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Abstract  

This paper presents the application of the finite element method to analyze the dynamic 

response of aerospace structures subjected to random excitations. The focus is on using refined 

structural models to investigate the accuracy of higher-order theories employing the Carrera 

Unified Formulation (CUF). This formulation enables finite element solutions based on 

arbitrary kinematic models to be generated with ease. In this paper, the solution scheme is 

based on the use of power and cross-spectral densities adopting the modal reduction strategy 

for reducing the computational burden. The response of a sandwich cantilever beam and a 

laminated beam excited by a white noise are studied. The results prove the ability of refined 

models to capture dynamic responses at low and high frequencies. Furthermore, higher-order 

models show a more accurate solution. 

 

 

1. Introduction 

The fatigue phenomenon represents one of the most common causes of failure in structural and 

mechanical components. It is necessary to introduce the fatigue analysis of real components 

starting from the estimation of the stress or strain distributions due to the loading history. In 

this contest, the prediction of the dynamic response of a structure subjected to random 

excitations is crucial to estimate the fatigue performance. As aircraft and space vehicles 

encounter gusts and noise excitations during flights [1], a damage tolerance approach can help 

to compute stresses induced by these loads and to establish if a crack within a component will 

reach the critical size. Then, fatigue damage is mainly influenced by two factors: fatigue 

strength of the material and loading history applied. Regarding the loading history applied to a 

component, a finite time interval is usually experimentally collected and taken as representative 

due to the impossibility of recording the entire loading history related to a fatigue damage 

scenario, but different approaches can be applied to characterize the entire domain based on 
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this extraction. The time-and frequency-domain fatigue approaches can be applied, but the latter 

procedure is preferred since computationally lighter than the direct integrations of the governing 

equation in the time domain [2-3].  Therefore, the Power Spectral Density (PSD) approach is a 

commonly used method in structural dynamics and random vibration analysis [4]. It 

characterizes the response or loads of a structure in the frequency domain. In this procedure, 

the structural response and loads are assumed to be stationary and ergodic stochastic processes. 

The former describes that statistical properties remain constant over time. The latter means that 

the average statistical properties observed over time for a single realization of the process are 

representative of the average properties observed across multiple realizations. 

The Finite Element Method (FEM) provides a powerful and versatile approach to determine the 

spectra of displacements and stresses of structures. Many works were based on classical and 

first-order shear deformation theories [5-8]. While these approaches are suitable for many 

structural configurations, their underlying assumptions may not be valid for certain 

applications, such as laminated and thin-walled structures. Employing three-dimensional (3D) 

solid formulations can overcome these limitations; however, they can often be computationally 

expensive. In this work, an alternative approach is taken by employing high-order finite beam 

elements. These elements provide a precise and computationally efficient solution for 

predicting structural responses resulting from random excitations. The Carrera Unified 

Formulation (CUF) allows to automatically implement different kinematics by using an 

opportune recursive notation. The capabilities of one-dimensional CUF elements have been 

extensively explored in different scenarios, including stress analysis, dynamic analysis, stability 

analysis, and failure analysis of structures made from various materials such as metals, 

composites, and thin-walled structures [9-11]. In [12], this approach was used for common 

cases considering typical loadings with a random nature, as white noise and gusts. In this work, 

we use the same solution scheme based on finite element method with power spectral density. 

After the evaluation of the response of a sandwich cantilever beam and a laminated beam 

excited by a white noise in terms of PSD, the root mean square (RMS) values of the stresses 

were used to evaluate the failure index of the structures. The results were compared with those 

obtained using the commercial NASTRAN code. 

2. One-dimensional finite elements 

The one-dimensional (1D) model adopted in this work is based on the Carrera Unified 

Formulation (CUF). CUF allows writing the equations of any refined theory 1D, 2D, or 3D in 

terms of a few fundamental nuclei FNs, whose shape does not depend on the assumptions used, 

such as type and order of the function, to describe the field of displacements. In the domain of 

CUF, the 3D displacement field of a solid beam with main dimension along the y-axis, can be 

expressed as a generic expansion of the generalized displacements 𝒖𝛕(𝒚, 𝒕): 

𝒖(𝑥, 𝑦, 𝑧, 𝑡) = 𝐹τ(𝑥, 𝑧) 𝒖𝝉(𝑦, 𝑡),           τ = 1,2, … , 𝑀      (1) 

where 𝑭𝝉(𝒙, 𝒛) are arbitrary functions on the cross-section, M stands for the number of the 

terms used in the expansion and repeated  𝝉 indicates summation. The generalized displacement 

can be approximated along the beam axis by discretizing the 1D support with finite elements to 

have: 

𝒖𝛕(𝑦, 𝑡) = 𝑁𝑖(𝑦)𝒖𝛕𝒊,          𝑖 = 1,2, … 𝑁𝑛          (2) 

where the generalized displacements are described as a linear combination of the unknown 

nodal vector 𝒖𝝉𝒊 by 1D shape functions 𝑁𝑖 and 𝑁𝑛 is the number of structural nodes for each 

beam elements. The expansion functions 𝐹𝜏(𝑥, 𝑧) are input parameters of the analysis and their 
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choice determines the class of the 1D CUF model. In this work, the Taylor (TE) and Lagrange 

(LE) expansion classes are adopted as polynomial bases. In the case of TE models, for example, 

𝐹𝜏 functions are polynomials of the type 𝑥𝑖𝑧𝑖 and the number of expansion terms is 𝑀 =
(𝑁 + 1)(𝑁 + 2)/2 with N is the order of TE model. For example, the full 3D displacement 

field of second-order model (TE2) is: 

𝑢𝑥 = 𝑢𝑥1
+ 𝑥𝑢𝑥2

+ 𝑧𝑢𝑥3
+ 𝑥2𝑢𝑥4

+ 𝑥𝑧𝑢𝑥5
+ 𝑧2𝑢𝑥6

  

𝑢𝑦 = 𝑢𝑦1
+ 𝑥𝑢𝑦2

+ 𝑧𝑢𝑦3
+ 𝑥2𝑢𝑦4

+ 𝑥𝑧𝑢𝑦5
+ 𝑧2𝑢𝑦6

       (3) 

𝑢𝑧 = 𝑢𝑧1
+ 𝑥𝑢𝑧2

+ 𝑧𝑢𝑧3
+ 𝑥2𝑢𝑧4

+ 𝑥𝑧𝑢𝑧5
+ 𝑧2𝑢𝑧6

  

The classical beam theories can be derived as particular cases of the first order Taylor-like 

expansion (TE1). The first-order shear deformation theory (FSDT) is obtained neglecting the 

linear terms 𝑢𝑥2
, 𝑢𝑥3

, 𝑢z2
, 𝑢z3

 and assuming the elastic rotations 𝜃𝑧 and 𝜙𝑥 equal to 𝑢y2
 and 

𝑢y3
. TE models sometimes can be inaccurate and thus are not suggested in the case of 

heterogeneous material or thin-walled structure. In this cases, Lagrange Expansion LE can be 

adopted, and the polynomial degree is determined by the number of nodes used to delimit each 

subdomain. Three-node linear (LE3), four-node bilinear (LE4), nine-node quadratic (LE9), and 

sixteen-node cubic (LE16) beam models have been developed in the CUF approach [6]. LE4 

and LE9 cross-section elements are defined on quadrilateral domains. In the case of a LE9 

element the interpolation functions are given by: 

 

𝐹τ = 1/4(𝑟2 + 𝑟𝑟τ)(𝑠2 + 𝑠𝑠τ)          τ =  1,3,5,7 

   

𝐹τ = 1/2𝑠τ
2(𝑠2 − 𝑠𝑠τ)(1 − 𝑟2) + 1/2𝑟τ

2(𝑟2 − 𝑟𝑟τ)(1 − 𝑠2)     τ = 2,4,6,8                             (4) 

 

𝐹τ = (1 − 𝑟2)(1 − 𝑠2)             τ = 9 

 

were r and s from -1 to +1. 

Introducing the Principle of Virtual Displacement (PVD), it is possible to derive FE matrices 

and vectors by assembling the so-called Fundamental Nuclei, namely 3 × 3 matrices or 3 × 1 

vectors. According to PVD, the virtual variation of the strain energy δ𝐿𝑖𝑛𝑡 equals to the virtual 

variation of the work done by external loads δ𝐿𝑒𝑥𝑡 

 

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐿𝑒𝑥𝑡                                                                                                                             (5)  
 

The virtual variation of the internal work can be written as: 

 

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝒖𝑠𝑗
𝑇 ∫ [𝑁𝑗(𝑦)𝐹𝑠(𝑥, 𝑧)𝑫𝑻 �̅�𝑫𝐹τ𝑁𝑖(𝑦)] 𝑑𝑉

𝑉
𝒖τ𝑖 = δ𝒖𝒔𝒋 

𝑻 𝑲𝒊𝒋𝛕𝒔 𝒖𝛕𝒊                             (6) 

 

where V is the body volume while D and �̅� are, respectively, a differential operator and the 

matrix of the elastic coefficients of the linear geometrical and constitutive relations. The matrix 
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𝑲𝒊𝒋𝛕𝒔 is the fundamental nucleus of the stiffness matrix. On the other hand, the work done by 

external forces can be written as 

 

δ𝐿𝑒𝑥𝑡 = ∫ δ𝒖𝑻𝑭𝑽𝑑𝑉
𝑉

+ ∫ δ𝒖𝑨
𝑻𝑭𝑨𝑑𝐴

𝐴
+ δ𝒖𝑷

𝑻𝑭𝑷                                                                          (7) 

From the expression of the generalized forced in Eq. (7) is derived the cross-spectral density 

matrix 𝑺𝑭. 

2. Theory of random response 

Considering a linear structural system with n degrees of freedom, the equation of motion can 

be written as: 

𝑴�̈� + 𝑪�̇� + 𝑲𝒒 = 𝒇(𝒕)                                                                                                              (8) 

Where M, C, K are the mass, damping and stiffness matrices, 𝒇(𝒕) is the time-dependent random 

force vector acting upon certain degrees of freedom, and 𝒒,̈ 𝒒,̇ 𝒒 are the vectors of generalized 

acceleration, velocity, and displacement, respectively. Using the Fourier transformation of Eq. 

(8), it is possible to obtain the equation in frequency domain: 

𝒒𝒌(ω) = [−ω2𝑴 + 𝑖ω𝑪 + 𝑲]−𝟏𝑭𝒌
∗                                𝑖 = √−1                                              (9) 

Where 𝒒𝒌 is the column vector that collects degree of freedom (DOF) of the FE model, k is an 

arbitrary non-null generalized coordinate, 𝑭𝒌
∗  is the generalized force vector in frequency 

domain and it has only one nun-null term (equal to 1). 

2.1 Normal mode approach  

To reduce the computational cost, it is common practice to employ a modal reduction strategy. 

This method uses the mode shapes of the structure to uncouple the equations of motion (when 

no damping or only modal damping is used) and, depending on the number of modes computed 

and retained, reduce the problem size. This approach utilizes an arbitrary number (nm) of 

eigenvectors (𝒙𝒋) obtained from the undamped, homogeneous equation of motion: 

[−𝜔2𝑴 + 𝑲]𝑥𝑗𝑒𝑖𝜔𝑗𝑡 = 𝟎         𝑗 =  1, … , 𝑛𝑚                                                                             (10) 

The eigenvectors can be collected in a 𝐷𝑂𝐹 × 𝑛𝑚 matrix X, so the Eq. (9) becomes 

𝑿𝑻𝒒𝒌(ω) = [−ω2(𝑿𝑻𝑴𝑿) + 𝑖ω(𝑿𝑻𝑪𝑿) + (𝑿𝑻𝑲𝑿)]−𝟏𝑿𝑻𝑭𝒌
∗                                                   (11) 

And it possible to obtain uncoupled equations, where (𝑿𝑻𝑴𝑿), (𝑿𝑻𝑪𝑿), (𝑿𝑻𝑲𝑿) are the modal 

generalized matrices.  

2.1 Power spectral density 

The Power Spectral Density (PSD) function of a signal gives an indication of the average power 

contained in particular frequencies [13]. It can be expressed in units of radians or in units of 

hertz and it is defined as 

𝑺𝒙𝒙(𝑓) = LIM
𝑇→∞

1

𝑇
|𝒙𝑻(𝑡)|2                                                                                                          (12) 
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where 𝒙𝑻(𝑡) is the signal distribution over time. In the statistical approach, another quantity is 

employed. The Root Mean Square (RMS) which represents the mean value of the input signal, 

and it is the square root of the area below PSD curve: 

𝑹𝑴𝑺𝒙𝒙 = √∫ 𝑺𝒙𝒙(𝑓)𝑑𝑓
𝑓2

𝑓1
                                                                                                       (13) 

 

 In frequency domain, given an input PSD function, an output response can be calculated by 

using the systems transfer function: 

 

𝑺𝒐𝒖𝒕 = |𝑯(ω)2|𝑺𝒊𝒏                                                                                                                  (14) 

 

where 𝑯(ω) is the system transfer function. In this case, the PSD of the three-dimensional 

displacement 𝑺𝑢 and the stress 𝑺σ components at various frequencies (ω) are correlated with 

the PSD of the load 𝑺𝑭 by the following equations 

 

𝑺𝒖𝒊
(ω) = �̅�𝐮𝐢

(ω)𝑺𝑭(ω)𝑯𝒖𝒊
𝑻 (ω)                          𝑖 = 1,2,3        

𝑺𝛔𝒋
(ω) = �̅�𝛔𝒋

(ω)𝑺𝑭(ω)𝑯𝛔𝒋

𝑻(ω)                        𝑗 = 1, … ,6                                                      (15) 

where �̅�(ω) and HT(ω) are the complex conjugate and the transpose of the transfer function 

also called admittance matrix. It can be computed with the FE method by performing as many 

frequencies response analysis as of the non-null terms (𝑛𝑛𝑧) in the generalized force vector 𝐹. 
For an arbitrary non-null generalized coordinate (k), the matrix is 

𝑯𝒒𝒌
(ω) = [𝒒𝒌𝟏  𝒒𝒌𝟐  …   𝒒𝒌𝑳

]            𝑘 = 1, … , 𝑛𝑛𝑧         𝐿 = 1, … , 𝑓𝑠                                        (16) 

where q is derived from the Eq. (9) and fs is the number of frequency steps. In this work, 

structures subjected to white noise excitations are considered, thus the PSD of this type of noise 

is constant.  

3. Numerical results 

 

3.1 Sandwich beam 

 

The first numerical example refers to the response of a sandwich cantilever beam subjected to 

a clipped white noise built as four-point loads (1 N) as shown in Fig. 1. Table 1 lists the 

geometrical and material data of the soft-core (indicated with the subscript “c”) and the metallic 

faces (indicated with the subscript “f”). 

 
 

Geometrical data Material data 

L=0.1 m Ef = 200.0 GPa    Ec = 0.66 GPa 

h = b = 0.02 m νf = 0.27    νc= 0.3 

hc = 0.014 m ρf = 7800 kgm-3    ρc = 60 kgm-3   

Table 1. Geometrical and material data of sandwich beam. 
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Figure 1. Boundary condition and geometry of the sandwich beam subjected to clipped white noise. 

Fourteen four-nodes beam elements were used along the longitudinal axis and the displacement 

variables on the cross-section were approximated with the TE2, TE3, TE6, and 3-LE16 models. 

To verify the accuracy of the model the results are compared with solutions obtained by 

commercial code NASTRAN. At first, a normal mode analysis was implemented. In Table 2, 

the first ten natural frequencies are listed and compared with frequencies obtained by a model 

of 12915 Degrees of Freedom (DoFs) on NASTRAN.  In Fig. 2, some of normal modes are 

shown.  

 

Frequency 3-LE16 CUF [Hz] NASTRAN [Hz] 

1 905.58 905.65 

2 1586.28 1586.54 

3 2248.23 2232.41 

4 3040.16 3039.71 

5 6082.35 6078.87 

6 8476.70 8376.37 

7 8583.21 8580.41 

8 10140.59 10005.23 

9 10174.15 10134.30 

10 10733.98 10490.53 

Table 2. Fist ten natural frequencies of sandwich beam. Comparison between 3-LE16 CUF and NASTRAN 

solutions. 
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Figure 2. Some normal modes of sandwich beam. 

A normal modes analysis is the starting point for all linear dynamic work and can help to 

capture how much mass is associated with each natural frequency. Therefore, before the PSD 

analysis, it should be useful to evaluate the mass participation to accurately capture the 

dynamic response of the structure.  

 

Figure 3. Mass participation versus number of modes of the sandwich beam response.  

To ensure that we have captured the dynamic response of the structure, it should be useful to 

use enough modes that at least 90 % of the mass of the structure is covered. In Fig. 3, it is 

possible to notice that 40 modes are necessary to capture at least 90 % of dynamic response of 
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the structure. Therefore, starting from the modal analysis, it is possible to compute a PSD 

analysis. This approach is statistical, and it is just a sophisticated and extremely useful form of 

the modal frequency analysis. Rather than having to examine multiple sets of results, the PSD 

approach employs a broad-spectrum acceleration load to activate the structure and subsequently 

consolidates the solutions into a single, unified result. To capture a correct dynamic response, 

45 modes are used in modal frequency analysis.  

 

Figure 4. Power spectral density of the vertical displacement at the tip of the beam (
𝑏

3
, L, 

ℎ

2
). Comparison with 

various theories and solution obtained by NASTRAN with a solid beam model of 12915 Degrees of Freedom 

(DoFs).  

In Fig. 4, the power spectral density of the vertical displacement at the tip of the beam with 

x=b/3 is shown. It can be observed that the frequency corresponding to the peak related to the 

first natural mode is overestimates in the case of Taylor theories, especially for smaller orders. 

 

Figure 5. Power spectral density of axial normal stress 𝜎𝑦𝑦 of point close to the clamped edge (0, 0.0025, 
ℎ

2
). 
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In Fig. 5, the power spectral density of the axial normal stress 𝜎𝑦𝑦 of the point close to the 

clamped with coordinates ( 0, 0.0025, h/2). As for PSD of displacement, the Taylor theories 

overestimates frequencies of the first natural mode. This happen because the structure appears 

stiffer than the reality. By increasing the order of expansion, the solution becomes 

progressively more accurate. As shown, the CUF approach with 3-LE16 correctly described 

the behavior of the structure and it coincides with the PSD response obtain by NASTRAN. 

Note that the displacement and stress results are referred to 1-σ responses. The σ refers to a 

Gaussian distribution where 1-σ to 3-σ refers to, 68, 95 and 99.7 % ranges. At 3-σ for 

examples, there is the 99.7 % that the stresses are within this value, where σ represents the 

Root Mean Square (RMS) of the stress. In this case, an undamped model is considered.   

 

 

Figure 6. Root mean square of the axial stress and transverse shear stress through the thickness at (0, 0.0025, z). 

In Fig. 6, it is possible to notice that NASTRAN solution is bigger than CUF-FEM solution 

because of the integration. As mentioned before, the root mean square is the root of the area 

under the PSD curve and RMS computed by NASTRAN has bigger values of PSD 

corresponding to the peak. Thus, the difference between the solutions is caused by these 

different values of peaks.  From the RMS values of stress, considering 3-RMS of each layer 

and substituting them in one of the composite failure criteria, it is possible to evaluate the safety 

of beam under white noise excitation and the failure index. In Fig. 7, the root mean square map 

of the axial stress is shown.  
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Figure 7. Root mean square map of axial stress 𝜎𝑦𝑦[𝑃𝑎] on NASTRAN of the sandwich beam under clipped 

white noise. 

3.1 Laminated beam 

 

The second numerical example refers to a clamped-free laminated beam subjected to axial 

loads, Fig. 8. 

 

Figure 8. Boundary condition and geometry of the laminated beam subjected to axial loads. 

 

In Table 3, the material and geometric data are listed. The beam has the following dimensions 

L = 400 mm, b = 0.02 mm, and h = 0.005 m. We considered a symmetric cross-ply with four 

layers of equal thickness, hi = h/4 and lamination [0, 90]s. The present assessment consists of 

6 cubic 1D elements along the beam axis and a distribution of quadratic LE over the cross-

section domain which in all cases consists of quadratic 10 LE9 in the x-axis with a graded 

distribution towards both the free edges. A convergency study is performed, considering from 

one LE per layer up to four LE per layer. 

 

 

Geometrical data Material data 

L=0.400 m E1 = 137.9 GPa    E2=E3 = 14.5 GPa 

b = 0.02 m ν12 = ν13 = ν23= 0.21 

h = 0.005 m ρf = 1570 kgm-3  

G12 = G13 = G23 = 5.9 GPa 
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Table 3. Geometrical and material data of laminated beam. 

In Fig.9 and Fig.10, the power spectral density of the axial displacement and axial stress at the 

point (b/2, L/2 , h/2) are shown. The convergence is achieved already for 1-LE per layer. 

Instead, in Fig. 11, the root mean square of the axial stress 𝜎𝑦𝑦 and the shear stress 𝜎𝑥𝑦 are 

plotted. As shown, the convergence is achieved for 2-LE per layer. As for the previous 

example, at 3-RMS there is the 99.7 % that the stresses are within this value and this value 

could be used in the failure criteria. 

 
Figure 9. Power spectral density of the axial displacement of the laminated beam at point (b/2, L/2 , h/2). 

 

 
Figure 10. Power spectral density of axial normal stress 𝜎𝑦𝑦 of the laminated beam at the point (b/2, L/2 , h/2). 
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Figure 11. Root mean square distribution along thickness of the axial stress 𝜎𝑦𝑦  and transverse shear stress 

𝜎𝑥𝑦 at y=L/2. 

 

 

4. Conclusion 

This paper investigated the use of advanced finite beam elements to accurately described the 

dynamic responses of composite structures under random excitations. Using the one-

dimensional models with CUF approach and exploiting higher order theories. Starting from a 

normal mode analysis, results are given in terms power spectral densities and root mean square 

of displacement and stress. The RMS stress values could be employed in the fatigue criteria of 

composite. The numerical investigation included a sandwich beam under transverse clipped 

white noise and a laminated beam under axial white noise. The results show that this 1D 

approach is an advantageous and computationally lighter alternative than 3D approach used, 

for example, by commercial code as NASTRAN.  
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