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Abstract—Real-time communication (RTC) platforms have
seen a considerable surge in popularity in recent years, largely
due to the COVID-19 pandemic which facilitated remote work.
To ensure adequate Quality of Experience (QoE) for users, a
good congestion control algorithm is needed. RTC applications
use UDP, so congestion control is done on the application layer,
leaving way for advanced algorithms. In this paper, we propose
ReCoCo, a solution for congestion control in RTC applications
based on Reinforcement learning (RL). ReCoCo gains information
about the network conditions at the receiver-side, such as
receiving rate, one-way delay and loss ratio and predicts the
available bandwidth in the next time bin. We train ReCoCo on 9
bandwidth trace files that cover a vast array of network types.
We try different algorithms, states and parameters, training both
specific and general models. We find that ReCoCo outperforms
the de-facto standard heuristic algorithm GCC in both specialized
and general models. We also make observations on the difficulty
of generalization when using RL.

Index Terms—networking, reinforcement learning, congestion
control, rate adaptation, real-time communications

I. INTRODUCTION

Internet Real-time Communication (RTC) platforms, such
as video-conferencing applications (VCAs) and cloud gaming
have been on the rise in recent years. VCAs are the main
enabler of remote working, which has become the de-facto
standard way of work for many companies [1]. Nowadays
there are countless VCA applications on the market [2],
most of which use the Real-time Protocol (RTP) [3]. In
web browsers, RTC is enabled by the open-source WebRTC
framework1, on top of RTP. In this context, it is becoming
increasingly important to maximize the Quality of Experience
(QoE) of users of RTC applications.

One way to improve QoE is through good congestion
control (CC). RTC applications use RTP mostly over UDP [2],
so they are not subject to TCP congestion control proto-
cols. Instead, CC is implemented via rate adaptation at the
application layer, by using a feedback mechanism between
the sender and receiver, that relies on the Real-time Control
Protocol (RTCP). The biggest challenge for CC lies in the low-
latency requirement of RTC applications. Thus, the goal of CC
algorithms is to produce a sending rate as close as possible
to the available end-to-end bandwidth, while maintaining the
queue occupancy as low as possible [4]. The sending rate

This work has been supported by the SmartData@PoliTO center on Big
Data and Data Science

1https://webrtc.org/

directly affects the packet delay, losses and throughput, which
are the main drivers of network QoE [5]. The algorithms in
use by RTC applications today are heuristic schemes that make
decisions on increasing or decreasing the sending rate, based
on the one-way queuing delay and loss ratio [4]. The most
notable open-source algorithm is Google’s GCC [6], which
measures the delay variation and compares it with a dynamic
threshold. However, in a complicated network scenario, such
as wireless network links with very variable bandwidth, it is
hard to optimize all network metrics with a heuristic scheme.
To combat these limitations, we propose a novel rate adapta-
tion scheme, based on Reinforcement learning (RL). Using RL
for congestion control in RTC has been somewhat explored in
the literature [7]–[9]. We elaborate on the limitations of these
works and differences with respect to ours in Section II.

In this paper, we propose ReCoCo, a fully-RL based solution
for congestion control in real-time applications. To create
our system and experiments, we build upon the open-source
framework OpenNetLab [10]. This framework was first built
to serve the MMSys2021 Grand challenge [11], which called
for a novel bandwidth estimation scheme for RTC. We thus
use some of the performance metrics defined by this chal-
lenge to evaluate our approach. We assess 3 different RL
algorithms in a number of parameter configurations, on 9
different bandwidth trace files that comprise of wired, 4G and
5G channels covering a vast array of bandwidth levels. We
train both specific and general models to evaluate the difficulty
of generalizing RL algorithms. We find that, when trained
on each trace file separately, with specialized configuration,
ReCoCo outperforms GCC for every trace, by 8.95 QoE units
on average, especially for traces with high bandwidth. When
training a single model for all network conditions, the best way
is to use curriculum training, ordering the environments easiest
to hardest based on improvement over a heuristic baseline
(gap-to-baseline). In this case we observe a performance
penalty of 8.76 QoE units on average over the specialized
model, but still outperform GCC by 0.2 QoE units.

To make our research reproducible, we disclose our code-
base and trained models2.

II. RELATED WORK

Congestion control for RTC. CC in employed RTC ap-

2https://github.com/denama/ReCoCo
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Fig. 1: Overview of the system

plications today is mostly heuristic-based. There are three
main standardized algorithms: NADA [12], SCReAM [13] and
GCC [6]. They all employ delay-based mechanisms to detect
congestion and loss-based mechanisms as fall-back when there
is buffer overflow. The most employed implementation is
GCC, used by the popular VCA, Google Meet, and by any
RTC application that runs in the browser (e.g. the cloud
gaming platform GeForceNow). Thus we use it as our baseline.
GCC suffers from a few limitations: it only responds to latency
variation, so it does not note an increase in the absolute value
of RTT, introducing delays in the conversation. It also becomes
too conservative in the event of losses [5]. GCC is slow
to respond to an increased bandwidth, since it increases the
sending rate by just 5% every second. This holds true also
for some RTC applications that use proprietary congestion
control protocols [14]. With ReCoCo we aim to overcome
these limitations by setting the reward to optimize for all three
metrics: delay, losses and bandwidth utilization, at any given
time, making it faster to adapt to varying network conditions.

Reinforcement learning in RTC Congestion control. There
are three previous works that tackle the problem of CC for
RTC with RL: HRCC, CLCC and R3Net. HRCC [8] is a
hybrid receiver-side scheme, that uses GCC as the main
algorithm and occasionally tunes the bandwidth estimate with
a gain coefficient generated by an RL agent. R3Net [7] is a
fully RL-based solution, that uses the PPO algorithm. Its state
consists of receiving rate, loss rate, average RTT and average
packet inter-arrival time. The reward function is a very simple
linear combination of the receiving rate, delay and loss rate.
CLCC [9] uses both packet-level and frame-level statistics of
traffic as states and in the reward, arguing that frame-level
information is vital for RTC. However, this requires adding
an additional exclusive channel to RTP, to send frame-level
information, which is a non-trivial change to the protocol.

Albeit having the same end goal, our work contrasts these
works in a few important ways. First, we explore many
different configurations of the problem formulation. By trying
different algorithms, we find that PPO, which is used by both
R3Net and CLCC does not perform well on our traces. We
meticulously design the reward function, outlining separate
functions for all network metrics we wish to optimize, based
on network standards and recommendations. We provide de-

tails on the traces we use, to better understand what kind of
environments are hard for RL algorithms to solve, while previ-
ous works do not elaborate on the dataset. We also present both
specialized and general models, discussing some challenges in
generalizing RL algorithms for networking problems.

III. BACKGROUND: DEEP RL BASICS

The setting of RL [15] consists of an agent that interacts
with an environment, in a discrete time stochastic control
process. At every time step t, the agent finds itself in a state St

and takes an action at. This action brings the agent a reward
Rt and transitions it to the next state St+1. Which action an
agent takes at any given time step from any given state is
defined by its policy π. The agent’s goal is to learn a policy π
that maximizes the reward in the long run. In fact, it aims to
maximize the discounted return Gt =

∑∞
k=0 γ

kRt+k, where
γ is a discount factor decreasing the weight of past rewards.
In many real-life tasks, the state space is arbitrarily large and
often continuous. Here the agent learns a policy π through
a function approximator - usually a neural network (Deep
RL). The algorithms we use in this paper use the Actor-critic
architecture [16] for Deep RL. The actor-critic framework
constitutes two neural networks, an actor and a critic. The actor
learns the policy π and decides the action to take at every time
step. The critic evaluates how good that action was compared
to the average for that state and informs the actor. The actor
then changes the weights of the policy function accordingly,
to adjust the probability of that action being taken. In formal
terms, the critic learns an action value function Qπ(s, a).

IV. SYSTEM OVERVIEW

In this section, we describe our system, depicted on Fig-
ure 1. Mapping the RL framework to our problem, we get
the following scenario: The agent is an RL algorithm that, at
every time interval ∆t, predicts the available bandwidth and
sends this information to the environment as an action. The
environment runs a network simulation of RTP traffic between
a sender and a receiver, given a bandwidth trace file, and based
on the action, adjusts the sending rate. Then the simulation
runs with that sending rate for a time interval ∆t and spits
out a list of packets. From these packets we calculate a set
of network statistics (such as average delay, loss ratio etc.) -
the state. Based on the state we also calculate an appropriate
reward. For instance, if the loss ratio is high, the reward is very
low. The state and reward are sent to the agent, that, based on
them, adjusts its policy.

For the network simulation and the agent’s interaction with
it, we use the OpenNetLab [10] framework, which provides
a plug-and-play gym3 environment for training RL algorithms
to the task of congestion control in RTC, using an ns-3 event-
driven network simulator and Chrome’s WebRTC. We make
some changes to the environment to account for our states and
rewards.

3https://github.com/OpenNetLab/gym
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Fig. 2: Functions describing the reward

A. State space

The states are histories of network statistics. In our im-
plementation, we use a statistics vector −→vt , which has four
components, calculated at time t, for the duration of ∆t: (i)
Receiving rate rt, (ii) Average delay dt, (iii) Loss ratio lt and
(iv) Last action taken at−1. We then use multiple past instances
of −→vt as our state St at time t:

−→vt = (rt, dt, lt, at−1),St = (−→vt ,−−→vt−1, ...
−−→vt−x) (1)

where x is the number of time intervals ∆t we consider in the
past. In our experiments, we fix ∆t to 200ms and we vary
the parameter x, by setting it to 5 (delayed states) or setting
it to 0 (non-delayed states). In the latter case, St = −→vt . We
normalize all state values in the interval [0,1], as we find this
is vital for many RL algorithms to learn.

B. Reward design

The reward is the most important driver of RL algorithms,
so we take careful consideration in designing it. Our reward
function incorporates three components: bandwidth utilization,
delay and loss ratio. The reward is always normalized to
the interval [-1,1]. The functions describing the different
components of the reward are depicted on Figure 2. We start
by drawing these functions using domain knowledge and then
translate them to corresponding equations.

Bandwidth utilization reward component (Ru). It expresses
how well the algorithm is using the available bandwidth. Let
ut be the bandwidth utilization at time t:

ut = rt/Bt, ut ∈ [0, 1] (2)

where rt is the receiving rate and Bt is the bandwidth in the
time bin ending at time t. Then Ru is defined as:

Ru =

{
1.538ut − 1, if 0 < ut ≤ uthres

−8.2(ut − 1)2 + 1, if uthres < ut ≤ 1.
(3)

where uthres = 0.65.
Ru is depicted on Figure 2a. The closer the bandwidth

utilization ut is to 1, the higher the reward. uthres is a
threshold that distinguishes between a negative and positive
reward. It means that the minimum bandwidth utilization we
consider acceptable is 65%. Note that if ut is higher than 1,
then the receiving rate is higher than the available bandwidth
(over-utilization). In that case we force the whole reward Rt

to -1.

Delay reward component (Rd). It expresses how acceptable
the one-way delay between the sender and the receiver is. Let
dt be the average one-way delay in the time bin ∆t. Then Rd

is defined as:

Rd =

{
−0.00667dt + 1, if 0 < dt ≤ 150

−0.02dt + 3, if 150 < dt ≤ 200.
(4)

The equation is depicted on Figure 2b. We design Rd

according to the G.114 recommendation for one-way transmis-
sion time [17], which states that if delays were kept below 150
ms, then most real-time applications would not be significantly
affected. If the delay is more than 200ms, it gets a reward of
-1, since we aim for a low-latency algorithm.

Loss ratio reward component (Rl). It expresses how well
the algorithm is doing in terms of losses. Let lt be the loss
rate in the time bin ending at time t. Then Rl is defined as:

Rl =


1, if 0 ≤ lt ≤ 0.02

156(lt − 0.1)2, if 0.02 < lt ≤ 0.1

100(lt − 0.2)2 − 1, if 0.1 < lt ≤ 0.2

−1, if 0.2 < lt ≤ 1.

(5)

The equation is depicted on Figure 2c. To design the first two
thresholds in (5) we rely on the GCC thresholds for acceptable
loss rate [18].

Final reward equation (Rt). Combining all the reward
components together, the final reward at a time step ending
at time t is:

Rt =

{
0.333Ru + 0.333Rd + 0.333Rl, if lt > 0

0.4Ru + 0.4Rd + 0.2Rl, otherwise.
(6)

Since losses are a rare event, we want to mitigate the effect of
a positive reward from the loss component. Thus, we decrease
the weight of Rl if the loss ratio is 0. In addition, we force
Rt to 1 if all these conditions apply: the loss ratio is below
0.02, the delay is below 30 and the bandwidth utilization is
higher than 0.9.

V. EXPERIMENTAL SETUP

In this section, we outline all the experiments we conduct
to train ReCoCo, starting from the traffic traces we use, the
process of training, the configuration parameters we try and
finally the QoE performance metrics we use for evaluation.

A. Dataset

To train the algorithm we use 9 trace files that specify the
channel bandwidth in time. The trace files are open data by
OpenNetLab [10]. Their distributions are depicted on Figure 3.
We use traces from a wired channel (green), a 4G cellular
channel (blue), a 5G channel (red) and one trace with stable
bandwidth at 300 kbps. The traces have different duration,
from a minimum of 60s to a maximum of 223s, with a mean
duration of 88.5s. While training, the simulator goes through
the traces many times.
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B. Employed algorithms

We employ three different algorithms: (i) Soft Actor-Critic
(SAC) [19], (ii) Twin-delayed DDPG (TD3) [20] and (iii)
Proximal Policy Optimization (PPO) [21]. They are all Deep
RL algorithms, using the actor-critic architecture, (see Sec-
tion III and Figure 1) and employing different optimizations.
Indeed, as stated in Section II, algorithms based on the actor-
critic paradigm have proven to be successful for congestion
control tasks. SAC is an Off-policy Maximum Entropy al-
gorithm with a Stochastic Actor. It is trained to maximize
a trade-off between expected return and entropy. TD3 is an
Off-policy algorithm that uses clipped double Q-learning (two
critic networks), a delayed policy update and target policy
smoothing. PPO uses clipping to avoid large updates between
the old policy and the new policy. We use the implementation
of these algorithms in the Python library Stable Baselines 34.

C. Configuration parameters

Since Deep RL is very dependent on parameters and results
can change considerably, we try a myriad of different con-
figurations. One parameter we vary is x from Equation 1. We
either set it to 0 (non-delayed states) or to 5 (delayed states by
five ∆t). We try two versions of the algorithm hyperparameters
- one is the default suggested by Stable baselines 3 and another
is tuned hyperparameters for an RL environment similar to
ours (the Cartpole environment). The tuning is provided by
Stable Baselines Zoo5. We call these configurations not tuned
and tuned, respectively.

D. Training and validation strategy

For each configuration (trace, algorithm, delayed states/not,
tuned hyperparameters/not), we employ training of 100k steps.
One step is equal to ∆t in simulation time. Every 10k
steps, we save the model and perform validation on the same
environment (same trace file), by observing the average reward
collected on the whole trace file. This procedure helps us
choose the best configuration for each trace. Namely, the
configuration that performs better has a higher average reward
in the final few tests. When two or more configurations
perform similarly enough in terms of average reward, we
evaluate them using our QoE metrics defined in Section V-E.

4https://stable-baselines3.readthedocs.io/
5https://github.com/DLR-RM/rl-baselines3-zoo
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An example of validation during training of a few con-
figurations is shown on Figure 4. Here the environment is
the trace Wired 900kbps. The lines are an average of 3 runs
with different random seeds. All configurations on the plot
consider the algorithms with tuned parameters. We notice that
the average reward grows as training progresses. Notice that
the first point is already after 10k steps of training. Since at
least three options show similar performance, we choose the
best one in terms of QoE metrics, which turns out to be (SAC,
delayed) - red dashed line. Training 1M steps of TD3 takes
4 hours on an Nvidia v100 Tensor Core GPU. Applying the
model at runtime is instantaneous.

E. Performance metrics

To evaluate the goodness of our models on the network
traces, we employ the Quality of Experience (QoE) scores
defined by OpenNetLab [10]. The QoE score is composed of
three components: (i) Receiving rate QoE, (ii) Delay QoE and
(iii) Loss QoE. The Receiving rate QoE is given by:

QoErr = 100× U (7)

where U is the median bandwidth utilization in the trace (a
median of all ut from Equation 2). We clip all ut > 1 to 1,
since it would skew the QoErr towards a good score, while the
agent is sending at a higher rate than the available bandwidth,
thus introducing considerable delay or losses.

The delay QoE is defined as:

QoEdelay = 100× dmax − d95th
dmax − dmin

(8)

where dmax, dmin and d95th are taken from the distribution
of the delay (dt) throughout the whole trace. Note that this
score takes into account only delay variation and not absolute
values. However, we mitigate high delays using the reward.

The loss QoE equation is the following:

QoEloss = 100× (1− L) (9)

where L is the mean of all lt in a trace. Note that even when
this score is 80, which seems high, it means 20% of losses,
which is a low score. The final QoE metric is a weighted
average of all QoE components:

QoE = 0.33QoErr + 0.33QoEdelay + 0.33QoEloss (10)
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VI. EXPERIMENTAL RESULTS

In this section, we present the results of training ReCoCo.
We first discuss the QoE when training a separate model for
each trace, with their best configuration. Then we discuss the
transferability of these models to other traces and the perfor-
mance of a single model trained with curriculum learning.

A. Best configuration results

In Section V-C we outline all the different configuration
combinations we try in our experiments. Here we present only
the results of the best-performing configurations.

Table I shows the QoE of ReCoCo and GCC, for all traces.
We find that SAC and TD3 exhibit much better performance
than PPO in general, in every possible combination, thus PPO
does not appear in the table. The algorithms prefer delayed
states, which means that information on the network conditions
in the near past proves useful. Out of 9 traces, ReCoCo
exhibits better QoErr in 5, with a significant improvement
for 5G traces with variable bandwidth. ReCoCo has a higher
QoEdelay for 6 traces. Usually where one algorithm performs
well on the receiving rate, it exhibits higher delay and vice-
versa. Interestingly, ReCoCo shows much better results for
Wired 900kbps and 300kbps, which are traces with more
stable bandwidth. As to QoEloss, GCC exhibits slightly better
results. ReCoCo prefers a slightly higher loss rate over a
very high delay, which is not the case for GCC. Looking at
overall QoE, where all components are given the same weight,
ReCoCo outperforms GCC for all traces.

Figure 5 summarizes the results of Table I in a scatterplot.
The x-axis is QoErr, the y-axis QoEdelay and the size of the
circles represents the QoEloss. The blue circles are ReCoCo
and the red circles GCC. We see that GCC strongly favours
either delay or receiving rate (red circles are found either on
the top left corner or far right on the plot). It has decent
QoEloss in both cases, however it rarely optimizes for both
metrics. This is expected, since it employs a controller based
on delay variation and loss rate. Instead, ReCoCo shows many
circles in the top right corner of the plot, with only some
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Fig. 6: Examples on ReCoCo v.s GCC sending rate on Trace
4G 700kbps

lingering with a slightly worse QoErr. This is where we can
see the value of the reward function, which optimizes for all
three of these metrics. Figure 6 shows an example of the
sending rate vs. bandwidth in time, for the trace 4G 700kbps.
The trace bandwidth is the orange line, GCC is the red line
and ReCoCo is the blue line. Another version of ReCoCo,
discussed in Section VI-C, is the pink line. In the very variable
bandwidth scenario in Trace 4G 700kbps, we can definitely
see ReCoCo prevail in bandwidth utilization, with very little
penalty to the QoEdelay (just 3.09 units lower than GCC’s)
and virtually no losses (0.16% in contrast to no loss for GCC).

B. Model cross-trace performance

In this subsection we discuss the performance of the best
models for each trace on the other traces. This speaks to the
transferability of the models. Figure 7 shows three heatmaps
- one for each of the QoE components, of the QoE scores
when trained on one trace and tested on another. The y-axis
represents the training trace, while the x-axis the test trace. The
diagonal holds the results already presented in section VI-A.
Green indicates good QoE scores and red poor ones. We
can see that in general, performance is bad when testing on
high bandwidth and high variability traces (Wired 35Mbps,
5G 12Mbps and 5G 13Mbps), especially for QoErr. However,
they show better performance when trained and tested among
each other. Moreover, models trained on Wired 900kbps, 4G
500kbps and 4G 700kbps also yield good results between
each other. This means that training different models based on
bandwidth ranges can be a good strategy for generalization.
The stable bandiwdth trace, 300kbps proves good for model
training, but hard for other models to perform well on it.
Thus, another channel characteristic to take into account when
generalizing could be bandwidth variability.

C. Curriculum learning

Despite some transfer ability, we still prefer to have a one-
model-fits-all solution. In this subsection we show results
when training one model on all traces. When using Deep
RL with many different environments, such as traces with
various bandwidth profiles, it is very hard to train one model



TABLE I: QoE of best-performing configurations for each trace

Trace Configuration QoE Receiving rate QoE Delay QoE Loss Overall QoE
ReCoCo GCC ReCoCo GCC ReCoCo GCC ReCoCo GCC

Wired 200kbps TD3, not delayed, not tuned 85.60 93.78 98.06 82.47 100.00 100.00 94.46 91.99
Wired 900kbps SAC, delayed, tuned 75.88 92.94 83.79 38.37 100.00 100.00 86.47 77.03
Wired 35Mbps TD3, delayed, not tuned 20.52 8.66 66.77 66.51 99.13 99.47 62.08 58.16

4G 500kbps TD3, delayed, tuned 69.98 78.81 91.52 76.25 99.78 99.83 87.01 84.88
4G 700kbps TD3, delayed, not tuned 73.67 59.77 86.67 89.76 100.00 99.84 86.69 83.04
4G 3Mbps SAC, delayed, tuned 81.91 12.32 91.07 96.79 83.51 87.38 85.41 65.43

5G 12Mbps TD3, delayed, not tuned 55.95 4.19 72.32 85.38 94.09 99.82 74.04 63.07
5G 13Mbps TD3, not delayed, not tuned 40.54 5.21 61.54 55.83 91.14 99.99 64.34 53.62

300kbps TD3, delayed, tuned 81.88 99.21 79.83 10.49 100.00 100.00 87.15 69.83

W
ir

ed
20

0k
bp

s

W
ir

ed
90

0k
bp

s

W
ir

ed
35

M
bp

s

4G
50

0k
bp

s

4G
70

0k
bp

s

4G
3M

bp
s

5G
12

M
bp

s

5G
13

M
bp

s

30
0k

bp
s

Wired 200kbps

Wired 900kbps

Wired 35Mbps

4G 500kbps

4G 700kbps

4G 3Mbps

5G 12Mbps

5G 13Mbps

300kbps

Tr
ai

ni
ng

tr
ac

e

85.6 21.9 0.6 36.3 28.9 7.6 1.5 1.5 56.1

100.0 75.9 2.0 99.6 92.5 43.4 5.1 5.3 100.0

100.0 98.5 20.5 100.0 100.0 99.2 50.7 41.7 100.0

86.4 50.7 1.3 70.0 58.9 15.7 3.2 3.1 90.7

95.9 82.3 3.3 78.2 72.8 18.5 7.3 7.1 74.4

16.6 3.5 1.6 6.5 4.5 81.9 0.2 19.6 10.1

100.0 98.5 22.2 99.3 98.3 100.0 55.9 50.5 100.0

100.0 98.4 16.3 99.9 99.1 97.9 40.9 40.5 100.0

98.2 30.1 0.8 51.1 38.4 9.4 1.9 1.8 81.9

Receiving rate QoE

W
ir

ed
20

0k
bp

s

W
ir

ed
90

0k
bp

s

W
ir

ed
35

M
bp

s

4G
50

0k
bp

s

4G
70

0k
bp

s

4G
3M

bp
s

5G
12

M
bp

s

5G
13

M
bp

s

30
0k

bp
s

Testing trace

98.1 26.2 63.5 92.5 92.5 94.0 51.1 49.2 0.0

49.3 83.8 73.1 48.9 78.2 84.7 75.3 44.1 0.5

47.7 10.2 66.8 12.7 14.6 37.5 72.6 38.6 0.1

86.4 95.3 69.8 91.5 95.9 88.6 60.5 58.2 90.6

93.4 63.2 72.0 88.0 86.9 84.2 61.8 47.8 18.1

99.2 67.4 49.2 95.0 94.4 91.1 48.6 43.6 80.0

47.5 5.3 72.2 48.0 63.9 87.7 72.3 54.5 0.6

47.5 8.7 67.3 12.0 15.2 89.4 68.7 61.5 0.2

91.7 37.6 69.3 92.5 96.9 95.4 58.1 41.6 79.8

Delay QoE

W
ir

ed
20

0k
bp

s

W
ir

ed
90

0k
bp

s

W
ir

ed
35

M
bp

s

4G
50

0k
bp

s

4G
70

0k
bp

s

4G
3M

bp
s

5G
12

M
bp

s

5G
13

M
bp

s

30
0k

bp
s

100.0 100.0 99.6 100.0 100.0 86.3 100.0 100.0 100.0

66.8 100.0 99.6 75.6 98.2 88.3 99.8 100.0 75.5

4.2 15.5 99.1 8.6 10.0 61.3 93.2 92.0 11.3

100.0 100.0 99.6 99.8 99.8 86.4 100.0 99.8 100.0

100.0 100.0 99.6 100.0 100.0 85.4 99.9 99.7 100.0

100.0 100.0 99.8 100.0 100.0 83.5 100.0 96.2 100.0

43.1 68.5 98.2 61.2 65.7 63.0 94.1 89.1 47.1

6.6 13.7 99.0 12.4 14.6 74.2 94.1 91.1 10.7

100.0 100.0 99.6 99.9 99.9 87.7 100.0 100.0 100.0

Loss QoE

0

20

40

60

80

100

Fig. 7: QoE components when training on one trace and testing on another

that performs well in all of them. How we introduce the
environments to the agent becomes an important factor [22].
Curriculum learning is a concept where, during training, we
gradually increase the difficulty level of training environments,
to resemble how humans learn more complex concepts [23].
Inspired by this, we try three different ways of introducing the
environments to train a single model:

1) Random: Sample training environments at random. This
is the traditionally used approach.

2) Reward-based: Start with the trace that obtains the low-
est average reward when trained on itself (4G 3Mbps)
and order in ascending order. We hope to imitate a
growing training reward.

3) Gap-to-baseline: Easiest to hardest based on how much
better their QoE score is against GCC, when trained on
themselves. A concept introduced by [22].

All the traces are trained with one configuration - using the
algorithm TD3, with delayed states and not tuned. Figure 8
shows the training reward, for all three training types. We run
training for 2.7 Million steps, with 300k steps per trace. The
curves are averages of 3 runs. For both reward-based (orange)
and gap-to-baseline (green) training, the plot clearly shows the
change of trace, with the flat areas representing the training of
each trace. In both approaches, the reward grows with time.
For the random trace sampling training, the reward stabilizes
very early on and only grows very slightly.

The QoE scores of the three resulting models are summa-
rized on Table II. To evaluate the QoE, we use the models

trained by the mid-performer from the 3 runs, so as not to
introduce a bias. Table II shows that, out of 9 traces, the
model trained with the gap-to-baseline approach has superior
performance for 6 traces, while the random-sampling approach
for 3 traces (among which the hard case of the 5G traces).
If we average out the overall QoE scores for all traces,
gap-to-baseline outperforms the reward-based approach by 11
QoE units and the random approach by 1.65 QoE units. The
poor performance of the reward-based approach shows the
importance of evaluating against the actual QoE metrics and
not just the reward.

Next, we compare the general models with the specialized
models and GCC. Figure 6 shows an example of the sending
rate for the trace 4G 700kbps, where the pink line represents
the general model trained with the gap-to-baseline method-
ology. We notice that, for this trace, the sending rate of the
general model is a little more conservative than the specialized
one, but still very comparable. For a full comparison of QoE
scores, we look at both Table II and Table I. Comparing
the specialized models for each trace with the single model
solutions, for overall QoE scores, we observe a performance
penalty of 10.4 QoE units on average for the random-sampling
single model and 8.95 QoE units for the gap-to-baseline
model. This is expected, since a specialized model for each
trace would always outperform a general one. Comparing with
GCC, the gap-to-baseline model is more conservative with the
sending rate, so it has worse scores for QoErr, but better for
QoEdelay and QoEloss. On average, it shows an improvement



TABLE II: QoE of single models trained in different ways on all traces

Trace QoE Receiving rate QoE Delay QoE Loss Overall QoE
Random Reward-based Gap Random Reward-based Gap Random Reward-based Gap Random Reward-based Gap

Wired 200kbps 73.38 76.75 79.58 97.31 97.99 95.55 100 100 100 90.14 91.49 91.62
Wired 900kbps 78.73 17.09 70.69 66.03 24.56 63.9 100 100 100 81.51 47.17 78.12
Wired 35mbps 0.55 0.43 1.93 68.51 66.67 72.99 99.52 99.53 99.57 56.14 55.49 58.1

4G 500kbps 65.56 31.06 75.01 90.68 93.83 89.56 100 100 100 85.33 74.89 88.1
4G 700kbps 64.12 23.06 69.02 89.6 93.8 89.4 100 100 100 84.49 72.22 86.05
4G 3mbps 13.69 5.16 9.75 85.03 87.75 95.55 89.99 86.42 84.74 62.84 59.72 63.28

5G 12mbps 1.66 1.14 4.73 80.24 50.06 70.74 100 100 100 60.57 50.35 58.43
5G 13mbps 1.53 1.07 4.36 62.06 47.56 55.92 100 100 99.97 54.48 49.49 53.36

300kbps 72.51 46.72 66.95 2.96 0 48.43 100 100 100 58.43 48.86 71.72
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Fig. 8: Cumulative reward during training

in overall QoE over GCC of 0.2 units. The random-sampling
model shows a performance drop over GCC of 1.46 QoE units.
The results from the curriculum training show that, with a wide
variety of training data, if we train smartly, we could obtain
a decent one-model-fits-all solution.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed ReCoCo, a Reinforcement
learning-based Rate controller for real-time applications. Re-
CoCo gains information about the network conditions at the
receiver-side, and predicts the available bandwidth in the next
time bin. We showed its performance, both in a specialized and
generalized version and found it outperforms current widely
adopted CC heuristics, namely GCC. We believe that the
story of training ReCoCo provides valuable lessons for the
RL for networking community, especially on transferability
and generalization of RL models on different network types.

As future work, we would like to try the solutions outside
a simulated environment, cover a larger variety of bandwidths
and find an optimal trade-off between specialized and general
models. We would also like to evaluate ReCoCo’s ability to
continue training in the wild.
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