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Abstract: Power generation based on thermoelectric (TE) materials is very attractive due to its
low environmental impact and waste heat recovery. Thermoelectric materials based on cobalt
triantimonide CoSb3 exhibit one of the highest energy conversion efficiencies, revealing thermoelectric
figures of merit, ZTs > 1, but undergo oxidation above 380 ◦C and sublimation above 500 ◦C. In this
work, a glass-ceramic coating was chosen to match the coefficient of thermal expansion (CTE) of the
TE substrate 9.2 × 10−6 K−1 (200–400 ◦C), deposition temperature (max. 700 ◦C), and maximum
working temperature (600 ◦C). Coating processing involved the production of glass powder and
glass-ceramic sintering. The glass-ceramic and the coating/CoSb3 interface were systematically
investigated by means of dilatometry, X-ray diffraction, and scanning and transmission electron
microscopy. As a result, a coating with good substrate coverage and adherence was developed.
Finally, oxidation tests were carried out at 500 and 600 ◦C in order to assess the protective properties
of the glass-ceramic. Microstructural and chemical composition analysis indicated limited protective
properties of the coating.

Keywords: cobalt triantimonide; CoSb3; glass-ceramic; oxidation; protective coating

1. Introduction

In today’s world, growing attention is focused on eco-friendly power generation. In
addition to alternative energy sources, another possibility for lowering CO2 emissions is
to increase the efficiency of the current energy conversion processes. This is the potential
offered by thermoelectric materials, owing to their ability to convert heat energy directly
into electricity. They allow the generation of energy from natural heat sources, as well as
from waste heat, which in some processes can be up to 70% [1]. Modern thermoelectric
materials usually offer efficiencies of less than 10% [2]. Therefore, maintaining their high
performance for a long time is of great importance. Generally, the ability of TE materials
for power generation is defined by the so-called thermoelectric figure of merit, ZT, which
initially grows with temperature, and after reaching the maximum, it decreases. Since
the efficiency of TE material is the highest within a certain temperature range, TE devices
often require operation at elevated temperatures. This in turn carries the risk of intensified
degradation, especially for materials prone to oxidation. Providing protection or limiting
degradation processes can thus significantly contribute to improving the overall efficiency
of the power generation process.

Among many thermoelectrics, skutterudites based on cobalt triantimonide CoSb3
exhibit promising properties for efficient power generation, such as a relatively high
Seebeck coefficient (up to 210 µV/K for p-type and −280 µV/K for n-type at 527 ◦C) and
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ZT > 1 [3–5]. However, in the temperature range of the highest efficiency (~450–650 ◦C),
skutterudites tend to degrade. In the air above 380 ◦C, CoSb3 undergoes strong oxidation
associated with the formation of a multilayer scale, even at short-term exposure [6,7].
Moreover, antimony sublimates from the bulk starting from 500 ◦C [8,9]; thus, CoSb3
decomposes to the lower antimonides CoSb2 and CoSb, and deterioration of thermoelectric
properties is observed.

Anticorrosion coatings have been investigated for decades, and many reliable solu-
tions are well-known, and new ones are constantly under development. Depending on the
application, either in electrochemical corrosion protection or hot-temperature oxidation, dif-
ferent concepts can be proposed. For example, for electrochemical corrosion, relatively new
and interesting coatings are self-healing systems [10–16] employing electrically conductive
polymers [17–21]. In the case of protective coatings for high-temperature applications, such
as those for skutterudites, the selection of the protection system depends on several impor-
tant factors. Demands for oxidation-resistant coatings incorporate chemical compatibility
(wetting properties and chemical stability) and thermomechanical compatibility (thermal
expansion). High-temperature protective coatings should show as high oxidation resis-
tance as possible. Depending on the operating conditions, they should provide a diffusion
barrier for gases and/or liquids as well as stability in contact with chemical agents. Other
important factors are good adhesion, low oxygen permeability, and oxidation resistance of
the coating. Among the anticorrosion coatings for high-temperature applications, the most
commonly used are carbides, oxides, borides, nitrides, and silicides, or their mixtures, e.g.,
MCrAlY and TBC [22–28].

Different types of high-temperature protective systems for CoSb3-based materials
were tested over the years. Several approaches addressed protection against antimony
sublimation in an oxygen-free environment [29–32] and a few against oxidation [33–37].
Glass-based coatings are of interest as protective coatings for both n- and p-type thermo-
electrics. There is a growing body of literature that recognizes the importance of glass and
glass-ceramic resistant coatings as a potential method to overcome the main drawback
of oxidation and to further extend the temperature range of application [38–40]. So far, a
couple of solutions based on glass coatings have been proposed to improve the oxidation
resistance of CoSb3 [33,36,37]. The advantages of using glass-based coatings include the
simplicity of the sinter-crystallization process and the possibility to tailor their composi-
tion and thermo-mechanical properties. Furthermore, they are low-cost and easy to scale
up. Moreover, relatively low thermal conductivity and insulating electrical properties are
particularly attractive for thermoelectric applications.

In the present paper, the glass-ceramic coating is proposed as an oxidation-resistant
coating for CoSb3. Tests included processing, characterization, and evaluation of protective
properties during oxidation in the air up to 600 ◦C.

2. Materials and Methods
2.1. Substrate Material Synthesis

The substrate material, CoSb3, was produced by combustion synthesis [41]. Reactants
used for the combustion synthesis were elemental powders of cobalt (>99.9% or 99.8%,
Sigma Aldrich, St. Louis, MO, USA) and antimony (99.8%, Alfa Aesar, Ward Hill, MA,
USA). Powders mixed in appropriate proportions were homogenized and cold-pressed.
Combustion synthesis was carried out under a vacuum and initiated by global ignition.
The product was milled, sieved, and subsequently hot-pressed in a graphite die under an
argon atmosphere (25 MPa; 800 ◦C; 0.5 h). Finally, the product was cut into rectangular
bars with approximate dimensions 3 × 5 × 7 mm, ground on SiC papers up to 1000 grit,
and degreased in acetone using an ultrasonic cleaner for 3 min.

2.2. Glass-Ceramic Processing and Oxidation

The G10 parent glass, previously developed by the authors [42], was selected for the
glass-ceramic coating preparation to match the coefficient of thermal expansion (CTE) of the
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substrate and the coating, deposition temperature (up to 700 ◦C), and maximum working
temperature (600 ◦C). The composition of G10 is presented in Table 1.

Table 1. Composition of G10 parent glass [42].

Composition (%wt)

SiO2 CaO Li2O K2O

75 10 9 6

All components, after weighing and homogenizing in a rolling mill for 18 h, were put
into a platinum–rhodium crucible (Figure 1a) in a 10 g batch and melted in a furnace in
air atmosphere in a two-step process: first at 1500 ◦C for 1 h (covered by a lid) and then at
1550 ◦C for 20 min. After this time, glass was cast and quenched at room temperature on a
brass plate (Figure 1b,c). So prepared glass was milled for 1h into a fine powder using a
vibrational mill and sieved at grain size < 38 µm.
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Figure 1. (a) Oxide precursors for glass-ceramic coating in platinum–rhodium crucible before melting;
(b) casting of the glass after melting at 1500 ◦C; (c) quenched glass, (d) coating deposition using
slurry composed of crushed glass and ethanol; (e) cold-pressed pellets of the powdered glass, coated
substrate, and uncoated substrate before heat treatment; (f) samples (G10 glass-ceramic pellets,
G10 glass-ceramic coated CoSb3, uncoated CoSb3) after heat treatment at 650 ◦C for 30 min in
Ar atmosphere.

The CoSb3 samples were coated using the slurry technique (Figure 1d). Slurry, com-
posed of G10 glass powder (30 vol.%) dispersed using an ultrasonic cleaner in ethanol
(70 vol.%) (99.8 Fluka 02860), was deposited on each surface of the bars one-by-one at
room temperature and dried in air. Moreover, two cylindrical cold-pressed green pellets of
glass powder were prepared for XRD and dilatometry examination (Figure 1e). Finally, the
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samples were subjected to the thermal treatment in a furnace at 650 ◦C for 30 min in Ar
flow with a heating and cooling rate of 10 ◦C/min.

Isothermal oxidation tests were carried out at 500 and 600 ◦C for 80 h in the air. After
exposure, the specimens were cooled down to room temperature with the furnace.

2.3. Examination Methods

Samples were systematically tested by dilatometry (DIL), X-ray diffraction (XRD),
and electron microscopy (SEM, TEM) in terms of properties, microstructure, chemical, and
phase composition characterization.

Dilatometry was carried out on 5 mm long samples in the temperature range of
25–500 ◦C with a heating rate of 5 ◦C/min using Netzsch’s DIL 402 F3 (Netzsch, Germany)
in order to measure the thermal expansion coefficient of the substrate, glass, and glass-
ceramic pellet.

The XRD measurements of phase composition were taken by the PanalyticalX’Pert
PRO (PANalytical, The Netherlands) diffractometer in the range of 10–80◦ [2θ] using Cu
Kα radiation in a standard Bragg–Brentano configuration. The crystalline phase analysis
was accomplished with X’PertHighScore Plus software (v. 2.2b) using the JCPDS ICDD
database.

A high-resolution (HR) scanning electron microscope Merlin Gemini II (ZEISS, Ger-
many) equipped with a field-electron gun (FEG) was utilized to examine the microstructure
of interfaces, surfaces, and cross-sections of the samples. Chemical composition was de-
termined on the basis of maps of chemical element distributions recorded by the energy
dispersive X-ray spectrometry (EDS) detector with the Quantax 800 microanalysis system
of Bruker.

The thin lamellas for S/TEM analysis were received by sectioning the samples with a
focused ion beam (FIB) Crossbeam 350 (ZEISS) microscope. High-resolution analyses were
performed using probe Cs-corrected Titan3 G2 60-300 with the ChemiSTEM™ system (FEI).
The chemical composition was determined using energy dispersive X-ray spectrometry
(STEM-EDS) and electron energy loss spectroscopy (EELS).

The quantitative analyses of the microstructure were performed using ImageJ 1.51j8
software (National Institute of Health, USA). First, the images were subjected to appropri-
ate qualitative processing, to improve the visibility of relevant microstructural elements,
followed by binarization and quantitative analysis. All measurements were carried out on
representative SEM-BSE images of crystals and pores projected onto the image plane.

3. Results

The CTEs of glass, glass-ceramic, and TE substrate were measured by dilatometry up
to 500 ◦C. As shown in Figure 2, CTEs are well matched: 9.2 × 10−6 K−1 for CoSb3 and
9.4 × 10−6 K−1 for glass-ceramic.

The cross-sectional view of the as-received glass-ceramic pellet with different magnifi-
cations is presented in the SEM-BSE images (Figure 3a–c). Darker, needle-like crystals were
embedded in a bright gray glassy matrix. Based on binarized SEM images, the average
length, elongation, and volume fraction of the crystals were estimated. All measurements
were carried out on representative SEM-BSE images of crystals projected onto the image
plane. The distribution of the crystals’ length together with an example image of measure-
ment is shown in Figure 4. The average length was calculated as 3.3 ± 1.8 µm, whereas the
elongation ranged from 1:3 to 1:25 with the predominance of needles with larger elonga-
tions. From the binary images (Figure 5), the volume fraction of crystals was estimated to
be about 30 %. Moreover, some exclusively closed pores were present in the bulk. However,
the number and sizes of pores were small. From binary images, it was estimated that pores
were smaller than a few micrometers, and the concentration was lower than 1%.
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Figure 3. (a–c) The SEM-BSE images of free-standing glass-ceramic with different magnifications;
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Crystalline phases and chemical composition were determined using XRD and SEM-
EDS. The distribution of chemical elements in glass-ceramic is presented in SEM-EDS
(quantified) and TEM-EDS (intensity) elemental maps in Figures 3d and 6. It can be
observed that there was some enrichment in Si in the crystals, while Ca and K concentrations
decreased. The presence of Li in the samples was confirmed by EELS (Figure 7).



Crystals 2023, 13, 880 6 of 16

Crystals 2023, 13, x FOR PEER REVIEW 5 of 16 
 

 

The cross-sectional view of the as-received glass-ceramic pellet with different magnifica-
tions is presented in the SEM-BSE images (Figure 3a–c). Darker, needle-like crystals were em-
bedded in a bright gray glassy matrix. Based on binarized SEM images, the average length, 
elongation, and volume fraction of the crystals were estimated. All measurements were car-
ried out on representative SEM-BSE images of crystals projected onto the image plane. The 
distribution of the crystals’ length together with an example image of measurement is 
shown in Figure 4. The average length was calculated as 3.3 ± 1.8 µm, whereas the elongation 
ranged from 1:3 to 1:25 with the predominance of needles with larger elongations. From the 
binary images (Figure 5), the volume fraction of crystals was estimated to be about 30 %. 
Moreover, some exclusively closed pores were present in the bulk. However, the number 
and sizes of pores were small. From binary images, it was estimated that pores were smaller 
than a few micrometers, and the concentration was lower than 1%. 

  
(a) (b) 

 
 

Li—under the detection limit 
(c) (d) 

Figure 3. (a–c) The SEM-BSE images of free-standing glass-ceramic with different magnifications; 
(d) SEM-EDS quantified maps of selected chemical elements distribution of region marked in (c). 

  
(a) (b) 

Figure 4. (a) Crystal length distribution and (b) an example of measurements. Figure 4. (a) Crystal length distribution and (b) an example of measurements.

Crystals 2023, 13, x FOR PEER REVIEW 6 of 16 
 

 

  
(a) (b) 

Figure 5. (a) Binarized images of crystals in glass-ceramic for micrographs presented in Figure 3a 
and (b) Figure 3b. 

Crystalline phases and chemical composition were determined using XRD and SEM-
EDS. The distribution of chemical elements in glass-ceramic is presented in SEM-EDS (quan-
tified) and TEM-EDS (intensity) elemental maps in Figures 3d and 6. It can be observed 
that there was some enrichment in Si in the crystals, while Ca and K concentrations de-
creased. The presence of Li in the samples was confirmed by EELS (Figure 7). 

 
Figure 6. STEM-HAADF image of the glass-ceramic and the STEM-EDS intensity elemental maps. 

 
Figure 7. The EELS (EEL spectra) spectra of glass-ceramic pellet with visible Li-K edge and Si-L edge. 

The crystalline phase on XRD diffraction was recognized as Li2SiO3 (Figure 8a). In the 
case of the coated CoSb3 sample, the positions of Li2Si2O5 peaks are marked in Figure 8c; 
however, the presence cannot be conclusively confirmed. The HR-STEM image of glass-
ceramic is presented in Figure 9a. Presence of the glassy phase was confirmed by selected 
area electron diffraction (SAED) (Figure 9), as well as revealed in the XRD diffractogram 
as an amorphous halo (Figure 8a). Nanometer-sized crystalline areas were present in the 
amorphous matrix, confirmed by the Fourier transform (FFT) of the high-resolution image 
(Figure 9c). 

Figure 5. (a) Binarized images of crystals in glass-ceramic for micrographs presented in Figure 3a
and (b) Figure 3b.

Crystals 2023, 13, x FOR PEER REVIEW 6 of 16 
 

 

  
(a) (b) 

Figure 5. (a) Binarized images of crystals in glass-ceramic for micrographs presented in Figure 3a 
and (b) Figure 3b. 

Crystalline phases and chemical composition were determined using XRD and SEM-
EDS. The distribution of chemical elements in glass-ceramic is presented in SEM-EDS (quan-
tified) and TEM-EDS (intensity) elemental maps in Figures 3d and 6. It can be observed 
that there was some enrichment in Si in the crystals, while Ca and K concentrations de-
creased. The presence of Li in the samples was confirmed by EELS (Figure 7). 

 
Figure 6. STEM-HAADF image of the glass-ceramic and the STEM-EDS intensity elemental maps. 

 
Figure 7. The EELS (EEL spectra) spectra of glass-ceramic pellet with visible Li-K edge and Si-L edge. 

The crystalline phase on XRD diffraction was recognized as Li2SiO3 (Figure 8a). In the 
case of the coated CoSb3 sample, the positions of Li2Si2O5 peaks are marked in Figure 8c; 
however, the presence cannot be conclusively confirmed. The HR-STEM image of glass-
ceramic is presented in Figure 9a. Presence of the glassy phase was confirmed by selected 
area electron diffraction (SAED) (Figure 9), as well as revealed in the XRD diffractogram 
as an amorphous halo (Figure 8a). Nanometer-sized crystalline areas were present in the 
amorphous matrix, confirmed by the Fourier transform (FFT) of the high-resolution image 
(Figure 9c). 

Figure 6. STEM-HAADF image of the glass-ceramic and the STEM-EDS intensity elemental maps.

Crystals 2023, 13, x FOR PEER REVIEW 6 of 16 
 

 

  
(a) (b) 

Figure 5. (a) Binarized images of crystals in glass-ceramic for micrographs presented in Figure 3a 
and (b) Figure 3b. 

Crystalline phases and chemical composition were determined using XRD and SEM-
EDS. The distribution of chemical elements in glass-ceramic is presented in SEM-EDS (quan-
tified) and TEM-EDS (intensity) elemental maps in Figures 3d and 6. It can be observed 
that there was some enrichment in Si in the crystals, while Ca and K concentrations de-
creased. The presence of Li in the samples was confirmed by EELS (Figure 7). 

 
Figure 6. STEM-HAADF image of the glass-ceramic and the STEM-EDS intensity elemental maps. 

 
Figure 7. The EELS (EEL spectra) spectra of glass-ceramic pellet with visible Li-K edge and Si-L edge. 

The crystalline phase on XRD diffraction was recognized as Li2SiO3 (Figure 8a). In the 
case of the coated CoSb3 sample, the positions of Li2Si2O5 peaks are marked in Figure 8c; 
however, the presence cannot be conclusively confirmed. The HR-STEM image of glass-
ceramic is presented in Figure 9a. Presence of the glassy phase was confirmed by selected 
area electron diffraction (SAED) (Figure 9), as well as revealed in the XRD diffractogram 
as an amorphous halo (Figure 8a). Nanometer-sized crystalline areas were present in the 
amorphous matrix, confirmed by the Fourier transform (FFT) of the high-resolution image 
(Figure 9c). 

Figure 7. The EELS (EEL spectra) spectra of glass-ceramic pellet with visible Li-K edge and Si-L edge.



Crystals 2023, 13, 880 7 of 16

The crystalline phase on XRD diffraction was recognized as Li2SiO3 (Figure 8a). In the
case of the coated CoSb3 sample, the positions of Li2Si2O5 peaks are marked in Figure 8c;
however, the presence cannot be conclusively confirmed. The HR-STEM image of glass-
ceramic is presented in Figure 9a. Presence of the glassy phase was confirmed by selected
area electron diffraction (SAED) (Figure 9), as well as revealed in the XRD diffractogram
as an amorphous halo (Figure 8a). Nanometer-sized crystalline areas were present in the
amorphous matrix, confirmed by the Fourier transform (FFT) of the high-resolution image
(Figure 9c).
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the sample to more than 500 µm in the thickest parts. In Figure 10, it is visible that the
glass-ceramic coating was continuous, showed good adherence, and tightly covered the
substrate without macroscopic defects. In general, the coating was smooth on the surface
and free of discontinuities or cracks but with some porosity (Figure 11). Nonetheless,
porosity was exclusively closed. A major difference compared to the cross-sectional image
of the glass-ceramic pellet (Figure 3) is the size and distribution of the pores. In this case,
the highest porosity and pore size can be observed right next to the CoSb3/coating interface
(Figure 11). With the increasing distance from the interface, both the number and size
of pores decreased. Furthermore, the shape of the pores was also changed, from almost
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perfectly spherical to irregular, edgy forms. From the binarized image (Figure 11b), the
equivalent diameter (calculated as a diameter of a circle with the same area as a plane
area of a pore) of the largest pores was estimated to be about 30 µm, and the pore volume
fraction was calculated to be close to 6%. Moreover, it is worth noting that if the coating
was divided into halves, the porosity in the innermost part was estimated to be as high as
10%, while in the outermost at approximately 2–3%. Pore size distribution in the coating is
presented in Figure 12.
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Figure 12. Pore size distribution in the coating.

As can be seen in Figure 10, the glass-ceramic coating after deposition on CoSb3
remained amorphous in the bulk with uniformly distributed crystals. The overall picture
and size of the crystals appeared essentially unchanged from that of the glass-ceramic pellet
(Figure 3).

The CoSb3/glass-ceramic interface at different magnifications is shown in Figure 10b–d.
No microstructural changes were observed in the substrate, which was also confirmed
by chemical composition analysis of the interface. Figure 13 presents distribution maps
of chemical element concentration recorded by SEM-EDS indicating only Co and Sb in
the substrate. Although the map for Ca may suggest the presence of this element in the
substrate, this is an incorrect finding. It will be clarified in detail in the Discussion section.
The negligible variation range of chemical element concentration can also be observed on
the EDS line-scan, presented in Figure 14, which crosses the interface at the point where the
coating is in exclusive contact with the substrate. In both the CoSb3 and in the coating, the
composition in general was constant, even at the crystals. This results from the nature of
the EDS measurements, where the recorded signal origins from a certain volume, limiting
the resolution. The only noticeable variation of the coating composition is an approx. 10%
decrease in the oxygen concentration with a corresponding drop in silicon concentration,
close to the interface over a length of about 2.5 µm. In the XRD diffractogram of the
coated CoSb3 sample, shown in Figure 8c, besides peaks characteristic of the glass-ceramic
(compare Figure 8a), peaks coming from the CoSb3 phase were also present. No peaks of
any other phase were identified.
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quantified maps of chemical elements distribution for a region marked in (a).
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Figure 14. The SEM-EDS chemical element concentration profile across the CoSb3/coating interface.
The precise position of the line of analysis is marked in Figure 13 a by a green arrow.

Figure 15 presents SEM-BSE cross-sectional images of the CoSb3 sample coated with
glass-ceramic after an oxidation test at 500 and 600 ◦C for 80 h. In both cases, a middle
gray layer at the interface was recognized as an oxide scale. At 500 ◦C, the scale was single-
layered, and at 600 ◦C it seemed to consist of at least two layers. In both cases, the thickness
was not uniform over the length of the sample. At 500 ◦C it was up to a few micrometers,
while at 600 ◦C it was much thicker, even in the range of tens of micrometers. The thickness
of the scale varied depending on the location, being much larger near the pores, then
decreasing toward areas with good contact between the coating and the substrate, e.g.,
sample corners in Figure 15b,d.

Chemical composition analysis using SEM-EDS indicated the presence of oxygen in
the scale formed at the CoSb3/coating interface. EDS elemental distribution maps for
samples oxidized at 500 and 600 ◦C are presented in Figure 16. At 500 ◦C it consisted of Co,
Sb, and O with approximately uniform concentrations across the scale growing inwards
CoSb3. At 600 ◦C, a chemical reaction occurred both at the inner and outer side of the
interface. The coating was penetrated mainly by antimony, and the scale in some areas
exhibited morphological features of a eutectic (inset in Figure 15).
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4. Discussion

The principal difficulty during the deposition of glass-ceramic coating is a requirement
of high sintering temperature. Unfortunately, cobalt triantimonide is sensitive to temper-
ature [6–9]. In the air above 380 ◦C, it undergoes strong oxidation associated with the
formation of a multilayer scale, even at short-term exposure [6,7]. Furthermore, antimony
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tends to sublimate from the bulk starting from 500 ◦C (at 700 ◦C, the sublimation rate is
as high as 21.5 mg/(cm2·h) [8]), and CoSb3 decomposes to the lower antimonides. Based
on the characteristic temperatures: glass transition temperature Tg onset = 490 ◦C, first
shrinkage temperature TFS = 515 ◦C, and maximum shrinkage temperature TMS = 630 ◦C
reported in [42], the optimum sintering temperature of G10 was determined to be in the
range of 650–750 ◦C. The coating composition was selected to ensure the lowest possible
sintering temperature to minimize the risk of oxidation and Sb sublimation, but not lower
than the expected CoSb3 operating temperature (up to 600 ◦C). Therefore, the optimum
glass-ceramic sinter-crystallization temperature was determined as 650 ◦C.

Another consideration was to match the chemical composition of the coating to prevent
secondary chemical reactions with the substrate during operating at elevated temperatures.
As shown in Figure 17, the dissociation pressures of antimony and cobalt oxides are higher
than the dissociation pressures of SiO2, CaO, Li2O, and K2O. In such cases, the reduction
of oxides composing the coating by the substrate was not thermodynamically favorable,
and the chemical composition of the substrate remained unchanged after the glass-ceramic
coating deposition. Furthermore, there were no significant changes in the chemical and
phase composition of the glass-ceramic after deposition on CoSb3 compared to the glass-
ceramic pellet. This can be confirmed by the comparison of XRD diffractograms (Figure 8),
where in both cases an amorphous halo was visible, indicating an amorphous matrix, as
well as characteristic peaks coming from Li2SiO3. Nevertheless, in contrast to the glass-
ceramic pellet, it was found on the basis of XRD that G10 coating on the CoSb3 may contain
small amounts of Li2Si2O5. This phase was also observed in an XRD diffractogram of G10
glass-ceramic coating deposited on another substrate [42]. The presence of the Li2Si2O5
crystalline phase is reported to be related to the enhancement of the glass-ceramic strength,
while the presence of Li2SiO3 does not affect the strength of the matrix glass [43]. However,
since many of the characteristic Li2Si2O5 peaks overlap with peaks originating from Li2SiO3,
and the most intense peak at 2θ = ~25◦ only slightly extends above the background, the
presence of Li2Si2O5 requires further confirmation. Moreover, although differences in
crystals’ color could be observed in the phase-contrast SEM-BSE image (Figure 3), this is
rather since the crystals are at different depths. It was also impossible to claim any apparent
changes in the chemical composition of different crystals on the SEM-EDS maps (Figure 3d).
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Some concerns might arise from the quantified maps of Ca distribution in the coated
sample (Figures 13 and 18). They showed the presence of Ca in the substrate in an amount
comparable to the amount of Ca in the coating. However, the energy of characteristic
X-ray radiation for Ca and Sb is approximate: Ca Kα = 3.69 keV and Sb Lα = 3.60 keV.
If comparing the recorded EDS intensity elemental map for Ca with the quantified map
(Figure 18), it can be observed that the correction procedure involved (P/B-ZAF) addressed
energy overlapping. Nonetheless, the accuracy was probably not enough for the perfect
separation of the Ca and Sb peaks. Therefore, it can be assumed with high confidence that
Ca was not present in the substrate area.
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To ensure effective protection against degradation, good coating adherence is one
of the most important factors. Adherence of the glass-ceramic coating was determined
by inspection of microstructure and chemical composition. Analyzing the EDS elemental
maps of the CoSb3/coating interface recorded on the as-sintered sample (Figure 13), a slight
enrichment in Sb in the coating at a limited distance was observed, while no enrichment
in cobalt was noticed. Antimony could have penetrated the coating through a chemical
reaction or as a result of sublimation. The method by which antimony is built into the
glass-ceramic directly affects the coating/substrate bonding. Adherence can be provided
by physical, chemical, or mechanical bonding. The best results are achieved with chemical
bonding. It can be formed by a direct reaction between the substrate and the coating or by
the initial oxidation of the substrate surface, followed by the dissolution of substrate oxides
in the coating [45]. In the studied case, the composition of the glass-ceramic coating was
chosen to avoid reduction of the substrate elements; therefore, the first possibility can be
rejected. In general, at the first moment when CoSb3 is in contact with the oxidizing agent,
the scale is composed only of antimony oxides [6,44]. Since Sb2O3 and SiO2 form a low-
melting eutectic at 492 ◦C [46], the dissolution of the oxide scale on CoSb3 in glass-ceramic
coating facilitates the formation of the chemical bonding. The requirement for developing
sufficient adhesion is the complete dissolution of the oxide in the amorphous phase; thus,
oxide thickness should be small. Nevertheless, the formation of Sb2O3 scale entails the
assumption that CoSb3 surface oxidation occurred at the initial stages of sintering, e.g., by
oxygen trapped in the sample (in pores of the substrate and/or in the powdered glass).
Considering the presence of pores in the specimen covered by a layer of glass powder, this
possibility cannot be excluded, but it has not been investigated in this study. In addition,
since the oxide scale was not observed at the interface (Figure 10), it can be assumed that
either it was completely dissolved or not formed entirely. Therefore, the formation of a
chemical bonding cannot be conclusively confirmed. Furthermore, visual evaluation of the
coating/CoSb3 interface at high magnification (Figure 10c,d) indicated that it exhibited no
typical morphological features of mechanical bonding [37,45].

A second source of Sb enrichment at the interface could be antimony vapor trapped in
the pores, arising from Sb sublimation from CoSb3 starting at about 500 ◦C [8,37]. When
the coating was sintered, the antimony could be dissolved in the glass-ceramic. Antimony
vapors also lead to the formation of coating porosity at the interface. In SEM-BSE images
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presented in Figure 10 at high magnifications; this effect could be observed as bright
surroundings of the pores. Once the sintering was finished and the coating hardened, the
elevated vapor pressure of Sb in the closed pores inhibited further sublimation from the
substrate. As a direct reaction between the substrate and the coating cannot occur, this
process does not ensure chemical bonding.

Although SiO2 and Sb2O3 form a low-melting eutectic, it has been reported in the
literature that an excess of Sb2O3 (more than 50 mol %), leads to the crystallization of the
glass and results in insufficient adhesion of the coating to the substrate [47]. As can be
seen in SEM images (Figure 10), increased crystallization of the as-sintered coating was not
observed. It can be expected that crystallization was limited by carrying out the process
in the oxygen-depleted environment (Ar flow). As a result, the range of antimony in the
coating was insignificant but sufficient to ensure high coating adherence. Calculations of
CTE based on the Winkelman and Schott model modified by Eppler [48] indicate that a
small amount of dissolved antimony had no negative effect on CTE tailoring. Nevertheless,
a noticeable difference in the shape and number of pores near the substrate was observed.
This can be attributed to the increased vapor pressure of antimony close to the CoSb3
surface during the early stages of glass-ceramic sintering.

Oxidation tests at 500 and 600 ◦C were performed to assess the effect of the glass-
ceramic coating on the corrosion resistance of cobalt triantimonide. In both cases, an oxide
layer was identified on the samples at the interface, indicating limited protection against
oxidation at elevated temperatures. Nevertheless, at 500 ◦C, non-oxidized areas could be
observed, and at 600 ◦C, regions with a significantly reduced scale thickness compared to
unprotected samples oxidized in the corresponding conditions [6]. These were mostly areas
where the coating was tightly bonded to the CoSb3. The phase composition of the scale was
also changed compared to the uncoated samples. In the studied case, it consisted mainly
of Co, Sb, and O (Figure 16), whereas on uncoated samples the scale was multilayered
and consisted of both antimony oxides (Sb2O3 and Sb2O4) and cobalt–antimony oxides
(CoSb2O4 and CoSb2O6) [6]. Comparing with the literature data, it can be concluded that
the scale was composed mainly of CoSb2O4 [6]. The antimony oxides were digested by the
coating, in some cases forming a eutectic (Figure 15c). The formation of a liquid phase led
to rapid degradation of the material during oxidation at 600 ◦C.

5. Conclusions

In the studied case, a glass-ceramic coating on CoSb3 with an optimized sintering tem-
perature (650 ◦C) and well-matched CTE coefficient was successfully provided. Analysis
of the phase composition confirmed that the coating consists mainly of Li2SiO3 crystals
with an average size of a few micrometers embedded in a glassy matrix. The HR-TEM
results indicated the presence of nanocrystallites in the amorphous phase. The coating
showed some closed porosity, mainly in regions close to the interface. Good adherence
of the coating was observed; however, the formation of a chemical bonding between the
coating and the substrate could not be conclusively confirmed. The phase and chemical
composition of the substrate remained unchanged after coating deposition. During oxi-
dation tests, the glass-ceramic coating showed limited protective properties. Promising
results were obtained for the glass-based coated TE tested at 500 ◦C for 80 h, while at
600 ◦C effectiveness of the coating was limited to the formation of a liquid phase in
the system.
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