Ŝ 0 Â
T

−DT 0 MD 0 0 (− D̂β)T

0 −Ŝ
T

0 M� (−Sβ)T 0
A 0 0 −Sβ 0 0
0 Â − D̂β 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; K

⎡
⎢⎢⎢⎢⎢⎢⎣

U
Û
�D

��

−P
−P̂

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
f
g

⎤
⎥⎥⎥⎥⎥⎥⎦

(37)

Proposition 3 Matrix K in (37) is non-singular and the unique solution of (37) is
equivalent to the solution of the optimization problem (36).

The following lemma is used to prove Proposition 3.

Lemma 1 Let matrixA ∈ R
(N+N̂ )×(N+N̂+ND+N�) be as

A =
[
A 0 0 −Sβ

0 Â − D̂β 0

]
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and let G ∈ R
(N+N̂+ND+N�)×(N+N̂+ND+N�) be defined as

G =

⎡
⎢⎢⎢⎣

G 0 −D 0
0 Ĝ 0 −Ŝ

−DT 0 MD 0

0 −Ŝ
T

0 M�

⎤
⎥⎥⎥⎦ .

Then matrixA is full rank and matrix G is symmetric positive definite on ker(A).

Proof Let us denote the discrete approximation spaces as Vδ = span{ϕk, k =
1, ..., N }, V̂i,δ = span{ϕ̂i,k, k = 1, ..., N̂i } and V̂δ = ∏

i∈I V̂i,δ .
MatrixA is full rank for the ellipticity of operators A in (18) and Â in (19), whereas

matrix G is symmetric positive semi-definite as, for any V such that

V =

⎡
⎢⎢⎣

U
Û
�D

��

⎤
⎥⎥⎦ , V TGV = 1

2

I∑
i=1

(
‖U|�i − �D

i ‖2L2(�i )
+ ‖Ûi − ��

i ‖2L2(�i )

)
≥ 0.

(38)
Let us assume that either � has a non-empty Dirichlet boundary or � has at least a

Dirichlet endpoint, and let us consider V ∈ ker (G). Thus, according to (38), it follows
that

U|�i
= �D

i and Ûi = ��
i ∀i ∈ I. (39)

If V ∈ ker (A) it follows, by the constraint equations, that

∫

�

K∇U∇v dω =
∑
i∈I

∫

�i

βi |�i (s)|(��
i −U|�i )v|�i

ds ∀v ∈ Vδ

∫

�i

K̃i |�i (s)|dÛi

ds

d v̂i

ds
ds =

∫

�i

βi |�i (s)|(�D
i − Ûi )v̂i ds ∀v̂i ∈ V̂i,δ, ∀i ∈ I

Let us introduce the quantity �i = Ûi − U|�i
. According to (39) we also that �i =

��
i −U|�i

= −(�D
i − Ûi ). Choosing v = U and v̂i = Ûi ∀i ∈ I we obtain

∫

�

K∇U∇U dω =
∑
i∈I

∫

�i

βi |�i (s)|�iU|�i
ds (40)

∫

�i

K̃i |�i (s)|dÛi

ds

dÛi

ds
ds = −

∫

�i

βi |�i (s)|�i Ûi ds ∀i ∈ I (41)
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Summing all the equations we get

∫

�

K∇U∇U dω +
∑
i∈I

∫

�i

K̃i |�i (s)|dÛi

ds

dÛi

ds
ds +

∑
i=1

∫

�i

βi |�i (s)|�i (Û −U|�i
)ds = 0,

⇒
∫

�

K∇U∇U dω +
∑
i∈I

∫

�i

K̃i |�i (s)|dÛi

ds

dÛi

ds
ds +

∑
i=1

∫

�i

βi |�i (s)|�i�i ds = 0,

which means that �i = 0 ∀i ∈ I, U is constant, Ûi is constant ∀i ∈ I and hence
Û is constant since continuity is imposed at segment intersections. This implies that
U|�i

= Ûi = �D
i = ��

i . If the Dirichlet condition is imposed on a portion of ∂� we

conclude that U ≡ 0 and hence U|�i
= Ûi = �D

i = ��
i = 0. Same consideration

holds if the Dirichlet condition is instead imposed at one of the segment endpoints.
Thus ker (G) ∩ ker (A) = 0 which completes the proof.

The proof of Proposition 3 derives from classical arguments of quadratic program-
ming, observing that

K =
[G AT

A 0

]
.

6 Solving strategies

Solving system (37) is equivalent to solving the optimization problem (36). Here a
different strategy is however proposed, based on an iterative solver and allowing to
take full advantage of the decoupling introduced by the proposed method.

Let us formally replace in the cost functional (35) the expressions U =
A−1(Sβ��+ f ) and Û = Â

−1
( D̂β�D+g) and let us setX = [�T

D, �T
�]T , obtaining

J �(�D, ��) = 1

2

(
(A−1Sβ�� + A−1 f )TG(A−1Sβ�� + A−1 f ) +

−(A−1Sβ�� + A−1 f )T D�D − �T
DDT (A−1Sβ�� + A−1 f ) +

+�T
DM

D�D + ( Â
−1

D̂β�D + Â
−1

g)T Ĝ( Â
−1

D̂β�D + Â
−1

g) +
−( Â

−1
D̂β�D + Â

−1
g)T Ŝ�� − �T

� Ŝ
T
( Â

−1
D̂β�D + Â

−1
g) +

+�T
�M���

)
=

= 1

2
X T

⎡
⎢⎣

( D̂β)T Â
−T

Ĝ Â
−1

D̂β + MD −DT A−1Sβ − ( D̂β)T Â
−T

Ŝ

−(Sβ)T A−T D − Ŝ
T
Â

−1
D̂β (Sβ)T A−TGA−1Sβ + M�

⎤
⎥⎦X

+
⎡
⎢⎣
gT Â

−T
Ĝ Â

−1
D̂β − f T A−T D

f T A−TGA−1Sβ − gT Â
−T

Ŝ

⎤
⎥⎦X +
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+1

2

(
f T A−TGA−1 f + gT Â

−T
Ĝ Â

−1
g
)

=

= 1

2

(
X TMX + 2dX + q

)
. (42)

Matrix M is symmetric positive definite, given the equivalence of this formulation
with the saddle-point system (37). This allows us to perform the minimization of the
unconstrained functional (42) via a gradient based scheme, looking for the minimum
as the solution of

∇ J ∗ = MX + d = 0. (43)

A preconditioner P can be defined for solving system (43). In particular we set

P =
⎡
⎢⎣

( D̂β)T ( Â�)−T Ĝ( Â
�
)−1 D̂β + MD 0

0 M�

⎤
⎥⎦ . (44)

where Â� = diag
(
Â1, ..., ÂI

)
. This means that the top-left block of matrix P cor-

responds exactly to the top-left block of matrixM in case no intersections among the
segment occur.Otherwise, ( Â�)−1 is an approximationof the inverse ofmatrix Âwhich
can be built inverting independently the matrices related to the single segments and

which maintains a block-diagonal structure, i.e. ( Â
�
)−1 = diag

(
Â1

−1
, ..., ÂI

−1)
.

For what concerns the bottom-right block, only matrix M� is kept with respect to
the same block of matrix M, so that even this portion of the preconditioner can be
built block-diagonalwise, assemblingmatriceswhich are independently related to each
single 1D inclusion.

The application of the conjugate gradient scheme to system Eq. 43 requires, at each
iteration, the computation of quantityMδX , where δX = [δ�T

D, δ�T
�] represents the

descent direction. It is worth underlining that such quantity can actually be obtained
without explicitly building matrix M. In fact, after easy computations we obtain

MδX =
[
( D̂β)T δ P̂ − DT δU + MDδ�D

(Sβ)T δP − Ŝ
T
δÛ + M�δ��

]

where δU , δÛ , δP , δ P̂ are the solutions of the linear systems

AδU = Sβδ�� ÂδÛ = D̂
β
δ�D

AδP = GδU − Dδ�D Âδ P̂ = ĜδÛ − Ŝδ��

which require to solve local sub-problems on the 1D segments and on the 3D domain.
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7 Numerical results

In this section we present three numerical examples to better highlight the charac-
teristics of the proposed approach. The simulations are performed using linear finite
elements on the 3D and 1D non-conforming meshes, independently generated on the
sub-domains. Parameter h denotes the maximum diameter of the tetrahedra for the
3D mesh, while other three parameters, namely δ̂u,i , δD,i and δ�,i express the refine-
ment level of the 1D meshes T̂i , τ D

i , τ�
i , i = 1, ...I, respectively. Each of these three

parameters represents the ratio between the number of nodes in the 1D mesh and the
number of intersections of the segment �i with the faces of the tetrahedra in T . In
the simulations, for simplicity, we adopt unique, but possibly different, values of δ̂u ,
δD and δ� for the various segments: for this reason we drop, in the following, the
segment index i = 1, ...I for these parameters. In all cases, linear Lagrangian finite
elements on tethrahedra are used in the 3D domains and piecewise continuous linear
basis functions on equally spaced meshes are chosen for the 1D functions.

7.1 Test Problem 1 (TP1)

Let us consider a cube� of edge l = 2 centered in the axes origin and whose faces are
parallel to the coordinate axes. Let us further consider a cylinder� of radius R̂ = 10−2

and height h = 2 whose centreline � lies on the z axis (see Fig. 1, on the left). Let us
denote by ∂�l , ∂�+ and ∂�− respectively the lateral, the top and the bottom faces of
the cube.

We aim at solving a problem in the form of (13)-(16), obtained by reducing � to
its centerline, with the following data:

K = 1, f (x, y, z) = 2 − x2 − y2 − 2z2,

K̃ (z) = z2

3
+ 1

2
, g = 3

β = 2R̂

2 + R̂2

Fig. 1 TP1: left: view of the numerical solution inside the cube; right: solution obtained on the segment
and on a section of the cube parallel to the z-axis and containing � (section highlighted in the left figure).
Parameters h = 0.083, δ̂u = 1, δD = δ� = 0.5
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The problem is completed with appropriate boundary conditions such that the exact
solution is:

uex (x, y, z) = 1

2
(x2 + y2)(z2 − 1) + 1 in � (45)

ûex (z) = 2 − z2 on �. (46)

In particular we consider Neumann boundary conditions on ∂�+ and ∂�−, whereas
Dirichlet boundary conditions are imposed on ∂�l . Dirichlet boundary conditions
equal to 1 are imposed at segment endpoints.

The obtained solution is shown in Fig. 1: on the left, the 3D solution is shown
on a portion of the domain, whereas, on the right, the solution U on the y − z plane
containing the z-axis is plotted alongwith the solution Û , with solution values reported
along the x-axis. The mesh used for this solution has parameters h = 0.083, δ̂u = 1,
δD = 0.5 and δ� = 0.5, corresponding to N = 4155 DOFs in the cube and N̂ = 57
DOFs on the segment.

Errors indicators EL2 , EH1 are chosen for the 3D solution and ÊL2 and ÊH1 for the
1D problem, defined as:

EL2 = ||uex −U ||L2(�)

||uex ||L2(�)

, EH1 = ||uex −U ||H1(�)

||uex ||H1(�)

,

ÊL2 = ||ûex − Û ||L2(�)

||ûex ||L2(�)

, ÊH1 = ||ûex − Û ||H1(�)

||ûex ||H1(�)

.

Figure 2 displays the convergence trends for the above quantities against mesh
refinement. Four meshes are considered, obtained by choosing h = 0.208, 0.131,
0.083, 0.052, which correspond to N = 257, 1026, 4155, 16545 DOFs and N̂ =
15, 29, 57, 88 DOFs, respectively. The parameters δ̂u = 1 and δD = δ� = 0.5 are
fixed for all cases, hence a 3D mesh refinement induces a refinement of all the 1D
meshes. Expected convergence rates are obtained for the above indicators. Indeed,
given the regularity of the solution on the 3D and 1D domains, convergence rates
close to 2/3 for EL2 against N and 1/3 for EH1 against N are observed, corresponding
to the optimal values for 3D linear finite elements, and a rate of about 2 for ÊL2 against
N̂ and of about 1 for ÊH1 against N̂ are achieved, corresponding to the optimal values
for 1D linear finite elements.

Two additional error indicators are instead considered for the interface variables
�D and �� as:

ÊD
ψ = ||ǔex − �D||L2(�)

||ǔex ||L2(�)

., Ê�
ψ = ||ûex − �� ||L2(�)

||ûex ||L2(�)

.

where E� ǔex = γ�uex = uex (R̂, z). The values of these errors indicators on the same
meshes considered before, are reported in Fig. 3, on the left for ÊD

ψ and, on the right,

for Ê�
ψ . Despite no expected values are available for such indicators, the graphs clearly

show that the control variables converge to the corresponding exact counterparts.
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Fig. 2 TP1: trend of the L2 and H1-norms of the relative errors under mesh refinement. On the left: error
on the cube with respect to (45); on the right: error on the segment with respect to (46). Other parameters:
δ̂u = 1, δD = δ� = 0.5

Figure 4 shows the trend of the condition number ofmatrixK, defined in (37), under
the variation of the 1D-mesh parameters. On the left the conditioning is plotted under
the variation of δD and for different values of δ̂u , while a constant δ� = 0.5 is used; on
the right δ� varies instead, while δD = 0.5 is fixed, again for δ̂u ranging between 0.05
and 2. In both cases we can observe how, in general, at the increase δ̂u , slightly higher
conditioning values are registered, with some exceptions for very small values of the
parameter. In all cases, however, the impact of this parameter is quite marginal on the
conditioning of the system. Looking at the left plot we can see that the value of δD has
no impact on the conditioning. Looking instead at Fig. 4 on the right, it can be noticed
that δ� has a larger impact on the conditioning, but only if very small values are used,
and, at the same time, a value δ̂u > δ� is chosen; in these cases an increase of up to
two orders of magnitude in the conditioning is observed. However, for δ� > 0.2 the
effect of δ� on the conditioning becomes almost irrelevant, independently from the
choice of the other parameters. The behaviour here observed is quite different from the
one observed in [1], where a larger effect of the mesh parameters on the conditioning
was instead observed. Further, system (43) is known to be even better conditioned

Fig. 3 TP1: trend of the error indicators for �D and �� under mesh refinement. On the left ÊD
ψ , on the

right Ê�
ψ . Other parameters: δ̂u = 1, δD = δ� = 0.5
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Fig. 4 TP1: trend of the conditioning of the KKT system under the variation of the 1D mesh parameters.
On the left variable δD and different values of δ̂u while δ� = 0.5. On the right variable δ� and δD = 0.5.
In both cases h = 0.083

than the corresponding system (37), [19]. For this simple example it is possible to
explicitly compute matrix M. Its conditioning is plotted in Fig. 5, against variations
of the 1D mesh parameters. Trends similar to the ones of Fig. 4 are observed and the
behaviour is almost the same for all the values of δ̂u considered, but the conditioning
of M is, in general, between 4 and 5 orders of magnitude smaller than the one of K.
This is expected to have a positive impact on the number of iterations of the conjugate
gradient scheme, with few iterations required to reach the prescribed tolerance even
without the use of a preconditioner. The analysis of the performances of the proposed
iterative solver is deferred to the last example here proposed, in which a more complex
setting is considered.

Fig. 5 TP1: trend of the conditioning of system (43) under the variation of the 1D mesh parameters. On the
left variable δD and different values of δ̂u while δ� = 0.5. On the right variable δ� and δD = 0.5. In both
cases h = 0.083

123



Numerical Algorithms

7.2 Test Problem 2 (TP2)

For this numerical example we consider a set of 19 inclusions of radius Ř = 10−2,
whose centerlines intersect in 9 points. The resulting network is embedded in the
same cube of edge l = 2 considered in Test Problem 1. We impose homogeneous
Dirichlet boundary conditions on all the faces of the cube and at the dead ends of
the network which intersect the cube at its top and bottom faces, as shown in Fig. 6.
Homogeneous Neumann boundary conditions are imposed at segment endpoints lying
inside the cube. For what concerns problem coefficients we consider K = 1, f = 0
and K̃i = 100, gi = 100, βi = 5e − 2, ∀i = 1, ..., 19.

The problem is solved both with the method proposed in this article and with a
different approach in which no auxiliary variables are introduced. The following 3D-
1D coupled problem is derived from (7)-(8): find (u, û) ∈ VD × V̂ such that:

(K∇u, ∇v)L2(D) + (|�(·)|βǔ, v̌
)
L2(�)

− (|�(·)|βû, v̌
)
L2(�)

= ( f , v)L2(D)

∀v ∈ VD, v̌ ∈ V̂ : γ� v = E� v̌

(
K̃ |�(·)|dû

ds
,
d v̂

ds

)
L2(�)

+ (|�(·)|βû, v̂
)
L2(�)

− (|�(·)|βǔ, v̂
)
L2(�)

= (|�(·)|g, v̂)L2(�)

∀v̂ ∈ V̂ ,

which, after discretization yields the following global system

[
A −B

−BT Â

] [
U
Û

]
=
[
f
g

]

where the nomenclature is the same of Section 5 and the new matrix B is defined as

B = [B1, B2, ..., BI ] ∈ R
N×N̂

Fig. 6 TP2: Solution obtained on the centerlines of the inclusions for h = 0.083, δ̂u = 1 and δD = δ� =
0.5. The point marked in blue identify homogeneous Dirichlet boundary conditions
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with

Bi ∈ R
N×N̂i s.t. (Bi )kl =

∫

�i

ϕk |�i
ϕ̂i,l ds.

We will refer to this method as “coupled” and we will use it as a comparison term for
our approach, which, instead, will be labelled asOPT (optimization based). The results
shown in the following are obtained by considering a 3D mesh, non conforming to the
inclusions, with h = 0.083 and N = 3320 and a 1Dmesh with δ̂u = 1, corresponding
to N̂ = 234 DOFs. Parameters δD = δ� = 0.5 are used in the OPT approach. Figure6
reports the solutions obtained with both approaches on the network of segments, while
Fig. 7 on the right proposes a comparison of the solutions on two selected segments
(marked in Fig. 6), showing an almost perfect agreement. Figure7 on the left, instead,
reports the solution U obtained inside the cube on three different planes, located at
z = −0.5, z = 0 and z = 0.5 and all parallel to the x − y plane. Even in this Figure
the solutions obtained with both the approaches are shown and appear to be almost
perfectly overlapped.

In Figs. 8 and 9 the influence of the permeability coefficient β and of the trans-
missivity of the inclusions K̃ is investigated. In Fig. 8, left, the 1D solution û and
the control variable �D are compared on segment 4 for K̃ = 100, as in the previous
simulations, and for values of β = 0.05, 500. Figure8, right, instead, compares the
3D solution obtained again for K̃ = 100 and β = 0.05, 500, on the plane (x, y, 0).
As expected (see e.g. the analysis in [17]), for the lowest value of β, the 1D solution
and �D , corresponding to the trace of the 3D solution, are different, thus yielding a
discontinuous solution. On the other hand, the distance between the 1D solution and
the trace of the 3D solution gets much smaller for β = 500 (Fig. 8, left). Also, for
β = 500, the effect of the inclusions on the 3D solution is stronger, as highlighted in
Fig. 8, right. In Fig. 9 the same quantities are reported for K̃ = 1 and, again, values of
β = 0.05, 500. Also in this case, the solution tends to become continuous at the inter-
face when β is large, (Fig. 9, left). Figure9, right, shows that, in this case, the impact
of the presence of the segments on the overall 3D solution is similar for β = 0.05
and β = 500, since the transmissivity properties are the same in the 3D and in the 1D

Fig. 7 TP2: On the left: solutions with OPT and coupled methods obtained on the inclusions and inside
the cube on three different planes parallel to the x − y plane and located at z = −0.5, z = 0 and z = 0.5.
Solution amplified by a factor 50 with respect to domain size; on the right: comparison of the solution on
two selected segments with the OPT and the coupled methods
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Fig. 8 TP2, K̃ = 100: On the left: comparison between û and �D on segment 4 for β = 5e − 2 (full and
dotted red lines) and β = 5e + 2 (full and dashed green lines); on the right: solution on the plane (x, y, 0)
for β = 5e − 2 (solid surface) and β = 5e + 2 (transparent surface). Both solutions amplified by a factor
of 50 in the right Figure

domains (K = K̃ = 1). We remark how the forcing term inside the inclusions is kept
equal to gi = 100 ∀i = 1, ..., 19. Given the chosen boundary conditions, the choice
f = gi = 0 would lead instead to a constant zero solution both in the 3D and in the
1D domain.

7.3 Conjugate gradient test (CGtest)

We now consider a more complex numerical example, characterized by the presence
of multiple intersecting inclusions. The setting of this example might be considered as
realistic of a living tissuewith a network of vessels. The purpose of the present example
is to test the performances of the proposed solving strategy and preconditioner in a
realistic setting. In particular we consider the domain of Fig. 10, where 873 segments
organized into two connected clusters are immersed in a cubic domain � of edge
l = 2, as considered in the previous examples. On the faces of the cube we consider
Neumann boundary conditions, namely K∇u · n = 2 · 10−5, with n denoting, in

Fig. 9 TP2, K̃ = 1: On the left: comparison between û and �D on segment 4 for β = 5e − 2 (full and
dotted red lines) and β = 5e + 2 (full and dashed green lines); on the right: solution on the plane (x, y, 0)
for β = 5e − 2 and β = 5e + 2 (almost superposed). Both solutions amplified by a factor of 1000 in the
right Figure
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Fig. 10 CGtest: Representation of the problem geometry. The blue spheres highlight the Dirichlet boundary
conditions at the inlets of the two networks

this case, the outward pointing unit normal vector to ∂�. At the inlets of the two
networks, i.e. the segment endpoints lying on the face z = −1, we impose Dirichlet
boundary conditions equal to 5 · 10−3, and at all other segment endpoints we consider
homogeneous Neumann conditions. Problem data are as follows:

K = 2 · 10−4, f (x, y, z) = 0, K̃ = 3 · 101, g = 0 β = 1 · 10−2.

The cluster of segments of this example is composed by many segments of small
length, compared to domain size. Thus, a set of simulations is performed by varying
both parameter h of the 3D mesh and parameters δD and δ� of the 1D meshes, in
order to control the meshsize independently, being, instead, δ̂u = 1 fixed. The values
of the parameters used in the simulations are reported in the first three columns of
Table 1, whereas the fourth column reports the number of DOFs of the variables �D

and�� , corresponding to the size of the system (43). The coarsest and the finest mesh
combination considered are shown in Fig. 11, whereas the solution on the finest mesh
is reported in Fig. 12, on the left for the 1D network and on the right for the 3D solution

Table 1 CGtest: mesh parameters, DOFs and corresponding CG iterations. In brackets value of the relative
residual which defines the stopping criterion. For all the considered cases δ̂u = 1

h δD δ� ND + N� CGi t
(10−6) CGi t

(10−9) PCGi t
(10−6) PCGi t

(10−9)

0.208 0.5 0.5 3650 39 57 33 43

0.131 1.0 1.0 6344 48 67 35 46

0.083 1.5 1.5 12428 47 68 36 48

0.052 2.0 2.0 21256 44 61 37 49
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Fig. 11 CGtest: comparison between meshes. On the left, h = 0.208, δD = δ� = 0.5; on the right,
h = 0.052, δD = δ� = 0.5

on three planes orthogonal to the z-axis. The remaining columns of Table 1 report the
number of iterations required by the conjugate gradient scheme to solve system (43)
up to a relative residual of 10−6 or 10−9, without using a preconditioner (columns
CGi t

(10−6) and CGi t
(10−9)) or using preconditioner (44) (columns PCGi t

(10−6) and
PCGi t

(10−9)).
It can be seen that, in all cases, the number of iterations is small compared to

the number of unknowns, and it only marginally grows as the stopping tolerance is
reduced.Theuseof the preconditioner allows to further reduce thenumber of iterations,
the obtained reduction ranging between 15% and 30%. It is to be highlighted that the
proposed preconditioner can be obtained and applied at a very low computational cost,
as it only requires to solve local 1D problems and can be computed and used in parallel.
The effectiveness of the proposed solving approach reflects the good conditioning of
the obtained system, as it was pointed out in Test Problem 1.

Fig. 12 CGtest: on the left, solution obtained inside the inclusions; on the right, solution obtained in the
cube on three different planes perpendicular to the z-axis, namely z = −0.5, z = 0 and z = 0.5. Parameters:
h = 0.052, δD = δ� = 2, δ̂u = 1
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8 Conclusions

APDE constrained formulation for 3D-1D coupled problemswith discontinuous solu-
tion at the interfaces has been derived and proposed. The approach is based on the
introduction of unknown interface variables to decouple the 3D and 1D problems and
on the minimization of a cost functional to enforce interface conditions. The prob-
lem is discretized resorting to standard finite elements on non conforming meshes
independently set on each subdomain. Well posedness results for the discrete prob-
lem are obtained independently of the choice of the mesh parameters of the various
domains. The proposed test on a problem with known analytical solution shows that
optimal convergence trends of the error are obtained for both the 3D and 1D solu-
tion. Also the linear system corresponding to the application of the method appears
to be well conditioned for a wide range of choices of the mesh parameters. The
examples on more complex domains reveal the applicability of the method to real-
istic configurations and also the good performances of the proposed gradient-based
solver. Directions for future work include the development of error estimators, also
in view of mesh adaptivity. The representation of the solution near the inclusions can
be improved also by introducing local additional basis functions, as in the extended
finite element method. Time dependent simulations of realistic problems will be
addressed.
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