
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

CUDA-Optimized GPU Acceleration of 3GPP 3D Channel Model Simulations for 5G Network Planning / Shah, NASIR
ALI; Lazarescu, Mihai T.; Quasso, Roberto; Lavagno, Luciano. - In: ELECTRONICS. - ISSN 2079-9292. -
ELETTRONICO. - 15:(2023). [10.3390/electronics12153214]

Original

CUDA-Optimized GPU Acceleration of 3GPP 3D Channel Model Simulations for 5G Network Planning

Publisher:

Published
DOI:10.3390/electronics12153214

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2979597 since: 2023-09-10T07:29:27Z

MDPI

Citation: Shah, N.A.; Lazarescu,

M.T.; Quasso, R.; Lavagno, L.

CUDA-Optimized GPU Acceleration

of 3GPP 3D Channel Model

Simulations for 5G Network

Planning. Electronics 2023, 12, 3214.

https://doi.org/10.3390/

electronics12153214

Academic Editor: Akash Kumar

Received: 9 June 2023

Revised: 9 July 2023

Accepted: 20 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

CUDA-Optimized GPU Acceleration of 3GPP 3D Channel
Model Simulations for 5G Network Planning
Nasir Ali Shah 1,* , Mihai T. Lazarescu 1 , Roberto Quasso 2 and Luciano Lavagno 1

1 Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy;
mihai.lazarescu@polito.it (M.T.L.); luciano.lavagno@polito.it (L.L.)

2 Telecom Italia S.p.A., 00198 Roma, Italy; roberto.quasso@telecomitalia.it
* Correspondence: nasir.shah@polito.it

Abstract: The simulation of massive multiple-input multiple-output (MIMO) channel models is
becoming increasingly important for testing and validation of fifth-generation new radio (5G NR)
wireless networks and beyond. However, simulation performance tends to be limited when modeling
a large number of antenna elements combined with a complex and realistic representation of propaga-
tion conditions. In this paper, we propose an efficient implementation of a 3rd Generation Partnership
Project (3GPP) three-dimensional (3D) channel model, specifically designed for graphics processing
unit (GPU) platforms, with the goal of minimizing the computational time required for channel
simulation. The channel model is highly parameterized to encompass a wide range of configurations
required for real-world optimized 5G NR network deployments. We use several compute unified
device architecture (CUDA)-based optimization techniques to exploit the parallelism and memory
hierarchy of the GPU. Experimental data show that the developed system achieves an overall speedup
of about 240× compared to the original C++ model executed on an Intel processor. Compared to a
design previously accelerated on a datacenter-class field programmable gate array (FPGA), the GPU
design has a 33.3% higher single-precision performance but a 7.5% higher power consumption. The
proposed GPU accelerator can provide fast and accurate channel simulations for 5G NR network
planning and optimization.

Keywords: 3GPP 3D channel model; massive-MIMO; 5G; 5G NR; hardware acceleration; GPU;
CUDA optimization techniques; network planning simulation

1. Introduction

Mobile communications have become an increasingly important part of modern
life. They make it possible to perform routine tasks such as making video calls while
traveling or staying in touch with family and the office from anywhere in the world [1–4].
The process of digitization began in the early 1990s with the introduction of second-
generation cellular technologies [5]. Cellular technologies are undergoing continuous
service development to improve customer experience and provide a higher level of service.
The number of mobile devices such as smartphones, tablets, Internet of Things (IoT) devices,
and laptops are expected to reach around 28.5 billion networked devices by the end of
2023 [6]. This increases the demand for higher throughput, lower latency, and higher
quality of service, which are the main drivers for the introduction of the fifth-generation
(5G) wireless communication standard [7]. The radio link is by far the most important part
of any cellular technology. Its simulation must closely take into account propagation in
real-world environments in order to predict and optimize network coverage and minimize
post-deployment on-field measurements.

Several channel models for massive multiple-input multiple-output (MIMO)-based
communication systems have been reported in the most recent literature [8–12]. The Inter-
national Telecommunication Union (ITU) has defined the requirements for the International

Electronics 2023, 12, 3214. https://doi.org/10.3390/electronics12153214 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153214
https://doi.org/10.3390/electronics12153214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2276-4960
https://orcid.org/0000-0003-0884-5158
https://orcid.org/0000-0003-0847-7420
https://orcid.org/0000-0002-9762-6522
https://doi.org/10.3390/electronics12153214
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153214?type=check_update&version=1

Electronics 2023, 12, 3214 2 of 15

Mobile Telecommunications 2020 (IMT-2020) channel model with support for enhanced
mobile broadband (eMBB), ultra-reliable and low-latency communications (URLLC) and
massive machine-type communications (mMTC) [8].

The COST 2100 model [9] is a geometry-based stochastic model (GSCM) for MIMO
channels with cluster power and delays derived from fixed geometry and therefore has
limited support for dual mobility propagation scenarios. Weiler et al. [10] presented a quasi-
deterministic channel model where the channel impulse response (CIR) is a combination of
a few strong quasi-deterministic rays, flashing rays, and weak random rays. METIS [11] is
a ray-tracing based channel model that supports propagation scenarios such as blocking,
diffraction, specular reflection, and spherical wave propagation.

However, existing channel model simulators are either too simple to accurately repli-
cate the propagation environment or too computationally expensive to produce meaningful
results in a reasonable amount of time. In addition, most existing simulators are designed
for central processing unit (CPU) platforms, which have limited parallelism and through-
put. Therefore, there is a need for efficient and accurate channel model simulators that
can run on parallel platforms such as graphics processing units (GPUs)s, which offer high
performance and scalability. This article proposes a GPU-based hardware acceleration
for the 3rd Generation Partnership Project (3GPP) three-dimensional (3D) channel model,
which is a highly parameterized and realistic channel model for fifth-generation new radio
(5G NR) networks, and shows that the proposed GPU accelerator can significantly improve
the simulation speed and accuracy over a CPU-based C++ model, and also has higher
single-precision performance than a previously designedfield programmable gate array
(FPGA)-based accelerator.

The rest of the paper is organized as follows. Section 2 discusses previous related
work. Section 3 discusses the importance of 3D channel modeling in MIMO communication
techniques and briefly describes the 3GPP channel model. Section 4 presents an introduc-
tion to GPU and compute unified device architecture (CUDA) programming, followed
by optimization methods for GPU-based hardware acceleration and its key benefits. The
architecture of the proposed accelerator is outlined in Section 5, and the impact of various
optimizations on the final result is analyzed in Section 6. Finally, conclusions are drawn in
Section 7.

2. Related Work

The field-testing and validation of wireless systems is expensive both in terms of
equipment cost and time to market. This step can be replaced by fast and accurate software-
based models with high repeatability. Several channel simulators have been reported in
the literature [13–17]. Sun et al. [13] proposed a geometry-based channel model simulator
for the link and physical layers. Jaeckel et al. [14] proposed ground reflection components
to the existing geometry-based channel models. Ju et al. [15] presented a model simulator
for spatially consistent channel realizations using pedestrian measurements for human
blockage. Pessoa et al. [17] presented a simulator with support for dual mobility.

General-purpose CPU-based channel simulators are either too simple to accurately
replicate the propagation environment or too computationally complex to produce mean-
ingful results in a reasonable time. Channel model accelerators minimize simulation time.
Acceleration technologies include application-specific integrated circuits, massively parallel
GPUs, and FPGAs.

Several hardware-based channel accelerators have been reported in the literature.
The A GSCM emulator on FPGA, which considers only discrete time segments was intro-
duced [18]. For the an FPGA implementation of the a 3GPP 3D channel model, a variety of
high level synthesis (HLS)-based optimizations are discussed, which are required to achieve
acceleration [19]. A CUDA-based multipath fading accelerator has been proposed [20], as
well as another wireless channel emulator [21]. It lacks complex-valued channel coefficient
emulation, which reduces accuracy. Buscemi and Sass [22] emulated a scalable wireless
channel architecture on a cluster of 64 FPGAs, but its high hardware cost limits its appli-

Electronics 2023, 12, 3214 3 of 15

cation. Recently, Endovitskiy et al. [23] proposed a technique to reduce the complexity of
the 3GPP channel model for 5G NR by reducing the number of sub-paths, thus reducing
the computational cost, but it analyzes only a subset of wireless channel propagation
characteristics, limiting its application.

We investigate various optimization techniques for the effective deployment of a 3D
GSCM channel for frequencies from 0.5 GHz to 100 GHz as proposed by ETSI [12] for GPU
platforms. Despite its computational complexity, this model simulates the propagation
environment more accurately. The goal is to maximize the planning quality of 5G mobile
networks by leveraging the generality and accuracy of the 3GPP channel model given in
TR.38.901 [12]. The channel model was designed for CPU platforms, then optimized for
NVIDIA GPUs using CUDA-based techniques.

We developed a GPU-based simulator that is more accurate than state-of-the-art
programs and delivers data to network designers quickly. When larger antenna arrays and
user mobility are included, CPU-oriented 5G simulation stack executions can take days
or weeks. The accelerated channel model is integrated into our implementation of the 5G
simulation stack using a socket-based client/server architecture for shared use by multiple
network planners. Our acceleration efforts have resulted in a remarkable 240× increase in
speed, allowing the simulation to be completed in hours instead of weeks.

The main contributions of the article are:

• proposing a GPU-based hardware acceleration for the 3GPP 3D channel model, which
is a highly parameterized and realistic channel model for 5G NR networks;

• application of various CUDA-based optimization techniques to efficiently utilize GPU
resources and increase the overall performance of the channel model simulator;

• evaluation of the performance and accuracy of the GPU accelerator using benchmark
parameters and comparison with both a CPU-based C++ model and a previous design
on an FPGA based on the same 16 nm technology node as the GPU;

• showing that the GPU accelerator can achieve an overall speedup of about 240×
compared to the CPU model and 33.3% higher single-precision performance than a
comparable FPGA design, while maintaining high accuracy and flexibility.

3. The 3GPP Channel Model for 5G NR

Currently, 5G mobile networks have a high device and base station density, low la-
tency, and high data rates. MIMO channels and multi-antenna transmission increase radio
link reliability and efficiency. Additionally, Two-dimensional spatial channel models mod-
els wireless channel behavior and performance with low computational complexity [24];
however, by considering only a two-dimensional plane, they poorly capture transmission
channel characteristics and limit MIMO techniques to azimuth (beamforming, spatial multi-
plexing, and precoding). Three-dimensional channel models include channel azimuth and
elevation. GSCM calculates channel parameters using randomly distributed scatterers [25].

The 3GPP specifications [12] propose an accurate and reliable stochastic channel model
for building, optimizing, and evaluating 5G systems. The GSCM consists of two parts:
(1) a large-scale fading model that includes path loss, line-of-sight (LOS) probability, and
additional losses combined with (2) a small-scale fading model characterized by the CIR
(also called “channel coefficients” in the following). In the context of multipath propagation,
the received signal is composed of various attenuated replicas of the original transmitted
signal. To calculate the channel coefficients, a step-by-step procedure is recommended [12]
(Figure 7.5-1). A simplified representation of multipath scattering is shown in Figure 1 for
the propagation of n clusters, each resolvable into m subpaths. The azimuth and elevation
angles at the base station (BS) and user side are φ and θ. The small-scale parameters
include cluster powers, delays, and arrival and departure angles in elevation and azimuth,

Electronics 2023, 12, 3214 4 of 15

respectively. Channel coefficients include the LOS and non-LOS (NLOS) propagation
subpaths. The NLOS component is calculated as

Hu,s,n,m(t) =

√
Pn

M︸ ︷︷ ︸
Power

[
Frx,u,θ(θn,m,ZOA, φn,m,AOA)
Frx,u,φ(θn,m,ZOA, φn,m,AOA)

]T

︸ ︷︷ ︸
RX Antenna Pattern(FRx)

×
[

ejΦθθ
n,m

√
κn,m−1ejΦθφ

n,m√
κn,m−1ejΦφθ

n,m ejΦφφ
n,m

]
︸ ︷︷ ︸

XPR

×
[

Ftx,s,θ(θn,m,ZOD, φn,m,AOD)
Ftx,s,φ(θn,m,ZOD, φn,m,AOD)

]
︸ ︷︷ ︸

TX Antenna Pattern(FTx)

· ej2πλ−1
0 r̂T

rx,n,m .d̄rx,u︸ ︷︷ ︸
RxLocation

· ej2πλ−1
0 r̂T

tx,n,m .d̄tx,s︸ ︷︷ ︸
TxLocation

· ej2πλ−1
0 r̂T

rx,n,m .v̄t︸ ︷︷ ︸
Doppler Component︸ ︷︷ ︸

SpeedVect

(1)

where Frx,u,θ , and Frx,u,φ are the field patterns of the uth element of receiving antenna in
the direction of the spherical basis vector, Ftx,s,θ , and Ftx,s,φ are the field patterns of the sth
element of transmitting antenna, (θ, φ)α,β,γ are the elevation angles γ for ray β in cluster
α, and r̂ and d̂ are the spherical unit vector and location vector of antenna elements rx, tx,
respectively. Similarly, r̂tx,n,m is the spherical unit vector with azimuth departure angle
φn,m,AOD and elevation departure angle θn,m,ZOD, and XPR is the cross-polarization power
ratio matrix. Rays from the same cluster have identical power levels, denoted by Pn. The
LOS component of the CIR is calculated as in Equation (2).

Hu,s,1(t) =
[

Frx,u,θ(θLOS,ZOA, ϕLOS,AOA)
Frx,u,ϕ(θLOS,ZOA, ϕLOS,AOA)

]T

×
[

1 0
0 −1

]
×
[

Ftx,s,θ(θLOS,ZOD, ϕLOS,AOD)
Ftx,s,ϕ(θLOS,ZOD, ϕLOS,AOD)

]
︸ ︷︷ ︸

SpeedVectLOS

· exp
(
−j2π

d3D
λ0

)
exp

(
j2π

r̂T
rx,LOS.d̄rx,u

λ0

)
exp

(
j2π

r̂T
tx,LOS.d̄tx,s

λ0

)
exp

(
j2π

r̂T
rx,LOS.v̄

λ0
t

)
︸ ︷︷ ︸

ClusterVectLOS

(2)

Cluster 1

Paths
z

y

x

UE
BS

x

y

z

Azimuth

Elevation

Cluster n

θTx,m

ΦRx,m

θRx,m

ΦTx,m

Figure 1. Multi-path scattering in 3D channel model.

The Doppler frequency component depends on the UE speed v with velocity vector v̄,
arrival angles (AOA, ZOA), travel elevation angle θv, and azimuth angle φv

vn,m =
r̂T

rx,n,m.v̄
λ0

(3)

Electronics 2023, 12, 3214 5 of 15

The CIR can be expressed as the sum of the LOS channel coefficient and the NLOS
channel impulse response as

Hu,s(t) = Hu,s,1(t)︸ ︷︷ ︸
LOS

+
N

∑
n=1

M

∑
m=1

Hu,s,n,m(t)︸ ︷︷ ︸
NLOS

(4)

In communication over the wireless channel, a transmitted signal x(t) arrives at the
receiver with a time delay of x(t − τ). The received signal comprises multiple reflections or
refraction, resulting in identical duplicates of the originally transmitted signal.

y(t) = ∑ x(t − τ)Hu,s(t, τ) (5)

This represents the convolution of the CIR and the transmitted signal, i.e., an finite
impulse response (FIR) filter where the CIR represents the set of coefficients, and can be
rewritten as

y(t) = (x ~ H)(t) (6)

where ~ denotes convolution.
User equipment (UE) spatial coordinates in a 3D space affect the CIR. Mobile devices

require continuous location calculations, so this variability is critical. This model uses
delays and ray mapping from [12] (Table 7.5-5). To test the channel model, we used the
values in Table 1.

Table 1. Summary of channel model emulator parameters.

Parameter Value Parameter Value

Polarizations 2 Oversampling factor 1 to 4
Elements on H-Planes 4 Elements on V-Planes 1 to 4
Carrier Frequency (MHz) 3600 Sampling freq. (Hz) 122.88
Transmitting Antennas 2 to 32 Receiving Antennas 2 to 32
Clusters 23 (CDL-B) & 13 (CDL-D) Rays 20
User Speed (km/h) 120 Subcarriers 2048

The total execution time to compute these coefficients and the respective speedup over
the CPU baseline are reported in Section 6.

Cluster-delay line (CDL) serves as a modeling tool in scenarios where the received sig-
nal comprises several delayed clusters. Each cluster is composed of multipath components
that share a common delay, albeit exhibiting slight variations in angles of departure and
arrival. Various CDL profiles have been defined by 3GPP for link-level simulations. For
NLOS, three CDL profiles, namely, CDL-A, CDL-B, and CDL-C, are defined and CDL-D
and CDL-E are constructed for LOS clusters.

4. GPU-Based Acceleration Using NVIDIA CUDA

GPUs are a type of single-instruction-multiple-data (SIMD) architecture where the
same instruction is executed repeatedly on different data in parallel. GPUs are specif-
ically designed to run thousands of threads in parallel for higher throughput and use
multi-threading to hide memory latency. Efficient management of GPU resources can be
achieved through high-level programming languages based on the underlying computing
architectures, resulting in improved performance.

Popular parallel computing architectures in the industry include the Open Computing
Language (OpenCL) [26], Open Multi-Processing (OpenMP), and CUDA [27], a parallel
programming language for managing computations on NVIDIA GPUs. Several code
optimization techniques, both generic to GPU code and specific to CUDA, are required to
efficiently utilize the on-chip resources and increase the overall performance.

Electronics 2023, 12, 3214 6 of 15

CUDA-based acceleration code consists of two components: the host code, which runs
on the general-purpose CPU and is responsible for memory and device management and a
collection of functions called the kernel code, which runs on the GPU accelerator device.

Threads in CUDA are the units of computation and are modeled as functions in
the kernel code. They are completely concurrent unless synchronized by the hardware or by
the designer. In order to efficiently map threads to the architecture of the GPU, they are
arranged in 3D clusters called blocks. These clusters are then combined into a 3D grid. The
CUDA programming model groups a set of 32 threads into a single entity known as a
warp. Concurrent threads (1) within a warp are automatically synchronized in lockstep by
the hardware, whereas (2) threads within a block can be synchronized via barriers by the
designer, e.g., to enable all threads to complete data transfers before starting a computation
on those data, and (3) thread blocks cannot be synchronized with each other at all.

When a designer has to port an application that was originally written for a CPU to a
GPU, the code must be completely restructured to explicitly expose parallel computations and
optimize memory accesses, as the implicit optimizations provided by compilers are usually
insufficient.

GPU architecture for acceleration and CUDA programming model prospective of GPU
are shown in Figure 2.

CPUMain
Memory

GPU Memory

Initialize GPU

Parallel
execution

Block
0,0,0

Block
0,1,0

Block
0,2,0

Block
1,0,0

Block
1,1,0

Block
1,2,0

Grid 0

Block
1, 1, 0

CUDA programming modelGPU architecture

Thread
0,0,0

Thread
0,1,0

Thread
0,2,0

Thread
1,0,0

Thread
1,1,0

Thread
1,2,0

Figure 2. GPU architecture and CUDA programming model.

The main characteristics of the GPU programming languages, and of CUDA in partic-
ular, are discussed below:

1. Allocating arrays to explicit levels in the memory hierarchy.
2. Explicitly modeling concurrency via threads.

4.1. Thread Synchronization

Explicit designer-driven thread group synchronization via barriers is the most com-
monly used synchronization mechanism between otherwise independent threads. It allows,
for example, kernel code to transfer data between (1) large and slow off-chip memory and
(2) smaller and faster on-chip memory, ensuring that:

• All threads involved in a concurrent set of memory transfers, where each thread copies
one or a few words of a large off-chip memory buffer to an on-chip memory one, are
finished when computations using the transferred data begin,

Electronics 2023, 12, 3214 7 of 15

• All threads performing parallel computations are finished when the results begin to
be transferred back from on-chip memory to off-chip memory.

Implicit automatic thread synchronization occurs in programs with divergent control
flows, i.e., where conditional branches in the code may have different outcomes for different
threads in a warp. Programmers must carefully consider using conditionals (if–then–else
and switch statements) in kernel code, because it may cause significant performance losses
in a GPU architecture. If a thread has two nested if–then–elses, and the conditions are
independent, then typically only 25% of each GPU processor can be exploited, because
all four combinations of the condition values must be executed in sequence, rather than in
parallel.

As mentioned above, the CUDA programming model employs three types of thread
parallelism:

• Parallelism between thread blocks, where synchronization is impossible;
• Parallelism within a thread block, where synchronization can be requested by the

designer;
• Parallelism within thread warp, where synchronization is automatically ensured by

the GPU hardware.

From a hardware perspective, there are three execution hierarchies: cooperative-
thread-array (CTA) (also known as streaming multiprocessor (SM)), warp, and SIMD lanes.
At kernel startup, each thread block is assigned to a CTA and each thread is assigned to
a SIMD lane. If the block-level explicit synchronization barriers are used, then the CTA
hardware will wait for all threads in a block to reach the barrier before any thread is
allowed to continue beyond it. Using the warp-level synchronization feature of the CUDA
cooperative thread array, threads are synchronized only at the warp level, and other warps
can continue to execute. This is especially important in our case, because we can map
elements in a cluster to threads in a warp and partitioned block into tiles of size equal to
warp size. Because each cluster is modeled independently, we can synchronize threads at
the warp level and avoid frequent block-level synchronizations.

4.2. Register-Based Parallel Reduction

This programming technique allows a thread to read a register directly from another
thread within the same warp and allows them to exchange or broadcast data among each
other very efficiently. The idea of parallel reduction is illustrated in Figure 3.

Figure 3. Parallel reduction using registers.

Electronics 2023, 12, 3214 8 of 15

Where the __shfl_down() CUDA instruction calculates the source and the destination
of each reduction step, so that in N steps 2N data elements are reduced via an associative
operation (e.g., addition) within a warp, without the need for expensive explicit synchro-
nization barriers (i.e., the maximum value of N for which this can be performed with warps
of size 32 is 5). The final stage of reduction, beyond the five iterations supported by a warp,
is performed less efficiently in shared or global memory for all warps belonging to the same
block via explicit barrier synchronization. These two kinds of reduction are both exploited
in our model to optimize the final accumulation of the results computed by each warp to
generate the total CIR.

4.3. Global Memory

Global memory is the off-chip dynamic RAM (DRAM) available on the GPU board,
and it is typically separate from the CPU memory. It is used as a communication buffer for
large amounts of data between the CPU and the GPU. It has high latency and relatively low
bandwidth, similar to a CPU, compared with lower levels of the hierarchy. The host code
is in charge of transferring data between the host memory space and the global memory.
Arrays (less frequently scalars) allocated in global memory must be tagged as __device__
in CUDA.

4.4. Shared Memory

Shared memory is an on-chip memory with low latency and very high bandwidth
(similar to an L1 cache), local to each streaming multiprocessor and accessible only by
threads in the same block. Developers must explicitly specify shared memory data, using
the __shared__ storage attribute to allocate arrays in shared memory, and move data
between global and shared memory using kernel code. In our work, threads compute
the channel response for each transmitter–receiver antenna port in a cluster and require
repeated reading of the input data (1). Because the CUDA global memory is not fast enough
to provide data to all processing elements, a two-step loading mechanism is used. First, the
input data are loaded into the on-chip shared memory in a coalesced fashion, and then the
data are accessed for CIR computation.

5. Channel Emulator Acceleration on GPU

The channel model output computation is a set of FIR filters, one per path. Conse-
quently, the sampled signal at the receiver can be expressed as the sum over paths of a
convolution between the taps of this FIR filter and the channel model input signal. In this
study, we used a two-kernel acceleration:

1. A less computation-intensive kernel computes the FIR coefficients, i.e., the CIR, ac-
cording to (4). Its pseudocode is shown in Listing 1.

2. A more computation-intensive FIR kernel that applies the coefficients to each input
symbol, as in Equation (6). Its pseudocode is shown in Listing 2.

In addition to the two kernels, our accelerator also includes a host code that is written
in C++ and executed on the host CPU. It is responsible for interacting with the simulation
clients via sockets, performing preliminary model configurations and data transfers with
the GPU.

The architecture of the proposed accelerated channel model is shown in Figure 4.
It uses CUDA cooperative groups to eliminate the need for block-level synchronization,

because each cluster is computed independently. For efficient use of GPU resources, the
long chain of computations is split into parts as shown in Listing 1 where the SpeedVect
and ClusterVect are computed in shared memory. This allows threads to remain active
because there is no penalty for context switching. The register-based warp-wise parallel
reduction in FIR taps helps improve latency and resource utilization.

Electronics 2023, 12, 3214 9 of 15

TX RX

GPU
Channel

Generation

Channel
Application

CPU

Propagation
environment
Configuration

Socket
receiver

Socket
transmitter

Host code

Figure 4. The 3Rd Generation Partnership Project (3GPP) three-dimensional (3D) channel model on
graphics processing unit (GPU).

Listing 1. CUDA calcCIR kernel.

1 __global__ void
2 calcCIR(Hu,s, FRx,FTx,RxLocation , TxLocation)
3 {
4 // CUDA grid with X, Y, Z blocks
5 i=Idx.x; tx=Idx.y; rx=Idx.z; l=threadIdx.x;
6 cta = this_thread_block (); // create tiled blocks
7 thread_tile <32> tile32 = tiled_partition <32>(cta);
8 // Considering downlink
9 // for uplink , arrival , and departure parameters will be swapped

10 dopplerSpeedn,m = dopplerSpeed + r̂T
rx,n,m × speed × λ−1// as per Equation (3)

11 tile32.sync();
12 SpeedVectn,m = 2 × π × dopplerSpeedn,m × RxLocation × TxLocation // compute first part of

CIR
13 tile32.sync();
14 ClusterVectu,s = sqrt(Pu/NRAY)× FRx × FTx × XPR
15 __syncthreads (); // block sync
16 Hu,s,n,m = SpeedVectn,m × ClusterVectu,s
17 tile32.sync();
18 Hu,s,n,m(t) = warpReduceSum(Hu,s,n,m(t)) //
19 for each
20 if(LOS){
21 // load LOS parameters in shared mem
22 dopplerSpeedLOS

n,m + = r̂LOS
rx,n,m × speed × λ−1 // using LOS parameters

23 SpeedVectLOS
n,m = 2 × π × dopplerSpeedLOS

n,m × RxLocation × TxLocation
24 ClusterVectLOS

u,s = sqrt(PLOS
u /NRAY)× FLOS

Rx × FLOS
Tx // compute for LOS as in

Equation (2)
25 HLOS

u,s,l = SpeedVectLOS
n,m × ClusterVectLOS

u,s

26 HLOS
u,s,1 = warpReduceSum(HLOS

u,s,l) / reduction in reg
27 tile32.sync();
28 Hu,s = atomicAdd(HNLOS

u,s,n,m + HLOS
u,s,1) // Combine LOS and NLOS response

29 }
30 __syncthreads ();
31 }

Listing 2. CUDA applyFIR kernel.

1 __global__ void
2 applyFIR(y(t),x(t), Hu,s(t),Hu,s(t − τ),cirBuf ,pos)
3 {
4 // CUDA grid with X, Y, Z blocks
5 i=Idx.x; tx=Idx.y; rx=Idx.z; l=threadIdx.x;
6 cta = this_thread_block (); // create tiled blocks
7 thread_tile <32> tile32 = tiled_partition <32>(cta);
8 ∆H(t) = Hu,s(t)− Hu,s(t − τ); // use shared mem
9 regCirBuf l = cirBuf tx,rx,l // load circular buffer

10 __syncthreads (); // block sync

Electronics 2023, 12, 3214 10 of 15

11 xl = x(t)i,tx; // load received symbol in shared mem
12 index = posl; // read cluster position from const mem
13 tapV = tapV + ∆H(t) + Hu,s(t) // warp -wide tap vector
14 tile32.sync(); // warp -wise soft sync
15 tap = regCirBuf index × xl // interpolation lines
16 tile32.sync();
17 accl = warpReduceSuml(tap); // reduction in regs
18 tile32.sync();
19 y(t)rx = y(t)rx + accl; // accumulate over Rx
20 }

6. Results and Discussion

The baseline CPU performance was determined using an Intel Core i7-6900K @3.2 GHz
CPU. The baseline channel model is implemented in C++ and runs as a MEX C++ func-
tion within a MATLAB R2021a environment. The performance of the channel model
is evaluated using the benchmark values in Table 1. To evaluate the performance for
link-level simulations, we consider two CDL profiles, i.e., CDL-B for NLOS clusters and
CDL-D for LOS clusters. Figure 5 illustrates various MIMO antenna element configurations
for single-polarized antennas in Figure 5a,b and dual-polarized arrays in Figure 6c,d on
transmitter and receiver end for CDL-B profile. Similarly, the same is reported for CDL-
D in Figure 6 where Figure 6a,b show antenna patterns for single-polarized arrays and
Figure 6c,d illustrate dual-polarized antennas on transmitting and receiving end.

The accelerator discussed in this paper was developed using the CUDA development
tools [27], targeting the NVIDIA GeForce GTX 1070 GPU [28] which features 1920 CUDA
cores, 120 texture mapping units (TMUs), 1.5 MB of shared memory, 4 MB of local memory,
8 GB of GDDR5 memory, and 15 SMs.

(a) Single-polarized antenna panels on Tx end (b) Single-polarized antenna panel on Rx endd

(c) Dual-polarized antenna panels on Tx end (d) Dual-polarized antennas on Rx end

Figure 5. MIMO antenna configuration in CDL-B profile for NLOS clusters.

Electronics 2023, 12, 3214 11 of 15

(a) Single-polarized antenna panels on Tx end (b) Single-polarized antenna panel on Rx end

(c) Dual-polarized antenna panels on Tx end (d) Dual-polarized antennas on Rx end

Figure 6. MIMO antenna configuration in CDL-D profile for LOS clusters.

We compare the performance of the GPU accelerator with an FPGA implementa-
tion [19], which was developed using the Vitis Unified Software Platform [29] for the AMD
Alveo U280 [30]. The FPGA used in [19] is based on the same 16 nm technology node as
the GPU and contains 9024 digital signal processing (DSP) blocks, 41 MB of on-chip static
RAM, 1,303,680 look-up tables, and 8 GB of high bandwidth memory (HBM2). Thus, its
computational power is comparable to that of the GPU used in this work, because (1) a
DSP unit can be used to implement a single-precision (SP) multiply and add, and (2) in [19]
are used only 1/3 of the total FPGA resources so that the kernel can fit on one chiplet to
avoid routing problems.

The primary goal of this work is to reduce the overall execution time of the channel
model under resource constraints. We report the achieved performance for the kernels in
Listings 1 and 2 on GPU platforms. To analyze the performance for both LOS and NLOS
scenarios, we consider CDL-B and CDL-D profiles and uplink and downlink connection
types (Tables 2 and 3). Table 2 reports the execution latency for various combination of Rx
and Tx antenna elements considering NLOS clusters in CDL-B profile for the parameters
listed in Table 1.

Figure 7 illustrates a comparison of link-level simulation latency on CPU and GPU
platforms in the two CDL profiles. The values on the horizontal axis represent the number
of receiving and transmitting antenna elements, whereas the vertical axis denotes the
total execution time in logarithmic scale. It can be inferred from Figure 7 that the GPU
implementation greatly reduces the simulation time and enables the network planners to
simulation more complex propagation scenarios with higher Doppler shift and even more
antenna elements.

To analyze the effect of both transferring larger amounts of data (64 bits vs. 32 bits per
value) and performing computations with greater precision, the accelerators were designed
for both double-precision (DP) and SP on both acceleration platforms.

Electronics 2023, 12, 3214 12 of 15

Table 2. Kernel latency for a combination of MIMO elements in CDL-B NLOS.

Link
Type Kernel

Execution Latency
Downlink (Rx × Tx) , Uplink (Tx × Rx)

2 × 2 4 × 4 4 × 8 8 × 8 8 × 16 16 × 16 2 × 32 4 × 32

Downlink calcCIR (µs) 5.43 8.22 8.29 10.94 12.93 20.16 9.25 12.67
applyFIR (ms) 1.72 5.95 11.23 22.04 43.12 85.42 22.12 43.06

Uplink calcCIR (µs) 5.43 8.00 8.35 11.10 12.58 19.46 8.86 11.23
applyFIR (ms) 1.72 5.93 11.78 22.13 43.88 85.32 24.93 45.50

Table 3. Kernel latency for a combination of MIMO elements in CDL-D LOS.

Link
Type Kernel

Execution Latency
Downlink (Rx × Tx) , Uplink (Tx × Rx)

2 × 2 4 × 4 4 × 8 8 × 8 8 × 16 16 × 16 2 × 32 4 × 32

Downlink calcCIR (µs) 6.56 11.71 8.64 10.72 11.52 25.09 8.90 9.47
applyFIR (ms) 1.09 2.95 5.56 11.01 21.52 42.14 10.90 21.21

Uplink calcCIR (µs) 8.03 11.58 8.74 10.94 16.54 16.06 7.74 10.85
applyFIR (ms) 1.37 2.4 4.58 9.62 21.70 33.16 12.46 22.68

(a) Latency for CDL-B profile (b) Latency for CDL-D profile

Figure 7. Execution time on CPU and GPU platforms.

Table 4 reports the achieved performance and energy consumption for FPGA and
GPU acceleration platforms for CDL-B delay profile. Overall, the optimizations result in a
large speedup of 240× in comparison to the baseline CPU implementation. The achievable
performance is memory bound due to the limited on-chip shared memory of the GPU,
hence the need to repeatedly read large amounts of data from the DRAM rather than storing
it on-chip as was performed on the FPGA.

Table 4. Accelerated kernel latency and energy consumption.

Platform Latency Speedup Power Energy
(s) (Times) (W) (J)

CPU 5.01 N/A 105 526.0

FPGA (DP) 0.03 172 31.1 0.96
FPGA (SP) 0.03 172 29.3 0.79

GPU (DP) 0.08 60 52.0 4.37
GPU (SP) 0.02 240 40.5 0.85

For power analysis, CPU results are calculated based on its thermal design power
(TDP) because we have no way to measure its power consumption in real time. Energy
consumption is very high due to high execution latency on CPU platform. The energy
consumption of the FPGA is lower than that of the GPU because the data are copied only

Electronics 2023, 12, 3214 13 of 15

once into on-chip buffers (our FPGA has more on-chip memory than our GPU). The DP
version consumes more power in both cases due to more data being copied from DRAM
and higher execution latency due to both memory access and on-chip computation. The
GPU and FPGA power consumption is measured using the respective runtime support.
In both cases, they are lower than their respective TDPs because only one-third of the
on-chip compute resources were utilized due to memory bandwidth constraints, as shown
in Table 5.

Table 5. Resource utilization of accelerated designs.

Platform Precision Memory (%) SM (%) DSP (%)

FPGA DP 13.14 N/A 17.24
SP 6.25 N/A 8.05

GPU DP 40.89 63.61 N/A
SP 32.28 42.09 N/A

Table 5 reports resource usage for the acceleration platforms. For the FPGA, only
one of the three chiplets (also called SLRs) in the package was used to achieve a good
clock period.

Coding Style: CUDA vs. HLS

Although both FPGA and GPU provide parallel computation, writing source code to
efficiently program them is very different. In the case of GPU, it is necessary to explicitly
exploit the multi-threaded nature of the platform by exploiting the three-dimensional
parallel loop structure of the thread blocks, as shown in Listings 1 and 2 (note the absence
of any explicit loop construct). On the other hand, the accelerated code for the FPGA is
actually more similar to the CPU version, with only the addition of (1) loops to transfer
data from DRAM to on-chip memory, and (2) loop pipelining, loop unrolling, and array
partitioning directives to expose parallelism in the computation and memory architecture
in a form appropriate for HLS.

7. Conclusions

In this paper, we have presented an efficient implementation of a 3GPP 3D channel
simulation model for GPU platforms, using various CUDA optimization techniques to exploit
the parallelism and memory hierarchy of the GPU. The channel model is highly parameter-
ized and can simulate a wide range of configurations required for real-world optimized 5G
network deployments. The proposed GPU accelerator can provide fast and accurate channel
simulations for 5G NR network planning and optimization, reducing the simulation time by
about 240× compared to a CPU-based C++ model. The degree of performance improvement
is limited by the amount of on-chip memory, which limits concurrency. The GPU design
also has higher single-precision performance than a previous FPGA design, but at the cost
of higher power consumption. It is interesting to note that although FPGAs typically have
lower floating-point performance than GPUs, in this case, the FPGA has higher performance
due to the larger amount of on-chip memory used to store the data and reduce DRAM ac-
cesses, thus offsetting the lower computational performance compared to a GPU for this very
memory-intensive channel model. This work demonstrates the feasibility and benefits of
using GPU-based hardware acceleration for 5G NR channel model simulations, and provides
a valuable tool for network designers and researchers. Future work could include extending
the channel model to support more propagation scenarios and antenna configurations, as well
as integrating the channel model with other components of the 5G simulation stack, such as
physical layer and link layer models.

Author Contributions: Conceptualization, N.A.S., L.L. and M.T.L.; Methodology, N.A.S.; Soft-
ware, N.A.S.; Validation, N.A.S.; Formal analysis, N.A.S.; Resources, N.A.S.; Data curation, N.A.S.;
Writing—original draft, N.A.S.; Writing—review & editing, L.L. and M.T.L.; Visualization, N.A.S.;

Electronics 2023, 12, 3214 14 of 15

Supervision, R.Q., L.L. and M.T.L.; Project administration, L.L.; Funding acquisition, R.Q. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the European Union under the Italian National
Recovery and Resilience Plan (NRRP) of NextGenerationEU, partnership on “Telecommunications of
the Future” (PE00000001—program “RESTART”).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

2D two-dimensional
2D-SCM two-dimensional spatial channel model
2G second-generation
3D three-dimensional
3GPP 3rd Generation Partnership Project
5G fifth-generation
5G NR fifth-generation new radio
ASIC application-specific integrated circuit
CIR channel impulse response
CPU central processing unit
CTA cooperative-thread-array
CUDA compute unified device architecture
FIR finite impulse response
ITU International Telecommunication Union
DP double-precision
DRAM dynamic RAM
DSP digital signal processing
FPGA field programmable gate array
GPU graphics processing unit
GSCM geometry-based stochastic model
HLS high level synthesis
LOS line-of-sight
MIMO multiple-input multiple-output
NLOS non-LOS
SIMD single-instruction-multiple-data
SM streaming multiprocessor
SP single-precision
SSP small-scale parameter

References
1. Mort, G.S.; Drennan, J. Mobile Communications: A Study of Factors Influencing Consumer Use of m-Services. J. Advert. Res.

2007, 47, 302–312. [CrossRef]
2. Saxena, A.; Yadav, R. Impact of mobile technology on libraries: A descriptive study. Int. J. Digit. Libr. Serv. 2013, 3, 1–13.
3. Castleman, W.A.; Harper, R.; Herbst, S.; Kies, J.; Lane, S.; Nagel, J. The impact of mobile technologies on everyday life. In

Proceedings of the CHI’01 Extended Abstracts on Human Factors in Computing Systems, Seattle, WA, USA, 31 March–5 April
2001; pp. 227–228.

4. Wang, D.; Xiang, Z.; Fesenmaier, D.R. Smartphone use in everyday life and travel. J. Travel Res. 2016, 55, 52–63. [CrossRef]
5. Riviello, D.G.; Di Stasio, F.; Tuninato, R. Performance Analysis of Multi-User MIMO Schemes under Realistic 3GPP 3-D Channel

Model for 5G mmWave Cellular Networks. Electronics 2022, 11, 330. [CrossRef]
6. Cisco Systems, Inc. Cisco Global Cloud Index: Forecast and Methodology, 2012–2017; Technical Report; Ciso: San Jose, CA, USA, 2013.
7. Zhang, L.; Ijaz, A.; Xiao, P.; Quddus, A.; Tafazolli, R. Subband filtered multi-carrier systems for multi-service wireless communi-

cations. IEEE Trans. Wirel. Commun. 2017, 16, 1893–1907. [CrossRef]
8. Sector, I.R. Guidelines for Evaluation of Radio Interface Technologies for IMT-2020; Technical Report; International Telecommunication

Union: Geneva, Switzerland, 2017. Available online: https://www.itu.int/pub/R-REP-M.2412-2017 (accessed on 2 June 2023).
9. Liu, L.; Oestges, C.; Poutanen, J.; Haneda, K.; Vainikainen, P.; Quitin, F.; Tufvesson, F.; De Doncker, P. The COST 2100 MIMO

channel model. IEEE Wirel. Commun. 2012, 19, 92–99. [CrossRef]

http://doi.org/10.2501/S0021849907070328
http://dx.doi.org/10.1177/0047287514535847
http://dx.doi.org/10.3390/electronics11030330
http://dx.doi.org/10.1109/TWC.2017.2656904
https://www.itu.int/pub/R-REP-M.2412-2017
http://dx.doi.org/10.1109/MWC.2012.6393523

Electronics 2023, 12, 3214 15 of 15

10. Weiler, R.J.; Peter, M.; Keusgen, W.; Maltsev, A.; Karls, I.; Pudeyev, A.; Bolotin, I.; Siaud, I.; Ulmer-Moll, A.M. Quasi-deterministic
millimeter-wave channel models in MiWEBA. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 84. [CrossRef]

11. Nurmela, V.; Karttunen, A.; Roivainen, A.; Raschkowski, L.; Hovinen, V.; Ylitalo, J.; Omaki, N.; Kusume, K.; Hekkala,
A.; Weiler, R. Deliverable D1.4 METIS Channel Models. ICT-317669-METIS/D1.4 ver 3. 2015. Available online: https:
//www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjj9eGsmqmAAxXYVPUHHem7Ak4QFn
oECBEQAQ&url=https%3A%2F%2Fmetis2020.com%2Fwp-content%2Fuploads%2Fdeliverables%2FMETIS_D1.4_v1.0.pdf&
usg=AOvVaw3ZtN0bJnmB4SaDFS6WSXOZ&opi=89978449 (accessed on 9 July 2023).

12. ETSI. 5G; Study on Channel Model for Frequencies from 0.5 to 100 GHz (3GPP TR 38.901 Version 16.1.0 Release 16); ETSI: Sophia-
Antipolis, France, 2020. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationId=3173 (accessed on 2 June 2023).

13. Sun, S.; MacCartney, G.R.; Rappaport, T.S. A novel millimeter-wave channel simulator and applications for 5G wireless
communications. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May
2017; pp. 1–7.

14. Jaeckel, S.; Raschkowski, L.; Wu, S.; Thiele, L.; Keusgen, W. An explicit ground reflection model for mm-wave channels. In
Proceedings of the 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, CA,
USA, 19–22 March 2017; pp. 1–5.

15. Ju, S.; Kanhere, O.; Xing, Y.; Rappaport, T.S. A millimeter-wave channel simulator NYUSIM with spatial consistency and
human blockage. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA,
9–13 December 2019; pp. 1–6.

16. Jaeckel, S.; Raschkowski, L.; Burkhardt, F.; Thiele, L. Efficient sum-of-sinusoids-based spatial consistency for the 3GPP new-radio
channel model. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates,
9–13 December 2018; pp. 1–7.

17. Pessoa, A.M.; Guerreiro, I.M.; Silva, C.F.; Maciel, T.F.; Sousa, D.A.; Moreira, D.C.; Cavalcanti, F.R. A stochastic channel model
with dual mobility for 5G massive networks. IEEE Access 2019, 7, 149971–149987. [CrossRef]

18. Hofer, M.; Xu, Z.; Vlastaras, D.; Schrenk, B.; Löschenbrand, D.; Tufvesson, F.; Zemen, T. Real-time geometry-based wireless
channel emulation. IEEE Trans. Veh. Technol. 2018, 68, 1631–1645. [CrossRef]

19. Shah, N.A.; Lazarescu, M.T.; Quasso, R.; Scarpina, S.; Lavagno, L. FPGA Acceleration of 3GPP Channel Model Emulator for 5G
New Radio. IEEE Access 2022, 10, 119386–119401. [CrossRef]

20. Abdelrazek, A.F.; Kaschub, M.; Blankenhorn, C.; Necker, M.C. A novel architecture using NVIDIA CUDA to speed up simulation
of multi-path fast fading channels. In Proceedings of the VTC Spring 2009-IEEE 69th Vehicular Technology Conference, Barcelona,
Spain, 6–29 April 2009; pp. 1–5.

21. Borries, K.C.; Judd, G.; Stancil, D.D.; Steenkiste, P. FPGA-based channel simulator for a wireless network emulator. In Proceedings
of the VTC Spring 2009-IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 6–29 April 2009; pp. 1–5.

22. Buscemi, S.; Sass, R. Design of a scalable digital wireless channel emulator for networking radios. In Proceedings of the
2011-MILCOM 2011 Military Communications Conference, Baltimore, MD, USA, 7–10 November 2011; pp. 1858–1863.

23. Endovitskiy, E.; Kureev, A.; Khorov, E. Reducing computational complexity for the 3GPP TR 38.901 MIMO channel model. IEEE
Wirel. Commun. Lett. 2022, 11, 1133–1136. [CrossRef]

24. Nam, Y.H.; Ng, B.L.; Sayana, K.; Li, Y.; Zhang, J.; Kim, Y.; Lee, J. Full-dimension MIMO (FD-MIMO) for next generation cellular
technology. IEEE Commun. Mag. 2013, 51, 172–179. [CrossRef]

25. Chang, H.; Bian, J.; Wang, C.X.; Bai, Z.; Zhou, W.; Aggoune, E.-H.M. A 3D non-stationary wideband GBSM for low-altitude
UAV-to-ground V2V MIMO channels. IEEE Access 2019, 7, 70719–70732. [CrossRef]

26. Czajkowski, T.S.; Aydonat, U.; Denisenko, D.; Freeman, J.; Kinsner, M.; Neto, D.; Wong, J.; Yiannacouras, P.; Singh, D.P. From
OpenCL to high-performance hardware on FPGAs. In Proceedings of the 22nd International Conference on Field Programmable
Logic and Applications (FPL), Oslo, Norway, 29–31 August 2012; pp. 531–534.

27. NVIDIA. CUDA Toolkit—Free Tools and Training | NVIDIA Developer. Available online: https://developer.nvidia.com/cuda-
toolkit (accessed on 2 June 2023).

28. NVIDIA. GeForce GTX 1070 Specifications | GeForce. Available online: https://www.nvidia.com/en-gb/geforce/graphics-
cards/geforce-gtx-1070/specifications (accessed on 2 June 2023).

29. Vitis Unified Software Platform. Available online: https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
(accessed on 2 June 2023).

30. Xilinx. Alveo U280 Data Center Accelerator Card. Available online: https://www.xilinx.com/products/boards-and-kits/alveo/
u280.html (accessed on 2 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s13638-016-0568-6
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjj9eGsmqmAAxXYVPUHHem7Ak4QFn
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjj9eGsmqmAAxXYVPUHHem7Ak4QFn
oECBEQAQ&url=https%3A%2F%2Fmetis2020.com%2Fwp-content%2Fuploads%2Fdeliverables%2FMETIS_D1.4_v1.0.pdf&usg=AOvVaw3ZtN0bJnmB4SaDFS6WSXOZ&opi=89978449
oECBEQAQ&url=https%3A%2F%2Fmetis2020.com%2Fwp-content%2Fuploads%2Fdeliverables%2FMETIS_D1.4_v1.0.pdf&usg=AOvVaw3ZtN0bJnmB4SaDFS6WSXOZ&opi=89978449
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3173
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3173
http://dx.doi.org/10.1109/ACCESS.2019.2947407
http://dx.doi.org/10.1109/TVT.2018.2888914
http://dx.doi.org/10.1109/ACCESS.2022.3221124
http://dx.doi.org/10.1109/LWC.2022.3158095
http://dx.doi.org/10.1109/MCOM.2013.6525612
http://dx.doi.org/10.1109/ACCESS.2019.2919790
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1070/specifications
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1070/specifications
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

	Introduction
	Related Work
	The 3GPP Channel Model for 5G NR
	GPU-Based Acceleration Using NVIDIA CUDA
	Thread Synchronization
	Register-Based Parallel Reduction
	Global Memory
	Shared Memory

	Channel Emulator Acceleration on GPU
	Results and Discussion
	Conclusions
	References

