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Abstract 

The continuous accumulation of operational data has provided an ideal platform to devise and 

implement customized data analytics for smart HVAC fault detection and diagnosis. In practice, 

the potentials of advanced supervised learning algorithms have not been fully realized due to 

the lack of sufficient labeled data. To tackle such data challenges, this study proposes a graph 

neural network-based approach to effectively utilizing both labeled and unlabeled operational 

data for optimum decision-makings. More specifically, a graph generation method is proposed 

to transform tabular building operational data into association graphs, based on which graph 

convolutions are performed to derive useful insights for fault classifications. Data experiments 

have been designed to evaluate the values of the methods proposed. Three datasets on HVAC 

air-side operations have been used to ensure the generalizability of results obtained. Different 

data scenarios, which vary in training data amounts and imbalance ratios, have been created to 

comprehensively quantify behavioral patterns of representative graph convolution networks 

and their architectures. The research results indicate that graph neural networks can effectively 

leverage associations among labeled and unlabeled data samples to achieve an increase of 2.86-

7.30% in fault classification accuracies, providing a novel and promising solution for smart 

building management.  

Keywords: Fault detection and diagnosis; Graph convolutional networks; Semi-supervised 



learning; HVAC systems; Machine learning. 

Nomenclature 

FDD fault detection and diagnosis 

HVAC heating, ventilation and air-conditioning 

AHU air handling units 

GNN graph neural network 

GCN graph convolution network 

Cheb Chebyshev network 

SAGE graph sample and aggregate network 

GAT graph attention network 

GCN2 graph convolution network with initial residual connections and identity mapping 

FCNN fully connected neural network 

1. Introduction 

Building automation technologies have been widely adopted in the building field to enable 

intelligent monitoring and controls over various building services systems. The continuous 

accumulation of building operational data provides an ideal platform to devise and implement 

smart data-driven methods for optimum decision-makings. As a prominent example, by 

leveraging advances in machine learning and data science, data-driven classification models 

can be developed to describe underlying relationships between operating parameters and faulty 

conditions, which helps to enhance the efficiency and effectiveness for real-time and large-

scale HVAC fault detection and diagnosis tasks (i.e., FDD) (Li and O’Neill 2018; Fan et al. 

2021a; Piscitelli et al. 2021). 

In general, data-driven FDD methods can be developed by firstly defining model inputs and 

outputs, and then applying statistical and machine learning algorithms for predictive modeling. 

For instance, chiller operating conditions can be well described through a set of physical 

parameters, such as the temperatures, pressures and flowrates of refrigerants and circulating 

water (Fan et al. 2019; Gao et al. 2022). Such variables can be used as model inputs to classify 

chiller conditions into either normal or faulty conditions. Considering the nonlinearity and 

complexity between model inputs and outputs, previous studies have explored the potentials of 

various machine learning techniques in fault classification tasks. The modeling approaches 



used vary in their learning natures, ranging from linear (e.g., principal component analysis (Li 

and Wen 2014; Xia et al. 2021)) to nonlinear algorithms (e.g., support vector machines (Zhao 

et al. 2013; Han et al. 2019)), and single- (e.g., decision trees (Li et al. 2018)) to ensemble-

model architectures (e.g., extreme gradient boosting trees and random forests (Chakraborty and 

Elzarka 2019; Yao et al. 2022)). Compared with conventional human-centric FDD methods, 

data-driven FDD can be fully automated and highly accurate given sufficient training data. It 

is therefore regarded as a more promising and scalable solution for intelligent building 

management. However, at present, the industrial applications of data-driven FDD methods are 

rather limited (Mirnaghi and Haghighat 2020; Chen et al. 2022). The main reason is that high-

quality labeled data are not always available in practice. On the one hand, high-level domain 

expertise is needed to assign labels (e.g., Normal or Faulty) for data samples, making it labor-

intensive and time-consuming to prepare sufficient labeled dataset for FDD modeling. On the 

other hand, operation faults are typically rare events and it is unlikely to encounter all possible 

faults in various operating conditions to ensure the generalization performance of data-driven 

fault classification models.  

To tackle the above-mentioned data challenges in building operations, research efforts have 

been spent to apply novel machine learning paradigms for HVAC FDD tasks. As building 

systems and their operating behaviors share similarities, transfer learning methods can be 

developed to customize FDD solutions based on the knowledge learnt or data collected from 

other buildings. Zhu et al. proposed a model-based transfer learning framework for migrating 

chiller FDD knowledge between two screw chillers (Zhu et al. 2021). Liu et al. devised a 

convolution neural network-based transfer learning strategy for diagnosing chiller faults (Liu 

et al. 2021). Considering potential discrepancies in data variables collected from different 

domains, a two-dimensional image-based transfer learning framework was proposed to enable 

multi-source data integration and FDD knowledge sharing for air handling units (i.e., AHU) 

(Fan et al. 2022). Transfer learning has shown promising results on enhancing data-driven FDD 

performance. Nevertheless, such approach is a typically regarded as a heavyweight solution as 

it assumes the availability of source domain data. By contrast, semi-supervised learning is a 

rather lightweight solution as it focuses on the efficient utilization of both labeled and unlabeled 

data in individual buildings. Yan et al. compared the performance of various semi-supervised 



learning algorithms for AHU fault diagnosis, such as semi-supervised support vector machines, 

decision trees and random forests (Yan et al. 2018). The results validated the potential of semi-

supervised learning, as it could significantly lower the labeled data requirement for reliable 

fault modeling. Fan et al. proposed a semi-supervised learning framework for AHU fault 

detection and diagnosis (Fan et al. 2021b; Fan et al. 2021c). Semi-supervised neural networks 

were developed in an iterative fashion by utilizing pseudo-label information predicted for 

unlabeled data, which led to significant improvements on fault classification accuracies. 

Another approach is to adopt generative modeling to address data challenges in HVAC FDD 

tasks. Li et al. adopted generative adversarial networks to explore unlabeled data distributions 

for improving fault diagnosis performance of packaged rooftop units (Li et al. 2021). The 

results reported show that at most 10% improvements in fault diagnosis accuracies could be 

achieved given limited labeled data. Generative adversarial networks have also been used to 

generate synthetic faulty data samples for reducing imbalance ratios in training data and 

thereby, resulting in more reliable data-driven models for fault inferences (Yan et al. 2020a; 

Fan et al. 2021d). 

 

Fig. 1 Roadmap for GNN-based predictive modeling tasks in the building field 

Existing studies have proved that semi-supervised learning is extremely promising to ensure 

the feasibility and reliability of data-driven FDD methods. Despite the encouraging results 



obtained, existing solutions are only applicable for analyzing data with conventional Euclidean 

or grid-like structures. A natural question arises as how to generalize the fault modeling 

methods to effectively integrate and utilize multi-source and non-Euclidean information 

embedded in building operations for fault inferences, such as the geometric locations of sensors, 

the hierarchical information of HVAC systems, and possible connections or linkages among 

data samples. Such non-Euclidean information is ubiquitous in building system operations and 

can be very valuable to further increase the theoretical performance limits of data-driven FDD 

methods. Considering that graphs are compatible with both Euclidean and non-Euclidean 

information, graph neural networks (i.e., GNNs) have drawn increasing interests from both 

academia and industries (Keramatfar et al. 2022; Jiang and Luo 2022). GNN-based methods 

have been developed in diagnosing faults in various industrial processes (Zhang and Yu 2022) 

and mechanical systems, such as motors, gears and bearings (Li et al. 2022). Nevertheless, few 

studies have been conducted to exploit its value in smart building system management. It would 

be of great significance to develop GNN-based solutions for semi-supervised HVAC FDD 

tasks, as it enables the efficient integration of multi-source information with heterogeneous 

structures and utilization of both labeled and unlabeled operational data. To bridge the 

knowledge gap, as shown in Fig. 1., this study proposes a novel GNN-based semi-supervised 

learning framework for HVAC FDD tasks and evaluates its performance across various 

datasets. The paper is organized as follows. Section 2 introduces the research methodology 

with theoretical background provided. Section 3 describes details on data experiments and 

results are discussed in Section 4. Conclusions are drawn in Section 5. 

2. Theoretical background 

2.1 Graph-structure data 

Graphs are natural and flexible representations of information with heterogenous structures. A 

graph G consists of a number of vertices and edges, which are denoted as V(G) and E(G) 

respectively. The vertices or nodes are typically used to represent a set of entities, while their 

relationships can be described using either directed or undirected edges or links. Detailed 

information on nodes, edges or the entire graph can be stored as attributes or embeddings. 

Graphs have been widely used to describe heterogenous information in various fields, such as 

social networks, molecule structures, academic citations, and commercial transactions 



(Sanchez-Lengeling et al. 2021).  

Fig. 2 presents two example types of graphs for HVAC systems. As shown in Fig. 2(a), vertices 

or nodes represent different entities in a chiller plant while undirected and unweighted edges 

are used to represent hierarchical and connection information among system components. Each 

node has several attributes describing physical measurements at different time steps, such as 

chiller plant COP and part-load ratios, and operating frequencies of pumps. By contrast, Fig.2(b) 

treats each data sample as a node and uses weighted edges to depict similarities among data 

samples. Each node has three attributes representing temperature, flowrate and pressure 

measurements, while each edge has one attribute describing inter-node similarities. In addition, 

global attributes can be designed to represent global information of a graph, such as node and 

edge numbers. As we shall introduce in the following two subsections, graph convolutions can 

be performed to aggregate information among graph nodes and therefore, providing a valuable 

approach to integrating both “self-information” and “neighboring-information” from tabular 

data for predictive modeling. More specifically, conventional machine learning algorithms for 

tabular data analysis, such as fully connected neural networks, typically treat each data sample 

as an independent observation and therefore, is making predictions based on the “self-

information” of each data sample in essence. Even though Euclidean distance is commonly 

used to define weighted edges in Fig. 2(b), such graph layout allows information passing 

among graph nodes, which enables heterogenous information integration for both inductive 

and transductive decision makings in the building field. 

 

Fig.2 Example graphs for HVAC systems 

2.2 Graph learning problems 



As shown in Fig. 3, three types of prediction tasks can be performed based on graph data, i.e., 

graph-level, node-level and edge-level (Daigavane et al. 2021). Graph-level tasks aim to predict 

a single property, which is of either regression or classification nature, from a whole graph. For 

instance, as shown in Fig. 3(a), a binary classification problem can be formulated to classify 

the COP of HVAC system operations into either Low or High based on the information 

contained in the whole graph. Node-level tasks aim to predict certain property for each node 

and example applications include node-level classification and node-level clustering. As an 

example, node-level binary classification problems can be formulated to classify whether a 

node represent Normal or Faulty operations, which are colored as red and yellow respectively 

in Fig. 3(b). Edge-level tasks try to predict the property or presence of edges in a graph. As 

shown in Fig. 3(c), a link prediction task can be formulated as a binary classification problem 

to predict whether an edge should be added between Nodes A to D and Nodes B to D. 

 

Fig. 3 Typical graph learning problems 

In essence, four types of information can be utilized for graph learning problems, i.e., nodes, 

edges, global-context and connectivity (Daigavane et al. 2021; Sanchez-Lengeling et al. 2021). 

The former three types of information are typically represented as conventional Euclidean 

formats. For instance, node information can be stored using a node feature matrix, where each 

row corresponds to a node and each column represents a node attribute. Such data formats are 

compatible with existing machine learning algorithms. However, it is non-intuitive to represent 



and process connectivity information using conventional machine learning algorithms. The 

connectivity among nodes can be represented as adjacency matrices or adjacency lists. As 

shown in Fig. 3, the dimension of an adjacency matrix is 𝑛 × 𝑛, where n represents the total 

node number. The entry value is either 1 or 0, indicating whether two nodes are connected or 

not. A diagonal degree matrix can also be defined indicating the total degree of each node. 

Graph neural network or GNN is a special kind of neural networks designed to process all the 

above-mentioned four types of information. Existing studies have shown that GNNs have better 

performance in analyzing graph-structured data compared with other methods, such as the 

graph kernel (Vishwanathan et al. 2010) and random-walk methods (Grover and Leskovec 

2016). The rationale behind GNNs is introduced in the following subsection. 

2.3 Basics on graph neural networks 

The main intuition of graph neural networks is to perform optimizable transformations on graph 

attributes while preserving graph symmetries. As introduced in Section 2.1, graph attributes 

can be embedded at node-, edge- or global-level. The backbone of GNNs adopts the concept 

of graph convolution for message or information processing. More specifically, graph data are 

processed through graph convolution operations using a three-step approach. Firstly, the 

neighboring information of each node or edge is gathered considering graph connectivity. 

Secondly, an aggregation function, such as the mean or sum operation, is used to aggregate 

neighboring information gathered. Thirdly, an update function, which is typically learnt and 

optimized through the use of a fully connected neural network, is used to transform the 

information aggregated to updated embeddings.  

 

Fig. 4 An example of graph message passing process 



As an example, Fig. 4 presents the message passing process for Node D. The example graph 

has three node-level attributes, i.e., the temperature, flowrate and pressure. Node D has 

connections with Nodes C and E. Besides information contained in Node D itself, the 

information gathered for aggregation can be stored as a 3 × 3  matrix. Using the mean 

operation as the column-wise aggregation function, the node attributes can be readily calculated 

as 8.0, 9.5 and 1.6 respectively. A three-layer fully connected neural network is then used for 

information update. Assuming the graph learning problem is a node-level binary classification 

task, the output layer of fully connected neural networks has one neuron with a Sigmoid 

activation function. As a result, the embedding of each node is a scalar which ranges between 

zero and one. Similar steps can be performed to update edge information if needed. It should 

be noted that multiple graph convolution layers can be designed to enable node-level or edge-

level information exchanges with greater connectivity.  

Various graph convolution models exist differing in their learning mechanisms. There are two 

general graph convolution approaches, i.e., spatial- and spectral-based approaches (Wu et al. 

2021). The spectral-based approach defines graph convolutions by utilizing polynomial filters 

from the perspective of graph signal process (Zhou et al. 2020). Spectral-based methods can 

be computational extensive as graphs become larger. Research efforts have been made to 

propose more efficient solutions by making approximations to polynomial filters and 

simplifications in eigen-decomposition process (Daigavane et al. 2021; Sanchez-Lengeling et 

al. 2021). Graph Convolution Network (i.e., denoted as GCN) and Chebyshev Network (i.e., 

denoted as Cheb) are two representatives of spectral-based graph convolution models. As an 

example, Eq. 1 presents the details of embedding computation for GCN. More specifically, 

ℎ𝑣
(𝑚)

 is the embedding of Node v at step m and it represents the original information contained 

in Node v when m equals to 0. 𝑁(𝑣) represents the neighbors of Node v while |𝑁(𝑣)| is the 

number of neighbors. 𝑊(𝑚) and 𝐵(𝑚) are graph convolution parameters which are used for 

neighboring information and the last-step embedding of Node v respectively. 𝑓(𝑚) represents 

a certain activation function, such as ReLU. 

ℎ𝑣
(𝑚)

= 𝑓(𝑚) (𝑊(𝑚) ∙
∑ ℎ𝜇

(𝑚−1)
𝜇∈𝑁(𝑣)

|𝑁(𝑣)|
+ 𝐵(𝑚) ∙ ℎ𝑣

(𝑚−1)
)          Eq. 1 



By contrast, the spatial-based approach, which mimics the 2D image convolution operation, 

performs graph convolutions by propagating information among neighboring nodes and edges. 

Graph Sample and Aggregate (i.e., denoted as GraphSAGE) and Graph Attention Networks 

(GAT) are two widely used spatial models. Existing studies indicate that spatial-based models 

are theoretically more efficient, scalable and flexible than spectral-based models, especially 

analyzing dynamic and large-scale graphs (Zhou et al. 2020; Wu et al. 2021). Eq. 2 describes 

the embedding calculation methods for GraphSAGE models, where aggregation of Node v’s 

embeddings at step m-1 are concatenated with Node v embedding at step m-1 before 

parameterized and activated by 𝑊(𝑚) and 𝑓(𝑚) respectively. Eq. 3 presents an example of 

dimension-wise maximum aggregation function, where 𝜎 is the Sigmoid activation function, 

𝑊𝑝𝑜𝑜𝑙
(𝑚)

 and b represents pooling weights and bias at step m. Eq. 4 describes the embedding 

calculation method for GAT models, where 𝛼𝑣𝜇
(𝑚)

 represents attention weights generated 

between Node v and Node 𝜇  through attention mechanisms. As shown in Eq. 5, 𝐴(𝑚) 

represents the attention mechanism which essentially normalizes attention weights of Node v 

neighbors to have a sum of one. Interested readers are directed to (Daigavane et al. 2021; 

Sanchez-Lengeling et al. 2021) for further theoretical details. 

ℎ𝑣
(𝑚)

= 𝑓(𝑚) (𝑊(𝑚) ∙ [𝐴𝐺𝐺𝜇∈𝑁(𝑣) ({ℎ𝜇
(𝑚−1)

}) , ℎ𝑣
(𝑚−1)

 ])       Eq. 2 

𝐴𝐺𝐺𝜇∈𝑁(𝑣) ({ℎ𝜇
(𝑚−1)

}) = 𝑚𝑎𝑥𝜇∈𝑁(𝑣){𝜎(𝑊𝑝𝑜𝑜𝑙
(𝑚)

ℎ𝜇
(𝑚−1)

+ 𝑏)}      Eq. 3 

ℎ𝑣
(𝑚)

= 𝑓(𝑚) (𝑊(𝑚) ∙ [∑ 𝛼𝑣𝜇
(𝑚−1)

ℎ𝜇
(𝑚−1)

+𝜇∈𝑁(𝑣) 𝛼𝑣𝑣
(𝑚−1)

ℎ𝑣
(𝑚−1)

])       Eq. 4 

𝛼𝑣𝜇
(𝑚)

=
𝐴(𝑚)(ℎ𝑣

(𝑚)
,ℎ𝜇

(𝑚)
)

∑ 𝐴(𝑚)(ℎ𝑣
(𝑚)

+ℎ𝑤
(𝑚)

)𝑤∈𝑁(𝑣)

                     Eq. 5 

3. Research methodology 

3.1 Research outline 

This research investigates the potentials of graph neural networks for semi-supervised HVAC 

FDD tasks. In this study, the HVAC fault diagnosis task is formulated as a semi-supervised 

node-level classification problem, where each node represents a data sample either with or 

without labeling information, and their possible linkages are described as graph edges. Unlike 

inductive learning approaches, such node-level task adopts a transductive learning paradigm 

for fault classification, where both training and testing data are utilized to construct a single 



graph for inferences and the testing data are treated as unlabeled data. Compared with 

conventional data-driven methods, GNN-based methods have unique abilities in exploring and 

integrating neighboring information on intra-data structures or similarities and thereby, 

providing effective tools to enhancing data-driven fault classification performance.  

The research outline is depicted as Fig. 5. Graph generation methods are firstly proposed to 

transform tabular building operational data into graphs. Data experiments are then designed to 

evaluate the potentials of graph neural networks for semi-supervised HVAC fault diagnosis. 

More specifically, both fully connected neural networks and graph convolution networks are 

developed to validate the advantages of GNN-based semi-supervised learning. In essence, the 

former corresponds to conventional induction reasoning as prediction models are developed 

using labeled training data only. By contrast, the latter enables semi-supervised learning 

through transductive reasoning, where both labeled and unlabeled nodes presented in a graph 

are utilized to make predictions on unlabeled testing data. In addition, this study also 

investigates the performance of various GNN architectures in terms of graph convolution types 

and hidden layers under different data availabilities, based on which useful guidelines are 

obtained practical applications.  

 

Fig. 5 Research outline 

3.2 The kNN-based graph generation method for HVAC fault diagnosis 

In this study, the k-nearest neighbor (i.e., kNN) algorithm is used to create associations among 

data samples and thereby, transforming tabular building operational data into graphs. It can be 



summarized as a three-step method. Firstly, domain expertise or statistical methods can be 

applied to choose a set of input variables for kNN computations. Such variables should be 

sufficiently expressive to describe operating characteristics of system operations. For instance, 

the supplied/returned temperatures and flowrates of chilled and condensing water, the ambient 

temperature and relative humidity can be used to describe the operating conditions of water-

cooled chillers. As another example, the supplied, returned and mixed air temperatures can be 

used to describe general operating patterns of AHUs. Secondly, as illustrated in Fig. 6, distance 

measures, such as the Euclidean distance, are utilized to calculate pairwise distances among 

data samples. Data normalization or standardization should be performed to ensure the validity 

of distance calculation. In addition, the number of variables used should be kept relatively small 

and data dimensionality reduction methods (e.g., principal component analysis) can be applied 

to avoid the curse of dimensionality. Thirdly, by setting a certain k value, graph edges can be 

generated considering the top-k similar neighbors to each data sample. It should be mentioned 

that such edges serve as bridges for node-level information exchange during graph convolution 

operations. To reduce computation burdens and avoid possible disturbances from varying 

operating conditions, the k value is suggested to be relatively small, e.g., 5 or 10. As an example, 

Fig. 6 presents the graph generated when k equals to two. The adjacency matrix is created in a 

symmetric manner without distinguishing edge directions and therefore, some nodes may have 

more than k edges, e.g., Node B. It should be mentioned that the graph created for transductive 

learning may become larger and larger as more data are available for analysis. In practice, it is 

suggested to select partial yet representative data samples for analysis given redundant and 

large-scale building operational data. 



 

Fig. 6 The graph generation method for semi-supervised node-level classifications 

3.3 Data experiments  

3.3.1 Experimental data descriptions 

Once graph data are generated, data experiments can be conducted to comprehensively evaluate 

the value of GNN-based method for HVAC fault diagnosis. To ensure the generalizability of 

research results, three experimental datasets describing operations of HVAC air-side systems 

are used for analysis. The first dataset comes from the ASHRAE 1312-RP (Wen and Li 2011) 

while the latter two come from the automated fault detection and diagnosis project conducted 

by the Lawrence Berkeley National Laboratory (Granderson and Lin 2019).  

As summarized in Table-1, the first dataset, which is denoted as the ASHRAE data in this study, 

contains operational data collected in three testing periods with a collection interval of one-

minute, i.e., the summer of 2007, and the spring and winter of 2008. In this study, 11 variables 

are selected as input variables for graph generation and fault modeling, including the 

temperatures of supplied, returned, mixed and outdoor air, the flowrates of supplied, returned 

and outdoor air, the water temperatures at chilled and hot water coils, and the differential 

pressure of supplied and returned air fans. The fault diagnosis task is formulated as a 16-class 

classification problem, including one Normal class and five major faults (i.e., damper stuck 

faults at exhaust air and outdoor air dampers, valve stuck or leaking faults at cooling and 

heating coils, and fixed speed fault at returned air fans) each with three severity levels.  



The second and third datasets are denoted as the SZCAV and SZVAV, as they are experimental 

data collected at one-minute interval from single-zone constant air volume and variable air 

volume AHU systems respectively. The system operates 7-day a week with a predefined 

operating time schedule, i.e., 6 a.m. to 6 p.m. In total, 11 variables are selected as inputs, 

including the temperatures of supplied, returned, mixed and outdoor air, damper positions of 

returned, outdoor and exhaust air dampers, valve positions of cooling and heating coils, heating 

and cooling temperature setpoints of supplied air. There are 14 and 7 faults recorded in SZCAV 

and SZVAV datasets respectively, making it a 15-class and 8-class classification problem for 

fault diagnosis. All these faults take place at three components, i.e., outdoor air damper, cooling 

and heating coil valves. The numbers of fault classes vary as different fault severity levels were 

introduced during experiments.  

Table-1 A summary of experimental data 

Datasets ASHRAE SZCAV SZVAV 

Total data samples 34,560 10,800 7,690 

Input variable numbers 11 11 11 

Output class numbers 16 15 8 

3.3.2 Experiment setups 

To comprehensively evaluate the performance of different data-driven fault classification 

methods, 30 data scenarios are created considering five labeled data availabilities and six 

imbalance ratios. Five levels of labeled data availabilities are specified referring to 25, 50, 75, 

100 and 125 data samples for each class under balanced data scenarios. The numbers of labeled 

data for each class may vary when different imbalance ratios (i.e., 10, 20, 30, 40 and 50) are 

introduced into data experiments. For instance, given a labeled data availability of 50 per class 

and an imbalance ratio of 10, the ASHRAE data will have 50 × 16 = 800 labeled training 

data in total, leading to 
800

10+15
= 32 data samples per Faulty class and 32 × 10 = 320 data 

samples for the Normal class. Balanced testing datasets are selected for performance evaluation 

by randomly selecting 200 data samples per class. Considering that the original data were 

collected at one-minute intervals, it is possible to have similar data samples in both training 

and testing data and thereby, leading to biased accuracy metrics. In this study, the training and 



testing data amounts were set relatively small compared to the overall data size, which may 

help to alleviate such data overlapping issues. In addition, data experiments are repeated 10 

times for each data scenario with averaged performance reported to ensure the result robustness 

given randomness in data sampling. The training and testing data are fixed for all data-driven 

models during each experiment run, making it a fair game for performance evaluation. As a 

result, the possible biased accuracy metrics obtained may not conflict with research conclusions. 

 

Fig. 7 Semi-supervised node-level graph convolution networks for fault classifications 

As benchmarks, fully connected neural networks (i.e., FCNNs) are developed using labeled 

data only. Besides the four representative graph convolutions introduced in Section 2.3, another 

graph convolution, i.e., GCN2, which enhances the learning ability of deeper graph convolution 

networks through the residual connection (Chen et al. 2020), is also explored in this study. The 

general architecture of GNNs with one graph convolution layer is shown in Fig. 7. During 

experiments, all data-driven models are developed considering one to four hidden layers. The 

maximum training epochs is set as 2000. To avoid possible overfitting problems, all models 

are developed using the early-stopping training scheme and a dropout of 20% is applied after 

the input layer. The initial learning rate is fixed as 0.1 and the Reduce on Plateau method is 

used to dynamically reduce the learning rate by a factor of two for better model convergence. 

In addition, to alleviate the data imbalance problem, higher training weights are assigned for 

data samples associated with the minority class. In this study, the weights are set as the 



reciprocals of class frequencies, e.g., the weights of Faulty data samples are 10 times larger 

than those of Normal data samples when the imbalance ratio is 10. All the data experiments 

and result analysis are conducted using the Pytorch Geometric library (Fey and Lenssen 2019) 

and the R programming language (R development core team, 2008). 

4. Results and discussions 

4.1 Benchmark fault diagnosis performance 

4.1.1 Benchmark performance using fully connected neural networks 

Figs. 8 to 10 depict the fault diagnosis performance of fully connected neural networks (i.e., 

FCNNs) on ASHRAE, SZCAV and SZVAV datasets respectively, where N, IR and L represent 

the number of training data samples per class, the imbalance ratio and the number of hidden 

layers. As mentioned in Section 3, the model performance is tested against balanced data and 

therefore, the accuracy is selected as the evaluation metric. It is evident that the increase in 

training data samples will enhance the fault diagnosis performance, which is expected as data-

driven models typically benefit from more information-rich datasets. The results indicate that 

higher imbalance ratios would lead to poorer fault diagnosis performance, even though 

minority classes have been assigned with much higher weights during model training. For 

instance, given balanced training data, the fault diagnosis accuracies on the ASHRAE data of 

single hidden layer FCNNs are 80.8%, 82.9%, 83.6%, 83.7% and 84.1% when the training data 

amount increases from 400 to 2000 (i.e., the training data amounts range between 25 to 125 

per class in balanced data scenarios, resulting in 400 to 2000 training data in total as there are 

16 classes in ASHRAE dataset). By contrast, the fault diagnosis performance will dramatically 

degrade to 70.7%, 75.8%, 77.2%, 79.8% and 80.8% respectively when the imbalance ratio 

increases to 50. In addition, the results indicate that more hidden layers do not necessarily 

improve fault diagnosis performance using fully connected neural networks, especially when 

the training data suffer from severe imbalance data problems. Such observations are in 

accordance with expectations, as complicated data-driven models are more vulnerable to 

overfitting issues and will become less competent in identifying faults with minority nature. 

For instance, given an imbalance ratio of 50, the maximal and minimal fault diagnosis 

accuracies on the ASHRAE data are 80.8% and 70.7% respectively when FCNNs have one 

hidden layer, while decrease to 77.5% and 61.0% respectively using FCNNs with four hidden 



layers. It should be mentioned that higher accuracies have been reported in existing studies 

using the ASHRAE data (Piscitelli et al. 2020; Yan et al. 2020b). Nevertheless, such 

performance differences may result from different training and testing data splits, data 

preprocessing techniques used and intrinsic model complexities. In this study, training data 

have been deliberately designed to simulate insufficient and imbalanced data scenarios for 

model training, while testing data are kept balanced to avoid possible biased results towards 

the majority Normal class. Rather than focusing on the absolute fault classification accuracies, 

this study tries to capture general model behaviors or performance trends to draw insightful 

conclusions for practical applications. 

 

Fig. 8 The fault diagnosis performance of FCNNs on ASHRAE data 
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Fig. 9 The fault diagnosis performance of FCNNs on SZCAV data 

 

Fig. 10 The fault diagnosis performance of FCNNs on SZVAV data 
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coefficients in their original and standardized forms. The signs of model coefficients reflect 

correlations between input variables and fault diagnosis accuracies. The results indicate that 

training data amounts positively affect model accuracies, while imbalance ratios and hidden 

layer numbers have negative impacts on model accuracies. The P-values shown in brackets 

suggest that these three factors have statistically significant linear impacts given a significant 

level of 1%. The standardized model coefficients are helpful for comparing the effect strengths 

of different factors on model accuracies. It is shown that training data amounts and imbalance 

ratios have similar effect strengths on model accuracies, as their standardized coefficients share 

similar magnitudes. By contrast, the standardized coefficients of hidden layer numbers are 

much smaller across different datasets, indicating smaller effect strengths on FCNN model 

performance. 

Table-2 Multiple linear regression results on FCNN model performance 

Settings Coefficients ASHRAE SZCAV SZVAV 

Training data amounts 
Original 

7.57×10-4  

(P=0.00) 

8.87×10-4  

(P=0.00) 

6.58×10-4  

(P=0.00) 

Standardized 0.61 0.61 0.53 

Imbalance ratios 
Original 

-1.61×10-3  

(P=0.00) 

-2.13×10-3  

(P=0.00) 

-1.93×10-3  

(P=0.00) 

Standardized -0.61 -0.69 -0.74 

Hidden layer number 
Original 

-9.62×10-3  

(P=0.00) 

-4.36×10-3  

(P=0.01) 

-3.93×10-3  

(P=0.01) 

Standardized -0.24 -0.09 -0.10 

Considering nonlinear interactions may exist between fault diagnosis accuracies and the above-

mentioned experiment settings (i.e., the training data amount N, imbalance ratio IR and hidden 

layer number L), surrogate models using LightGBM have been developed for predictive 

modeling and interpreted through the KernelSHAP local explanation algorithm. In such a case, 

Shapley values obtained are used to quantify possible impacts of N, IR, L on FCNN model 

performance. More specifically, the global importance of N, IR and L on fault diagnosis 

accuracies can be calculated as the sum or mean of absolute values of their individual Shapley 



values. As shown in Table-3, N and IR have similar importance on FCNN model performance 

across different datasets, while L has much smaller impacts on fault diagnosis accuracies. Figs. 

11 to 13 illustrate the Shapley values of different settings using the ASHRAE, SZCAV and 

SZVAV datasets respectively. Similar behavioral patterns can be observed across different 

datasets, i.e., the increase in training data amounts, the decrease in imbalance ratios and hidden 

layer numbers typically result in higher Shapley values, referring to possible enhancements in 

fault diagnosis accuracies. For instance, Fig. 11 presents that Shapley values generally range 

between -0.04 and -0.08 when N is set to 25. It is in accordance with domain expertise as 25 

may be too small to guarantee the generalization performance of complicated data-driven 

models. As N increases, the resulting Shapley values also increase and become the highest 

given N equals to 125, indicating that FCNN model accuracies do benefit from more training 

data. 

Table-3 Shapley value-based global importance of different settings on FCNN performance 

Shapley importance ASHRAE SZCAV SZVAV 

Training data amounts 2.92 3.44 2.47 

Imbalance ratios 2.82 3.64 3.39 

Hidden layer numbers 1.24 0.81 0.61 

 

Fig. 11 Shapley values for FCNN model interpretation using ASHRAE data 
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Fig. 12 Shapley values for FCNN model interpretation using SZCAV data 

 

Fig. 13 Shapley values for FCNN model interpretation using SZVAV data 
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performance of kNN ensemble models and FCNN models with one hidden layer. In general, 

FCNN models are more robust against data scarce contexts with limited data and high 

imbalance ratios. Taking the ASHRAE data with an imbalance ratio of 50 for examples, the 

FCNN fault diagnosis accuracies are 80.7% and 70.7% given 125 and 25 training data per class, 

which are much higher than the corresponding accuracies of kNN ensemble models, i.e., 67.1% 

and 24.7% respectively. Nevertheless, kNN ensemble models do have better performance given 

sufficient training data with smaller imbalance ratios. For instance, when the training data are 

balanced (i.e., IR=1), kNN ensemble typically perform better than the single hidden layer 

FCNN models across all three datasets. It indicates that neighboring information can be very 

helpful for fault diagnosis, yet it is highly sensitive to training data quality and the performance 

may degrades dramatically given insufficient or imbalanced training data. Considering that 

data environment in practice may vary greatly, parametric data-driven methods, such as 

artificial neural networks, may provide more reliable and robust results. 

 

Fig. 14 Fault diagnosis performance comparison between FCNN and kNN methods 
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4.2 Fault diagnosis performance using graph neural networks 

4.2.1 General behavioral patterns of graph neural networks 

Figs. 15 to 17 describe general behavioral patterns of various GNNs with changes in training 

data amounts per class, imbalance ratios and hidden layer numbers. As shown in Fig. 15, the 

fault diagnosis accuracies increase with enlargements in training data amounts across different 

datasets. It is observed that Cheb and SAGE models typically result in the best performance, 

while GCN2 performs the worst in terms of fault classification accuracies. In addition, GAT 

models, which adopt rather complex attention mechanisms and have the largest number of 

model parameters, do not necessarily lead to better performance. Fig. 16 indicates that GNN 

models suffer from imbalance data problems, and higher imbalance ratios will lead to poorer 

generalization performance. Fig. 17 presents the general relationships between fault diagnosis 

accuracies and the number of graph convolution layers. It is shown that optimal performance 

can be obtained when setting the number graph convolution layers to be two for most graph 

convolution types. Further increases in graph convolution layers will not only deteriorate model 

performance, but also impose extra burden in computational costs. Such observations are in 

accordance with domain expertise, as the increase in graph convolution layers will cause the 

over-smoothing problem, i.e., the intrinsic information of a node is being diluted by its 

neighboring information through graph convolutions. Nevertheless, the results indicate that 

GCN2 models do benefit from increasing graph convolution layers. The reason behind is that 

GCN2 adopts two simple yet effective techniques, i.e., initial residual and identity mapping, to 

overcome the over-smoothing problem in graph modeling, sharing a similar concept of the 

famous ResNet architecture in the deep learning field (He et al. 2015; Chen et al. 2020). Higher 

classification accuracies may be possible given different k values for kNN-based graph 

generation. Such hyperparameter can be essential as it determines the graph layout for fault 

inferences. Further studies can be conducted to systematically investigate the optimal values 

considering the trade-off between graph complexity and fault diagnosis performance. 



 

Fig. 15 The fault diagnosis performance of GNNs considering different training data amounts 

 

Fig. 16 The fault diagnosis performance of GNNs considering different imbalance ratios 
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Fig. 17 The fault diagnosis performance of GNNs considering different hidden layer numbers 
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strengths on GNN model performance, while the effect strengths of graph convolution layers 

and graph convolution types are less significant. Clear performance trends can be observed 

among different settings on training data amounts and imbalance ratios, indicating that the 

increase in training data amounts and decrease in imbalance ratios typically lead to higher fault 

diagnosis accuracies. Most graph convolutional networks perform the best with no more than 

two graph convolution layers, and additional increases in graph convolution layers will lead to 

decreases in model performance. The performance of different graph convolution types is less 

consistent across different datasets. To summarize, SAGE models generally result in the best 

performance, while GCN2 models perform the worst in all three datasets. GAT models, which 

have larger parameter numbers due to the adoption of the multi-head attention mechanism, do 

not present clear performance edges over conventional GCN and Cheb models. The results 

indicate that SAGE, Cheb and GCN models are sufficient and more cost-effective to describe 

faulty operations in building operational data.  

As shown above, Shapely values have been used in this study to investigate the influence of 

training data, graph convolutional neural network types and architectures on fault classification 

accuracies. In practice, it is desired to implement model-specific or model-agnostic methods to 

provide either local or global explanations for interpreting data-driven fault diagnosis models 

(Machlev et al. 2022; Chen et al. 2023). Such interpretations are helpful for building 

professionals to understand the inference mechanisms learnt from data, while inspecting model 

validity with subjective domain expertise. Graph neural networks can be interpreted using 

either conventional model-agnostic methods (e.g., local interpretable model-agnostic 

explanations or LIME (Ribeiro et al. 2016) and Shapley additive explanation or SHAP 

(Lundberg and Lee 2017)) or model-specific methods (e.g., gradient-based and class 

activation-based interpretations (Pope et al. 2019)). 

Table-4 Shapley value-based global importance of different settings on GNN performance 

Shapley importance ASHRAE SZCAV SZVAV 

Training data amounts 20.36 23.94 20.70 

Imbalance ratios 15.67 21.84 22.00 

Hidden layer numbers 3.92 3.69 2.69 



Graph convolution types 4.66 5.13 5.18 

 

Fig. 18 Shapley values for GNN model interpretation using ASHRAE data 

 

Fig. 19 Shapley values for GNN model interpretation using SZCAV data 

 

Fig. 20 Shapley values for GNN model interpretation using SZVAV data 
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In this study, the performance improvement ratio (i.e., PIR) is formulated to quantify the 

performance gap between GNN and FCNN models. Fig. 21 plots the trend of average PIRs of 

different GNNs considering different training data amounts and imbalance ratios. The average 

PIRs are all positive when the imbalance ratio is no more than 20, even though the values can 

be rather small given limited training data amounts (e.g., N=25). Negative values of average 

PIRs can be observed given extreme data scenarios, where training data amount is small and 

imbalance ratio is larger than 20. Table-5 summarizes the mean PIR values across data 

scenarios with different training data amounts and imbalance ratios. The results show that GNN 

are helpful for enhancing fault diagnosis accuracies with potential performance boosts of at 

least 4% in most data scenarios. Taking GCN2 as an example, even though it performs the 

worst among various graph convolution types, the resulting PIRs are still positive with mean 

values of 4.51%, 4.13% and 2.86% on ASHRAE, SZCAV and SZVAV datasets respectively. 

Meanwhile, the better GNNs, such as SAGE and Cheb models, can lead to more than 6.0% 

performance improvement ratios across three datasets.  

Table-5 A summary of PIR means across different data scenarios 

PIRs GCN Cheb SAGE GAT GCN2 

ASHRAE 6.87% 6.17% 7.30% 6.23% 4.51% 

SZCAV 4.66% 6.85% 6.62% 4.71% 4.13% 

SZVAV 5.42% 6.08% 6.63% 6.72% 2.86% 



 

Fig. 21 Visualization of average performance improvement ratios of GNN models 
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that FCNN treats each data sample as an independent observation, while GNN also considers 

its neighboring data samples for predictive modeling. In other words, GNNs enable a novel 

approach to effectively integrating both “self-information” and “neighboring-information” in 

tabular data for fault diagnosis. Such graph convolution operations can be readily performed 

without requiring the neighboring nodes to be “labeled”, making it more suitable to analyze 

both labeled and unlabeled data for semi-supervised learning tasks in the building field. 

Table- A summary of model complexity in terms of total parameter numbers 

Parameter 

numbers 

Hidden 

layers 

FCNN GCN Cheb SAGE GAT GCN2 

ASHRAE 1 856 856 1,186 1,186 2,536 1,756 

2 1,789 1,789 3,016 3,016 9,976 2,656 

3 2,716 2,716 4,846 4,846 17,416 3,556 

4 3,646 3,646 6,676 6,676 24,856 4,456 

SZCAV 1 825 825 1,155 1,155 2,475 1,725 

2 1,755 1,755 2,985 2,985 9,915 2,625 

3 2,685 2,685 4,815 4,815 17,355 3,525 

4 3,615 3,615 6,645 6,645 24,795 4,425 

SZVAV 1 608 608 938 938 2,048 1,508 

2 1,538 1,538 2,768 2,768 9,488 2,408 

3 2,468 2,468 4,598 4,598 16,928 3,308 

4 3,398 3,398 6,428 6,428 24,368 4,208 

5. Conclusions 

HVAC fault detection and diagnosis is an essential task in building energy management, as it 

is closely related to the efficiency and safety of system operations. Reliable data-driven fault 

diagnosis methods are of great significance to facilitate decision makings in smart building 

operations. To tackle the labeled data shortage challenge in the building field, semi-supervised 

solutions have been proposed to enhance the quality of data-driven models. This study explores 

the potential of graph convolutional networks in HVAC fault diagnosis tasks, where the fault 

diagnosis problem is formulated as a transductive node-level classification problem. More 



specifically, a graph generation method has been proposed to transform tabular building 

operational data into graphs using k-nearest neighbors and thereby, enabling fault inferences 

based on both “self-information” and “neighboring-information”. Data experiments have been 

conducted to obtained behavioral patterns of graph neural networks considering different data 

availabilities and model architectures. The performance of graph convolutional networks has 

been evaluated using three HVAC operational datasets and compared with conventional fully 

connected neural networks and nonparametric k-nearest neighbor methods. The main findings 

are summarized as follows. 

(1) Graph convolutional networks provide a novel approach to semi-supervised fault diagnosis, 

as it can effectively utilize neighboring information, either labeled or unlabeled, for fault 

inferences. The results indicate that graph convolutional network-based methods can 

achieve higher fault diagnosis accuracies than conventional machine learning models with 

similar complexities. The average performance improvement ratios are mostly positive and 

range between 2.86% to 7.30% in different data scenarios. It is worth mentioning that 

negative performance improvement ratios can be observed in extreme training data contexts 

with limited labeled data samples and high imbalance ratios. 

(2) The general behavioral patterns of graph convolutional networks in fault diagnosis tasks 

have been obtained through data experiments. To summarize, the fault diagnosis accuracies 

are higher given larger labeled training data amounts and lower imbalance ratios. In 

addition, the increase in graph convolution layers does not necessarily enhance model 

performance, and most graph neural networks perform the best using one or two graph 

convolution layers only. Such findings are in accordance with results reported in other field, 

as excessive graph convolutions may cause the over-smoothing problem, i.e., the intrinsic 

information of a node is being diluted by its neighboring information. 

(3) This study compares the performance of five graph convolution operations. The results 

show that SAGE models perform the best, while GCN2 models with residual connections 

performs the worst across all three HVAC datasets. GAT models, which have the highest 

model complexity due to the use of multi-head attention mechanisms, do not present clear 

performance edge over the other two graph convolution types (i.e., GCN and Cheb). In 

practice, it is suggested to use SAGE, GCN and Cheb models with less than two graph 



convolution layers to ensure the cost-effectiveness of HVAC fault diagnosis tasks. 

This study serves an exploration to leverage graph neural networks for building operational 

data analysis. The methods proposed are helpful for the effective utilization of heterogenous or 

multi-relational information in building operations. Further studies can be conducted to 

investigate the influences of different graph generation methods on transductive or inductive 

graph learning, and the performance of graph neural networks for other building management 

tasks.  
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