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We investigate the role of topology in the space-time scaling limit of quantum quench dynamics, where both
time and system size tend to infinity at a constant ratio. There, while the standard topological characterization
relying on local unitary transformations becomes ill defined, we show how a different dynamical notion of
topology naturally arises through a dynamical winding number encoding the linear response of the Berry phase
to a magnetic flux. Specifically, we find that the presence of a locally invisible constant magnetic flux is revealed
by a dynamical staircase behavior of the Berry phase, whose topologically quantized plateaus characterize the
space-time scaling limit of a quenched Rice-Mele model. These jumps in the Berry phase are also shown to
be related to the interband elements of the DC current operator. We outline possible experimental platforms for
observing the predicted phenomena in finite systems.
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Topology has become a cornerstone for understanding and
distinguishing phases of matter [1–3]. While, initially, this
approach was mostly used to unravel the topological prop-
erties of low-temperature systems [4–9], recent advances in
experimentally controlling the quantum dynamics of atomic
many-particle states [10,11] have triggered the study of topo-
logical features far from equilibrium. In particular, within the
paradigmatic quantum quench protocol [12], new dynamical
topological invariants, which are predicted to character-
ize the change in topology of the quenched Hamiltonian
[13–18], have been observed [19,20], and the dynamical ro-
bustness of topological features has been addressed, both
theoretically [21–29] and experimentally [30]. Since topo-
logical phases may be defined as equivalence classes under
local unitary transformations [31], bulk topological proper-
ties of a quantum state cannot dynamically change during
coherent time evolution generated by a local Hamiltonian
[11,17,21,22,25,31]. Notwithstanding these fundamental con-
straints, symmetry-protected topological invariants can be
fragile if the underlying symmetries are dynamically broken
[28–30]. In addition, topological invariants are typically de-
fined in the thermodynamic limit (TL), while all experiments
deal with finite systems. Hence, the conventional topological
characterization is meaningful only for timescales such that
t � L/v f , where L measures the system size and v f is a
characteristic band velocity of the postquench Hamiltonian
[11]. At later times, since an extensively long unitary time
evolution is no longer a local transformation, standard topo-
logical properties are expected to become ill defined [11],
and previous works on quantum quenches have thus mostly
focused on the t � L/v f regime. Alternatively, the opposite
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regime t � L/v f has been addressed in the context of adia-
batic state preparation, where the finite size is harnessed to
adiabatically connect different equilibrium topological phases
[32–36].

In the present work we propose to investigate a different
out-of-equilibrium regime, namely, the quench dynamics in
the space-time scaling limit (STSL), where both time and
system size tend to infinity while their ratio η = 2πt/L is kept
constant, and we show how a different dynamical topological
invariant ν(η) naturally arises (see Fig. 1 for an illustration
with a quenched Rice-Mele model [37,38]). To understand its
physical implications, we analyze the effect of a constant mag-
netic flux � threading a one-dimensional (1D) system with
periodic boundary conditions (PBCs). Remarkably, while �,
as a global property, remains invisible in the quench dynamics
for subextensive times, in the STSL the Berry phase [38–40]
is found to dynamically acquire a staircase behavior (see
Fig. 2), whose plateau values are topologically quantized as
2πν�/�0, where �0 = h/e is the flux quantum. Since the
limits t → +∞ and L → +∞ do not commute, these proper-
ties are unique to the STSL regime and cannot be obtained
by applying the long time limit to formulas derived in the
standard TL. However, we demonstrate that clear signatures of
our predictions can be observed in finite systems of moderate
size that are within reach of present-day quantum simulators.

For definiteness, we consider a sudden quench in a system
of noninteracting spinless fermions hopping in a 1D bipartite
lattice with PBCs, and we assume the Hamiltonian is trace-
less. We measure lengths in units of the lattice spacing a, so
that the length L of the system coincides with the number
of cells. Thanks to translation invariance we can write the
initial and final realizations in reciprocal space as Hi/ f =∑

k c†(k)[di/ f (k) · σ]c(k). Here k ∈ 2πn/L is a dimension-
less quasimomentum, where n ∈ {−�L/2�, . . . , �(L − 1)/2�},
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FIG. 1. (a) Illustration of a Rice-Mele lattice model on a ring [see
Eq. (6)], subject to a quench by a sudden variation of the intercell
hopping amplitude γ ri → γ r f . (b) Schematic representation of the
closed loops formed in the complex plane by the Bloch state overlap
ξ− [see Eq. (1)] as a function of quasimomentum k. Nontrivial loops
(right panel) may form in the STSL regime at critical values η∗

m [see
Eq. (3)] of the ratio η = 2πt/L. Solid lines represent the zeroth-
order contribution ξ

(0)
− (k, η) [see Eq. (2)]; shaded areas visualize the

subleading contribution 2πξ
(1)
− (k, η)/L. When η < η∗

1 (left panel),
the winding number ν vanishes, while for η∗

1 < η < η∗
2 (right panel)

ν = 2. The dashed line depicts the unit circle as a guide to the eye.

while σ is the three-dimensional vector of Pauli matrices
and c†(k) = (c†

A(k), c†
B(k)) is a spinor of fermionic opera-

tors, which create spinless fermions with quasimomentum k
in sublattice A or B. All the information about the specific
Hamiltonian realizations is thus encoded in the k-dependent
three-dimensional vectors di/ f (k). In particular, the initial
and final spectra are given by ε

i/ f
± (k) = ±|di/ f (k)|. More-

over, the time-evolved many-particle state can be easily
reconstructed out of the single-particle time-dependent Bloch
spinors |u±(k, t )〉 = e−i[d f (k)·σ]t/h̄|ui

±(k)〉, where |ui
±(k)〉 are

the Bloch single-particle eigenstates of Hi.
We assume Hi has a finite band gap, initialize the sys-

tem in its half-filled insulating ground state, and follow
the time evolution of the Berry phase in its discretized
formulation, appropriate for finite system sizes ϕB(t, L) =∑

k arg ξ−(k, t, L) [41], where

ξ−(k, t, L) = 〈u−(k + δk, t )|u−(k, t )〉 (1)

and δk = 2π/L. As in the standard continuous formula-
tion, the discrete Berry phase is gauge invariant under
|u−(k, t )〉 → |uλ

−(k, t )〉 = eiλ(k)|u−(k, t )〉 and takes quantized
values, equal to either 0 or π , when charge conjuga-
tion symmetry is present [2,38,42]. Moreover, in the usual
TL, i.e., L → +∞ while t ∈ R, it is straightforward to
realize that ξ−(k, t, L) = 1 + iAB(k, t )δk + O(L−2), where
AB(k, t ) = 〈u−(k, t )|i∂k|u−(k, t )〉 is the time-dependent Berry
connection, and the standard result ϕB(t ) = ∫ π

−π
dk AB(k, t ) is

recovered [38].

FIG. 2. The linear response 
ϕB/� of the Berry phase to an
applied magnetic flux is plotted, in units of e/h̄ = 2π/�0, as a
function of η = 2πt/L in the STSL regime after quantum quenches
in finite Rice-Mele lattices with PBCs [see Eq. (6)]. In all quenches,
the energy scale γ is fixed to a constant value throughout the entire
protocol, together with the ratio of the staggered potential u = 0.1.
The ratio r of the staggered hopping amplitudes is instead quenched
from ri = 0.5 to r f = 2, while the magnetic flux, when present, is
constant and equal to �/�0 = 1/10. System sizes are L = 40 (blue),
L = 80 (red), and L = 400 (green). The plateaus at ν = 2, 4, 6, and 8
are clearly visible already for L = 40; they do not depend on system
size and abruptly change at critical ratios η∗

m. The fluctuations are,
instead, system size dependent and are suppressed with increasing L.

However, in the STSL, when t, L → +∞ with fixed η =
δk t = 2πt/L ∈ R, the function ξ−(k, t, L) may develop a
nontrivial dependence on k and η already to zeroth order
in the 1/L expansion. Indeed, one can write ξ−(k, t, L) =
ξ

(0)
− (k, η) + ξ

(1)
− (k, η, t )δk + O(L−2), where [42]

ξ
(0)
− (k, η) = cos[v f (k)η] − i C(k) sin[v f (k)η]. (2)

Here C(k) = d̂i(k) · d̂ f (k) is the cosine of the k-dependent
angle between the initial and final unit vectors, while v f (k) =
∂kε

f
+(k)/h̄ is the postquench band velocity. Then it is straight-

forward to derive |ξ (0)
− (k, η)| =

√
1 − {S (k) sin[v f (k)η]}2,

where S2(k) = 1 − C2(k), and we notice that, if C(k) = 0 is
satisfied by some k∗, Eq. (2) vanishes at equally spaced critical
ratios

η∗
m =

(
π

2
+ (m − 1)π

)
1

v f (k∗)
, m ∈ N+. (3)

Some comments are in order. In the limit η → 0 one has
ξ

(0)
− (k, η) → 1 + O(L−1), and the standard TL result is re-

covered. Moreover, at finite η, Eq. (2) is reminiscent of the
k-dependent contribution to the Loschmidt amplitude, appear-
ing in the context of dynamical quantum phase transitions
(DQPTs) [13,14,43]. Similarly, the condition C(k∗) = 0 lead-
ing to a vanishing ξ

(0)
− in Eq. (2) is formally equivalent to

the requirement for observing DQPTs [13]. However, we
emphasize that, while the k-dependent contribution to the
Loschmidt amplitude stems from the overlap between the ini-
tial and time-evolved Bloch spinors at the same k, the quantity
studied here, Eq. (1), is the overlap between Bloch spinors
that are both time evolved and that are computed at different

L241402-2



TOPOLOGY IN THE SPACE-TIME SCALING LIMIT OF … PHYSICAL REVIEW B 107, L241402 (2023)

quasimomenta, namely, k and k + δk. It is precisely such a
tiny deviation that yields Eq. (2) at t ∼ L/v f . Thus, while
DQPTs occur at finite times in a TL system, Eq. (2) vanishes
at extensive critical times t∗

m = η∗
mL/2π , with η∗

m given by
Eq. (3).

We now start to investigate the topological features unique
to the STSL regime, i.e., where η takes finite values even
for arbitrarily large systems. Far away from its critical val-
ues, by treating η as a parameter, we can define α(0)(k; η) =
arg ξ

(0)
− (k, η). The function k 
→ α(0)(k; η) from a circle to

a circle naturally leads to the definition of a dynamical
winding number ν(η) ∈ Z through α(0)(k; η) = α̃(0)(k; η) +
k ν(η), where α̃(0)(k; η) is an R-valued smooth periodic func-
tion. Remarkably, by contrast to the conventional equilibrium
framework [2], this dynamical winding number does not re-
quire any symmetry to be properly defined. We can then write
the Berry phase in the STSL regime as ϕB(η) = ϕ

(0)
B (η) +

ϕ
(1)
B (η), where

ϕ
(0)
B (η) = L

2π

∫ π

−π

dk [α̃(0)(k; η) + k ν(η)], (4)

while ϕ
(1)
B (η) is analogous to the usual integral of the Berry

connection [42]. Thus, let us focus on the consequences of
the contribution stemming from a nontrivial ξ

(0)
− . A priori,

ϕ
(0)
B (η) is of order L, and given that the Berry phase is defined

mod 2π , the zeroth order would produce a Berry phase that
wildly fluctuates with time. Nonetheless, if di(k) and d f (k)
have the same parity under k ↔ −k, then α(0)(k; η) becomes
an odd function of k, and the integral in Eq. (4) vanishes
identically. This condition physically corresponds to a quench
that does not generate any stationary current [44]. However, if
we now assume that a finite and constant magnetic flux � is
present throughout the entire quench dynamics, the quasimo-
menta get shifted according to k → k + φ, where φ = 2π

L
�
�0

.
This shift does not affect the integral of the odd periodic part
α̃(0)(k; η), which remains vanishing. However, although φ is
infinitesimal for large L, the shift yields a finite contribution
proportional to ν(η), thanks to the factor L in Eq. (4). We thus
end up with

ϕ
(0)
B (η; �) = 2πν(η)�/�0 + O(L−1). (5)

We can therefore conclude that, in the STSL, the Berry phase
develops a nontrivial zeroth-order contribution which induces
a quantized response to an applied magnetic flux and the
quantization is encoded in the dynamical topological invariant
ν(η). In this respect, ν plays a role analogous to the Chern
number in the integer quantum Hall effect [4,5]: while the
latter uniquely defines the linear Hall response to an applied
electric field, the former encodes the linear response of the
Berry phase to an applied magnetic flux. However, while the
various plateaus in the Hall conductance identify different
equilibrium topological phases as a function of the chemical
potential, the winding number ν(η) topologically character-
izes an out-of-equilibrium state and is thus a function of time.
Note that, since ν(η) can change only at the critical ratios
η∗

m in Eq. (3), the topological invariant is stable for extensive
time windows 
t = L/2v f (k∗). This means that the system
undergoes a new kind of dynamical topological phase tran-
sition, where a well-defined topological invariant suddenly

changes at the extensive critical times t∗
m. Moreover, since

the quantized response does not depend on system size, it
is remarkable to note that even a fraction of the elementary
flux quantum may yield a detectable signature in the coherent
dynamics of a macroscopic quantum system.

After the above general derivations, we now choose a
specific setup to illustrate our results. We consider a sudden
quench of the hopping amplitudes in the Rice-Mele model,
which is defined by

d(k) = γ (1 + r cos k, r sin k, u) (6)

and is depicted in Fig. 1(a). Here γ is the reference energy
scale, r is the ratio between intercell and intracell hoppings,
and u is the ratio between the staggered potentials on the
A and B sublattices, breaking charge conjugation and chiral
symmetry. We choose a quench such that C(k) vanishes for
some k∗, a condition that, for a given H f , is fulfilled by a vast
class of initial states. Here we quench from ri = 0.5 to r f = 2
while keeping u = −0.1 constant. It is then straightforward
to show that ν(η), which has to be zero for η = 0, increases
by 2 at each critical ratio η∗

m. Such an increase by two units
can be easily understood if one recognizes that the condition
C(k) = 0 is satisfied by two quasimomenta {k∗

1 , k∗
2 } which,

because of symmetry, are related by k∗
1 = −k∗

2 and are thus
associated with the same critical ratios η∗

m. Concurrently, the
closed loop traced by ξ

(0)
− (k, η) in the complex plane as a

function of k touches the origin twice at the critical ratios and
the winding increases by 2. Far away from η∗

m the winding of
ξ

(0)
− (k, η) is, instead, a robust topological invariant. Moreover,

it coincides with the winding of the whole overlap function
Eq. (1) since the first-order contribution ξ

(1)
− (k, η)δk is sup-

pressed by a factor L−1 and it cannot destroy the robustness
of the invariant. A comparison between the loops traced by
ξ−(k, η) for η < η∗

1 and η∗
1 < η < η∗

2 is schematically de-
picted in Fig. 1(b), where the solid lines denote the finite
contribution given by ξ

(0)
− (k, η), while the shaded areas around

them account for the L−1 contribution carried by ξ
(1)
− (k, η)δk.

We can now fully appreciate the interplay between a finite-
dynamical winding number and a constant magnetic flux.
In Fig. 2, we plot the η-dependent response of the Berry
phase to an applied magnetic flux, namely, 
ϕB(η)/�, where

ϕB(η) = ϕB(η; � �= 0) − ϕB(η; � = 0) for the above speci-
fied quench in a finite Rice-Mele lattice. We compute the same
quantity for different system sizes while keeping the nonzero
value of the magnetic flux always equal to �/�0 = 1/10, and
we display the values of 
ϕB(η)/� in units of the universal
constants e/h̄ = 2π/�0.

Increasing L at constant η, hence going towards the STSL
regime, a staircase profile becomes more and more pro-
nounced. The critical ratios at which the jumps occur are
given by Eq. (3), while the heights of the different plateaus
are encoded in Eq. (5). The reason is straightforward: The
contribution to the Berry phase given by 
ϕ

(1)
B (η) amounts to

bounded fluctuations with zero average, which are produced
by the slight mismatch between k and k + φ and are sup-
pressed in the STSL. The contribution carried by 
ϕ

(0)
B (η)

instead corresponds to rigid shifts of 4π�/�0 each time a
critical ratio is reached, independent of system size. In the
proper STSL a sharp staircase profile is thus recovered.
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We would like to elaborate on the differences between the
TL and the STSL in terms of the Berry phase, the Wannier
wave functions, and the particle current density. In the stan-
dard TL (η → 0), the many-particle insulating state can be
built out of a Slater determinant of exponentially localized
Wannier functions [45]. Because a vector potential can always
be gauged away for such wave functions [46], a constant
magnetic flux cannot lead to observable signatures. At the
same time, the time derivative of the Berry phase is linked,
even out of equilibrium, to the particle current density [28].
In contrast, in the STSL regime, the localization length of the
Wannier functions becomes comparable to system size [47],
with a twofold implication. On the one hand, the magnetic
flux can no longer be gauged away and can lead to observable
signatures, such as the staircase profile depicted in Fig. 2. On
the other hand, the jumps of the Berry phase at the critical
ratios η∗

m are not associated with a physical current. Instead,
one can show that [42]

d

dη
ϕ

(0)
B (η)

= L

2π

∫ π

−π

dk 〈ui
−(k)|J f

DC (k)|ui
−(k)〉

+ L

2π

∫ π

−π

dk Re

{
χ

(0)
− (k, η)

ξ
(0)
− (k, η)

〈ui
+(k)|J f

DC (k)|ui
−(k)〉

}
,

(7)

where J f
dc(k) = v f (k) d̂ f (k) · σ is the component of the par-

ticle current operator that commutes with the postquench
Hamiltonian and describes a DC current, while χ

(0)
− (k, η) =

〈u−(k + δk, t )|u+(k, t )〉 + O(L−1). In the interesting case in
which the Berry phase develops a staircase profile, the first
integral, which is the expectation value of the DC current
and is the only contribution appearing in the long time limit
of a TL system, is vanishing due to symmetry. The jumps
are, instead, produced by the additional contribution in the
second line of Eq. (7), which is absent in the standard TL.
This integral does not correspond to the expectation value of a
particle current, and it rather involves the interband elements
of the DC current operator.

In summary, we have shown that intriguing topological
features arise in the STSL regime after a quantum quench

when both time and system size are sent to infinity while
keeping their ratio finite. In particular, we have rigorously
defined a dynamical winding number ν(η), which character-
izes the many-particle state of a 1D two-band model in the
STSL regime [see Fig. 1(b)]. Notably, its definition does not
rely on any specific symmetry, at variance with the custom-
ary equilibrium setting. We have shown that the dynamical
winding number physically encodes the linear response of the
Berry phase to an applied magnetic flux, which thus exhibits a
staircase behavior as a function of η (see Fig. 2). The plateaus
are quantized in units of e/h̄, and the jumps between them
occur at the well-defined critical times given by Eq. (3). It
is also worth mentioning that this phenomenon can be ob-
served with state-of-the-art experimental techniques. The long
coherence time of ultracold atoms in optical lattices [48] may
also allow one to approach the STSL regime experimentally
in finite systems. Moreover, given the possibility to generate
artificial gauge fields [49] and reconstruct the time-dependent
Berry phase through quantum state tomography techniques
[19,20,30], we expect experiments with ultracold atoms, sim-
ilar to the one described in Ref. [30], to enable observation
of the onset of a staircase profile as depicted in Fig. 2. An
alternative implementation could be based on quantum walks
in photonic platforms where the present quench dynamics
can be simulated and the time-dependent Berry phase can be
measured [50,51]. Our work provides a starting point for in-
vestigating further topological properties unique to the STSL
regime, including the study of higher dimensions with richer
geometry of Bloch bands, and probing the robustness of the
dynamical winding number ν to the breaking of translation
invariance and its generalization in the presence of many-body
interactions.
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