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Introduction: Bladder infections are common, a�ecting millions each year, and are

often recurrent problems.

Methods: We have developed a spatial mathematical framework consisting of a

hybrid individual-based model to simulate these infections in order to understand

more about the bacterial mechanisms and immune dynamics. We integrate a varying

bacterial replication rate and model bacterial shedding as an immune mechanism.

Results: We investigate the e�ect that varying the initial bacterial load has on infection

outcome, where we find that higher bacterial burden leads to poorer outcomes, but

also find that only a single bacterium is needed to establish infection in some cases.We

also simulate an immunocompromised environment, confirming the intuitive result

that bacterial spread typically progresses at a higher rate.

Conclusions: With future model developments, this framework is capable of

providing new clinical insight into bladder infections.
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1. Introduction

Urinary tract infections (UTIs) are infections affecting the urethra, bladder and kidneys.

Lower UTIs affect the bladder and urethra, and upper UTIs affect the kidneys. Simple or

uncomplicated UTIs are caused by a number of pathogens in people with a normal urinary

tract and kidney function, and no predisposing co-morbidities. They can often be self-limiting

or readily cleared with a short course of antibiotics. One in four uncomplicated UTIs patients,

however, experience persistent or recurrent infection and/or treatment failure, and complicated

UTIs carry an increased likelihood of such outcomes [1].

UTIs are some of the most common bacterial infections, with an infection toll of

150 million people each year worldwide [2]. UTIs are a significant cause of morbidity,

particularly affecting females, older men and infant boys [1]. Ramifications of such infections

can lead to pyelonephritis with sepsis, renal damage in young children, pre-term labor in

pregnant women and complications that arise from frequent antimicrobial use (for example,

antibiotic resistance). Patients who suffer from symptomatic UTI are normally treated with

the use of antibiotics. Currently, the antibiotics most commonly used include Nitrofurantoin,

Trimethoprim, Cotrimoxazole (a combination of Trimethoprim and Sulfamethoxazole),

Fosfomycin or Nitrofurantoin. However, the rise we have seen in antibiotic resistance in addition

to the highly recurrent profile of the infection means healthcare professionals may have to

use alternative lines of treatment, which have greater risk of infection with Clostridioides

difficile. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales are increasing

and these bacteria are often multi-drug resistant. With limited treatment options and a lack of

new antibiotics being developed it is essential to focus on prevention of UTIs and gain more
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understanding of the cellular and molecular dynamics of how

uropathogens adhere, colonize and adapt to the nutritionally lacking

environment of the bladder; elude the immune system; persevere and

spread through the urinary tract [3–5].

UTIs are highly recurrent and may persist through different

rounds of treatments. This recurrence is due to either relapse

(symptomatic recurrent UTIs with the same organism following

adequate therapy) or re-infection (recurrent UTIs with previously

isolated bacteria after treatment and with a negative intervening urine

culture, or a recurrent UTI caused by a second bacterial isolate).

In the majority of cases however, recurrent UTIs are thought to

represent reinfection with the same organism. UTIs are caused by

both Gram-negative and Gram-positive bacteria, and in some cases

by specific fungi, but the majority are caused by the bacterial species

Uropathogenic Escherichia coli (UPEC) [1]. Although the causes of

recurrence are multifactorial—with at least a dozen mechanisms,

some acting in tandem—one key factor could be the ability of

UPEC to establish quiescent intracellular reservoirs (QIRs). Thus, the

establishment of these bacterial communities at deeper levels of the

urothelium may allow them to evade immune cell interaction and

other mechanisms such as bacterial shedding.

The bladder has a number of strategies to protect itself against

microbial invaders. First and foremost, the urinary tract has

anatomical barriers, alongside the flushing action of urination, which

usually suffice to prevent pathogenic elements from entering the tract

and establishing a persistent infection. The presence of virulence

factors in some bacteria, however, can help them to bypass these

barriers and successfully establish infection. Virulence factors are any

set of characteristics that will help bacteria in eluding the primary

line of defense, and hence increase the risk of successful infection

[1]. A crucial step during the infection process of a number of

species of UTI pathogens, including the most common uropathogen,

Escherichia coli (E. coli), is the ability to permeate and invade the

bladder epithelial barrier and seek refuge within the bladder epithelial

cells (BECs). This is normally done by hijacking the capacity of the

epithelial cells to regulate bladder volume [6]. Another important

thing to note is, due to the presence of toxic compounds in urine, the

bladder must maintain a tight epithelial barrier. Thus, any immune

reaction has to carefully balance the response to microbial challenge

with the need to maintain the structural integrity of the epithelial

barrier [7]. This will sometimes lead to premature termination of

the anti-inflammatory response, resulting in chronic or recurrent

infections due to residual bacteria. The innate immune response

refers to the non-specific defense mechanisms that are deployed by

the immune system usually hours after a pathogen is established.

This is particularly important in bladder infections, as the role of

the adaptive immune system in UTI is less straightforward, and is

still being clarified [8]. The innate immune system is composed of

various recruited and resident cells that express a wide range of

pattern recognition receptors (PRRs). These receptors allow for early

recognition of the pathogen which will be translated to induce a

quick and robust pro-inflammatory response [9]. As noted before,

although these immune responses are important, they have to be

controlled to avoid any substantial damage to the epithelial barrier.

As a last line of defense, the bladder sheds cells from its internal

walls to reduce bacterial load. These host shedding mechanisms are

modulated to avoid adverse effects [10, 11]. Below we review themain

innate immune cells that operate in the urinary tract and focus on

their unique antimicrobial activities.

1.1. Bladder epithelial cells

These cells, lining the interior of the urinary tract, will deploy

the first line of defense against the infection, with the secretion of

factors, both pro-inflammatory cytokines and antibacterial agents.

The first cytokines detected after infection are IL-1, IL-6, and IL-8

[6, 9, 12]. This group of cytokines is important for the recruitment

of phagocytes into the infected bladder [13]. Additional factors

secreted by epithelial cells hinder bacterial growth by eliminating

growth factors present in urine. Following bacterial infection of

BECs, the pathogens are then encapsulated in RAB27b+ fusiform

vesicles with exocytic properties, meaning BECs will be able to expel

intracellular bacteria back into the extracellular medium [14]. If

any bacteria avoids expulsion, by escaping the RAB27b+ vacuoles,

it is then met with a second wave of elimination in which such

pathogens are recognized and captured by autophagy. If BECs

become heavily infected, a preventive measure is the shedding of

the superficial epithelial cell layer through the urine, as mentioned

above [10]. This leaves the underlying tissue exposed to urine toxins

and de novo infection of deeper layers, so the shedding of BECs is

immediately followed by a shift of the urothelium to a highly active

and proliferative phase to restore the previous loss via replacement

by cells underneath that differentiate and take their place [15].

1.2. Neutrophils

Neutrophils are the first type of immune cells to be recruited

to the bladder. Initially, they respond to CXC-chemokine ligand

1 (CXCL1) and other chemo-attractants produced by superficial

epithelial cells, macrophages and mast cells [16]. In mouse

experiments, neutrophils are detected in urine as early as 2 h post-

infection, with their peak at approximately 6 h post-infection [17].

The number of neutrophils is proportional to that of bacteria in the

urinary tract [6].

1.3. Macrophages

A substantial population of macrophages resides in the

submucosa of the urinary tract, and more cells are recruited to

these sites following infection. Once activated, macrophages produce

important chemokines and cytokines that regulate the activity of

these and other immune cells in the vicinity, hence, influencing

the timing and the intensity of inflammatory responses during

UTIs [18]. Communication between bladder macrophages leads to

mobilization of neutrophils into the epithelium and their subsequent

activation alongside neighboring immune cells. These responses

ensure efficient bacterial clearance whilst minimizing unnecessary

and damaging inflammation.

1.4. Mast cells

Mast cells are also resident immune cells located underneath the

uroepithelium adjacent to the blood vessels and lymphatic vessels that

traverse the mucosal region. These type of cells have a pivotal sentinel

and key immunomodulatory role during UTIs, which is partly due to
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their ability to release many pre-stored inflammatory mediators upon

activation. These chemicals are kept within cytoplasmic granules

and gradually secrete the chemical mediators after being released

extracellularly [19–21]. Although it is currently unknownwhat causes

the activation of bladder mast cells when the epithelium is still intact,

it is believed that factors released from responsive epithelial cells such

as ATP, LL-37 and IL-33 could contribute to this process. The number

of mast cells in the bladder increases during bladder infection,

which points to an important dynamic role for these cells in the

fight against the infection. Although mast cells are considered pro-

inflammatory immune cells, experiments in mice show that once the

infection progresses, such cells adopt anti-inflammatory responses

(by releasing cytokines, IL-10) [22]. This switch in function seems

to happen in parallel with the breaking down of the epithelial barrier

and could facilitate epithelial regeneration.

Although previous mathematical frameworks have been

developed to model the role of bladder hydrodynamics in bacterial

elimination in lower UTIs [23], we are not aware of any studies

that describe spatio-temporal models of the bladder. We have built

an individual-based mathematical model capable of simulating

discrete bacteria and immune cells, as well as the diffusion of relevant

cytokine molecules, which crucially considers a spatial domain. This

spatial model is capable of investigating the potential for the bacteria

to evade bacterial shedding and treatment by establishing QIRs and

hence can assess to what extent this mechanism is responsible for

infection recurrence. In Section 2 we describe the mathematical

model, with all “agent” rules explained and differential equations

outlined. Section 3 explores the results from model simulations

before we make some concluding comments and outline future

research in Section 4.

2. Methods

We have developed a simple individual-based mathematical

model,UTImodel, to simulate an infection in a section of the bladder.

Individual-based models simulate individual elements or ‘agents’ on

a computational grid. The grid describes the environment, here the

bladder, and the model includes rules to describe agent-agent and

agent-environment interactions. These interactions between agents

and between some agents and their environment can be quite

complex; not only can these interactions change with time but so

can the strategies used to decide what action will be employed

at any particular time. These actions are generally constituted by

the exchange of information which as a result, agents can either

update their internal state or take other actions [24]. Individual-

based modeling, in contrast to many other modeling techniques,

allows for heterogeneity in population and environment [25, 26]. Our

model is a hybrid model; as well as discrete agents (bacteria and

immune cells), it also contains a generic chemokine molecule that

acts as a chemoattractant, directing the immune cells to the site of

infection. This generic chemokine ismodeled via a Partial Differential

Equation (PDE).

2.1. Model environment

The spatial domain is formed by the innermost bladder layer,

the urothelium, where the two-dimensional model domain is of size

FIGURE 1

Spatial domain and initial cell distributions.

Lg × Lg , where Lg = 200 for the simulations presented in this paper.

The size of each grid cell within our environment is constructed in

order to contain the largest agent within the biological system to be

described, the macrophage. The diameter of a human macrophage

is approximately 20 µm, hence each grid cell will be equivalent to a

400 µm2 section of the bladder. We therefore model over a 16 mm2

section of the superficial urothelium. We choose this small section

of the bladder to investigate as we want to focus on the beginning

of a bladder infection and believe this size is sufficient to study the

initial growth and immune response. Each grid cell will represent a

location instance within our model which can adopt the following

states: empty, occupied by immune cell, bacteria or blood vessel.

Although blood vessels do not appear on the urothelium in reality,

we assume that these are the spatial locations of the blood vessels

at deeper levels. Future iterations of the model will study a three-

dimensional space where we can simulate the representation of the

vasculature more realistically. On our 2-D spatial domain, we fix grid

cells to be locations to represent cross-sections of 4 blood vessels, with

locations [(175, 25), (25, 175), (175, 175), (25, 25)]. We place bacteria

in the center of the domain. See Figure 1 to see the spatial domain

and initial cell distributions for our simulations.

2.2. Agents and rules

For our simple model, we define five types of agents: bacteria,

resident macrophages (LY6C−), helper macrophages (LY6C+),

neutrophils and mast cells. We have chosen not to include BECs as

agents within this version of the model, in order for computational

simplicity. This will be included in future work. The interaction

between such agents will be set by specific rules defined within our

model. Functions for all these interactions are stored in separate

classes in the code created for each specific agent.

2.2.1. Bacteria
In ourmodel, we simulate UPEC bacteria. Initially, IB bacteria are

seeded at the center of the grid. We place bacteria in the center of the
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TABLE 1 Table of model parameter values.

Symbol Parameter description Values Units Source

Bacteria

Ib Minimal infectious dose 1–1,000 Unitless E

Bsp Bacterial replication rate 0.37–0.97 Per hour [29], [10]

Ndb Neighborhood replication depth 2 Unitless E

SB Bacterial load for shedding 6,000 Unitless E

PBp Prob bacteria penetrates bladder wall 0.156 Unitless E

Resident macrophages

IrM Initial No. resident macrophages 500 Unitless E

rMls Resident macrophages lifespan 30–32 Hours [36]

rMRhM Resident macrophages recruitment prob. 0.04–0.08 Unitless E

rMRN Resident macrophages movement rate 0.17–0.26 Per hour [37]

rMAp Resident macrophages activation prob. 0.261 Unitless E

Helper macrophages

hMls Helper macrophage lifespan 30–32 Hours [36]

hMRhM Helper macrophages recruitment prob. 0.007–0.031 Unitless E

hMRN Helper macrophages movement rate 0.13–0.18 Per hour E

hMAp Helper macrophages activation prob. 0.129 Unitless E

hMPp Helper macrophages killing prob. 0.12–0.13 Unitless E

Neutrophils

Nls Neutrophil lifespan 30–32 Hours [38]

NRN Neutrophil movement rate 0.12–0.23 Per hour E

NRhM Neutrophil recruitment prob. 0.07–0.14 Unitless E

NAp Neutrophil activation prob. 0.148 Unitless E

NPhp Neutrophil killing prob. 0.11–0.17 Unitless E

Mast cells

IMC Initial No. mast cells 50 Unitless E

MCls Mast cell lifespan 30–35 Hours E

MCRN Mast cell movement rate 0.14–0.26 Per hour E

MCurM Mast cell recruit. prob. 0.003–0.033 Unitless E

MCAp Mast cell activation prob. 0.261 Unitless E

Where the source is given as E, this means it is estimated.

domain as our computational environment represents a section of a

initially healthy bladder, which is then seeded with bacteria, in order

to investigate bacterial growth without the infection approaching

the computational boundary. This set-up is also optimal for using

experimental results to verify model output, which is our intention

in future work. Initial bacterial placement can easily be changed

to either random allocation or to be located at the boundaries,

which again is intended to be studied in future work. The bacteria

are able to replicate according to a growth rate of Bsp. See Table 1

for these parameter values, with corresponding references to the

experimental data these are based on. Bacteria can be found in

either a replicating or “resting” state, where bacteria are deemed to

be resting when there is no space on the computational grid for

them to replicate into. At each time point, the neighborhoods are

checked and when empty spaces in the proximity of the bacteria

are available, the bacteria are able to switch back to a replicating

state and spread across the domain. Bacterial replication within our

model is assumed to have a neighborhood depth of Ndb = 2.

Hence, if bacteria are able to replicate, an empty location within the

specified depth is chosen and populated with a new bacterium. If all

locations are occupied, the replication state is switched temporarily

to resting. The neighborhood type is alternated between Moore and

von Neumann at each time step, in order to more accurately model

bacterial cluster shapes. A Moore neighborhood consists of the eight

cells that surround the cell of interest, whereas a von Neumann

neighborhood contains the four adjacent grid cells to the cell of

interest, i.e. above, below, right and left. Again, in future model

developments a 3-D version of this domain will be studied to simulate
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FIGURE 2

This figure illustrates the interactions between the agents that form our model. As can be seen in the schematic, neutrophils are recruited by activated

macrophages while being down regulated by mast cells. Bacterial clearance occurs through helper macrophages and neutrophils.

the environment more realistically, where bacterial growth will be

less restricted.

2.2.2. Macrophages
Macrophages are represented as both resident and recruited

discrete agents on the grid. Only one macrophage can occupy each

grid cell and, independently of their nature (resident or recruited),

all macrophages have the following attributes: position, age and

state (resting or activated). Such characteristics are updated at every

model time step. IrM resident (initially resting) macrophages are

seeded onto the grid at the start of the simulation. Macrophages

are randomly assigned an age rMls or hMls for resident or helper

macrophages, respectively. Once a macrophage reaches its assigned

age, it is removed from the grid. If a resident macrophage is in the

Moore neighborhood (of order 2) of a bacterium, they are activated

with probability rMAp. Once activated, Ly6C+/helper macrophages

are recruited into the domain with probability rMRhM , and placed in

the neighborhood of the activated macrophage. As well as recruiting

helper macrophages, activated macrophages also secrete a generic

chemokine molecule, the dynamics of which are described in Section

2.3. Macrophages move along the gradient of this chemoattractant,

directing the immune cells to the site of infection. When no

chemokine is present in the spatial domain, the macrophages follow a

random walk. The movement rates are described by rMRN and hMRN

for resident and helper macrophages, respectively. Ly6C+/helper

macrophages are able to kill bacteria: once a bacterium is in

the immediate neighborhood (Moore neighborhood of order 1)

of an activated macrophage, this will kill said bacterium with

probability hMphP.

2.2.3. Neutrophils
The lifespan of the neutrophils are set in the model as

Nls. They are recruited by activated macrophages, similarly to

helper macrophages, with probability NRhM . The neutrophils move

chemotactically in the same manner as all immune cells in the

system, up the gradient of the chemoattractant, or as a random walk

when no chemokine is present. They move at rate NRN . Neutrophils

can kill bacteria in their immediate neighborhood with probability

NphP . Neutrophils are down-regulated by mast cells (see Section

2.2.4 for details).

2.2.4. Mast cells
There are IMC mast cells initially seeded on the grid. Their

lifespan is set to MCls, they move at rate MCRN and are recruited

through the blood vessels with probability MCurM . They are

activated with probability MCAp. Mast cells are responsible for up-

regulating helper macrophages, aiding with the clearance of bacterial

infection. When there is a bacterium in the immediate neighborhood

(Moore neighborhood of order 1) of a mast cell and no helper

macrophages are present within this same neighborhood, the mast

cell recruits a helper macrophage to a random location within

this neighborhood.

Mast cells are also known to down-regulate the recruitment

of neutrophils [22, 27] in order to limit excessive damage to

the epithelial tissue [28]. When a mast cell is in an immediate

neighborhood of three or more neutrophils, it removes one (at

random) from the grid.

Figure 2 summarizes the interactions of the agents within

our model.
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FIGURE 3

Sensitivity analysis: PRCC values for all input parameters, using bacterial load as the output.

2.3. Chemokine dynamics

A generic chemokine is secreted two-dimensionally by

resident macrophages upon activation. This chemokine serves

as a chemoattractant, directing all immune cells in the

system to the site of infection. The spatiotemporal evolution

of the chemokine concentration, C(x, t), is described by the

following PDE:

∂C(x, t)

∂t
= ∇ ·(D(x)∇C(x, t))+s(x, t)−(u(x, t)+d(x, t))C(x, t), (1)

Which is subject to the initial condition C(x, 0) =

0. Here, D denotes the spatially-dependent diffusion

coefficient, s denotes the source of chemokine from

the activated macrophages, u denotes the uptake

of chemokine by the host cells, and d denotes the

extracellular decay.

2.4. Uncertainty and sensitivity analysis

Model parameter values were guided by available experimental

data. There is always some uncertainty surrounding parametrisation

of models such as these. To mitigate this, we carried out uncertainty

and sensitivity analysis (UA/SA) for all parameters shown in Table 1

to have a range of values. This was conducted in three stages:

1. Once we searched the experimental literature to find suitable

ranges for parameter estimates, we generated our sample space

using Latin Hypercube Sampling (LHS). The output of this first

stage is a data matrix consisting of all the data samples to be

fed into our model. Here we introduced a testing framework

using YAML (Yet Another Markup Language), which is a data

serialization language that allows us to develop a framework using

python, C++ and Rstudio. We use Rstudio to generate our

LHS samples which are then imported through python. Python

is then responsible for taking in a data frame and outputting

Ns YAML files, each containing a separate parameter set which,

through a newly developed python module, we are able to feed

to the C++model.
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2. The second stage includes sorting simulation output and plotting

simulation results. We simply analyse the model data here. By

plotting various outputs, we can visualize the results from the

whole parameter space.

3. We then carry out the sensitivity analysis using Rstudio.

We utilize the global SA technique Partial Rank Correlation

Coefficient (PRCC), which works by establishing nonlinear but

monotonic relationships between model inputs and outputs.

FIGURE 4

PRCC values for neutrophil parameters.

FIGURE 5

Simulations (A–D) represent 4 di�erent bacterial growth profiles arising with IB = 1.
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FIGURE 6

Simulations (A–D) represent the neutrophil and helper macrophages (LY6C−) profiles arising from the case IB = 1. The specific simulations correspond to

those shown in Figure 5.

FIGURE 7

Spatial plot showing the agents in the system for simulation (a) from Figures 5, 6 at times t = 0, 5, 10 and 15 h. Agents and blood vessels indicated by the

key in the plot.
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FIGURE 8

Simulations (A–D) represent the bacterial growth profiles arising from 4 simulations chosen to represent di�erent possible outcomes for IB = 100.

FIGURE 9

Pie charts summarizing bacterial clearance status for simulations with IB = 1 and IB = 100.

We chose to analyse PRCC, using bacterial load as the output

of interest. Figure 3 shows the results from this sensitivity analysis,

which suggest that the parameters related to the neutrophils in the

model are significant. We investigate this further by plotting the

PRCC values for these parameters through 80 h of a simulation,

shown in Figure 4.

We chose to analyse PRCC, using bacterial load as the output

of interest. Figure 3 shows the results from this sensitivity analysis,

where we show the parameters with high sensitivity. Also notice in

this figure that some parameters appear more than once in different

forms depending on their state. For example, the probability of

recruitment of macrophages is investigated separately; when bacteria

are present and when bacteria are not present.

We have identified these parameters as the sensitive ones in the

model but that their sensitivity only appears to be significant near

the start of the simulation. Future work will include investigation of

these parameters with regard the outcome of simulations. For the

work presented here, however, we set these parameters as outlined

in Table 1.

3. Results

Our model is able to capture a number of possible outcomes.

Individual simulations may resolve in a variety of ways: immune

cells may be able to completely eradicate bacterial infection
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FIGURE 10

Average values for bacterial load, helper macrophage load, neutrophil load and neutrophil clearance for simulations with IB = 1 (shown in blue) and for

simulations with IB = 100 (shown in pink), with 95% confidence intervals (shown by the shaded regions).

with the combination of immune agents and periodic bacterial

clearance through shedding of the bladder wall; bacteria may

colonize the modeled bladder section leading to established cystitis;

or bacteria may persist in small numbers, perhaps evading the

shedding mechanism by penetrating the epithelial barrier. These later

simulations may be thought of as non-symptomatic cases.

3.1. Initial bacterial load

Here we investigate the effect that the initial bacteria load, IB, can

have on the infection dynamics. We first fix all model parameters,

with the exception of IB. Subsequently, we generate 200 simulations

through each variation of IB.

As we simulate 80 h, we will refer to an infection as being in the

early stages when t ∈ [0, 15) hours. We refer to t ∈ [15, 30) hours

as the middle stage of infection, which in the literature is identified

as the stage when recruited immune cells are heavily involved in

bacterial clearing. Finally, we refer to t ∈ [30, 80) hours as the late

stage of the infection. Bacterial shedding occurs within the model

when NB > 6000, which usually occurs during the late stages of

infection.

Throughout this analysis, we will use the following notation N
t=y
B to

refer to the bacterial load at time y hours.

3.1.1. Case where IB = 1
When choosing IB = 1, there is a large amount of variation in the

infection outcomes. Progression profiles of UPEC can be observed,

each resulting in a different final outcome. Figure 5 shows the number

of bacteria from t = 0 to t = 15, for 4 simulations that highlight the

extremes of infection progression outcomes. In Figure 5A, bacterial

replication within the initial hours is slow; however, UPEC manages

to evade the efforts of clearance by the immune cells and is able to

replicate at higher rates toward the end of the early stage, reaching

a final bacterial load of Nt=15
B = 120. In Figure 5B however, the

infection progresses initially at higher speeds reaching a bacterial load

of Nt=6
B = 420. Following this, the immune response manages to

achieve good partial clearance outpacing replication at t = 7.5 h.

Toward the end of the early stage, the bacterial load is Nt=15
B =

218. In Figure 5C, bacteria is almost instantly cleared prior to being

able to replicate, where immune cells successfully kill the bacteria.

As immune cells are initially randomly placed within our grid, it is

possible for an individual simulation to have immune cells within the

immediate vicinity of IB, which, in addition to having a low initial

bacterial load (IB = 1), leads to fast and total clearance of bacteria.

In Figure 5D, the infection progresses quickly reaching Nt=6
B = 100.

The bacterial increase however, although steady throughout the early

stage of the infection, halts and the immune system manages to

successfully clear all bacteria with Nt=15
B = 0. To gain a better

insight into the immune clearance process we also present Figure 6

which describes the immune cell dynamics for the same 4 simulations

as shown in Figure 5. As expected, we see here higher recruitment

of both macrophages and neutrophils in simulations with higher

bacterial loads. Figure 7 shows spatial plots of the simulation shown

in Figures 5A, 6A at timepoints t = 0, 5, 10, 15 h. We see here as the

infection progresses, there is a large influx of immune cells through

the blood vessels that are subsequently directed by the chemokine

signal to the site of infection at the center of the domain. We see

that, at t = 15 h, the immune response has not been successful in

containing the infection spread.

While analysis of these individual simulations for the first 15 h

is useful, we also look at the aggregate behavior resulting from our

simulations with IB = 1. With a total of 200 simulations, run for a
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FIGURE 11

Average values for bacterial load. (A) The early stage with initial

bacterial loads IB ∈ {1, 100, 500, 1, 000}. (B) The average loads

throughout the entire simulation (0 < t < 80). Ninety-five percent

confidence intervals are shown by the shaded regions.

total of 80 h, clearance was achieved in 76.7% of instances. Within

these, the vast majority (65.8%) was due to early clearance, i.e. before

15 h, with mid and late clearance accounting collectively for the

remaining 10.9% of clearance cases.

Thus, our model indicates that low initial bacteria loads usually

lead to total bacterial clearance within the initial stages of infection,

with the majority of instances achieving total clearance within 6 h.

However we see in this work that when only a single bacterium

can lead to significant infection spread, as in 23.3% of simulations,

clearance was never achieved. Here the bacteria were able to further

colonize bladder epithelial tissue, bypassing immune cell action and

bacterial shedding.

3.1.2. Case where IB = 100
We now investigate an initial bacterial load of IB = 100, by

examining the different possible infection progression profiles. As

can be seen in Figure 8, total clearance here does not occur at

any time before t = 6 h, with the simulations in Figures 8A–

D showing early periods of considerable bacterial growth before

halting due to immune cell intervention. Simulation (Figure 8A)

presents an individual infection simulation where the bacterial load

reaches a maximum of Nt=4.5
B = 280, after which, the immune

response achieves successful total clearance. Simulation (Figure 8B)

on the other hand presents a relatively steady bacterial load until

t = 9.50 h, reaching Nt=9.5
B = 327, after which the immune

cells are only able to achieve partial clearance of the bacteria, with

Nt=15
B = 107. In simulations (Figures 8C, D) we see the bacterial load

decline occurring earlier in the simulations, with successful immune

responses to the infection.

In looking at the aggregate of the 200 simulations where IB =

100, we can see that bacteria persist in 30.8% of simulations (as

opposed to 23.3% when IB = 1). Early clearance accounted for

45.8% of simulations while mid stage clearance accounted for 21.9%

of instances. Late clearance was achieved in 3 simulations (1.5%). See

Figure 9 for pie charts summarizing this.

Although an increased IB causes recruitment of immune cells

at earlier times to the site of infection in comparison with lower

IB, bacteria are able to replicate and reach higher loads, typically

having reached a maximum within the initial 5 h. As can be

seen in Figures 8B, C instances attained bacterial loads NB >

300. Reaching these stable numbers allows the bacterial population

to persist despite attempted clearing by neutrophils and helper

macrophages. Through analysis of spatial plots we can see that

earlier immune cell intervention in simulations with IB = 100,

as opposed to simulations with IB = 1 is due to the closer

proximity of the boundary of the bacterial population to recruited

immune cells. As can be seen from Figure 10, the aggregate profiles

and patterns of bacterial growth in the IB = 1 simulations are

similar to those with IB = 100. The differences in the profiles of

helper macrophages, neutrophil and bacterial clearance are due to

the higher intensity of immune action due to the increased initial

bacterial count.

3.2. Bacterial replication rate

Studies have shown that UPEC presents different replication

profiles [29]. At early stages of the infection, E. coli replicates with

an average doubling time of 20–45 min [30]. As the infection

progresses however, research has shown that UPEC adopts a relatively

lower replication rate, estimated with a doubling time of 40–60 min

[29]. We now include this to our model and investigate the effects

on bacterial clearance and immune presence. In order to do this,

we include two parameters describing the replication rate. Bearlysp
describes the replication rate during the earlier stages of the model

(when t < 10 h). On the other hand, Blatesp is then used after 10 h.

Hence, we set

Bsp =

{

Bearlysp, t < 10 h

Blatesp, t ≥ 10 h
(2)

Here we analyse the output resulting from 1,000 individual

simulations of our model, allowing us to create and analyse a virtual

population as in Verma et al. [31, 33] and Niederer et al. [32]. We

allow UPEC to adopt two replication profiles as detailed above, whilst

also varying the initial bacterial load, IB ∈ {1, 100, 500, 1, 000}, with

200 simulations performed for each case.

This will allow us to investigate the effects IB can have on the

progression of the infection. As can be seen from Figure 11, during

the initial 2 h, lower IB present a relatively slower growth rate while

high IB will initially present with a much higher growth rate. These

differences however are less noticeable when looking at 2 < t < 9
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FIGURE 12

Pie charts summarizing bacterial clearance status for simulations with IB = 500 and IB = 1, 000.

FIGURE 13

Average values for bacterial load, helper macrophage load, neutrophil load and bacteria killed by neutrophils. Simulations for the immunocompromised

environment in pink and the non-immunocompromised environment in blue, with 95% confidence intervals shown by the shaded regions.

h, as the bacterial count of high IB begins to decline due to clearance

by neutrophils and helper macrophages that have arrived at the site

of infection. While in contrast, a low IB allows bacteria to maintain a

steady growth within the interval 2 < t < 6 h. Once 9 < t < 14 h,

all simulations converge closely. The final bacterial load of the early

stage, Nt=15
B , matches in order of initial bacterial count except for

IB = 1 which has managed to overtake IB = 100. Although the trend

appearing from the early stages of infection seems to indicate possible

bacterial clearance, once we look at the later stages of the simulation

we realize the importance bacterial shedding plays, where we see the

periodic nature of the bacterial profiles.

As illustrated in Figure 11, although the growth of UPEC during

the early stages can be slow and heavily hindered by neutrophils,

at later stages bacterial growth increases significantly. Consequently,

bacterial shedding can be a crucial mechanism to control infection

within the superficial urothelium and prevent full colonization of the

bladder wall.

Similarly to Figure 9, we show the pie charts of these simulations

where we have taken the following initial bacterial loads: IB = 500

and IB = 1, 000. In contrast to the earlier analysis shown in Figure 9

where we looked at relatively low initial bacterial loads, Figure 12

presents the clearance in the case of high initial bacterial loads. As we
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can see, with higher initial bacterial loads, clearance is not achieved

in 40.6% of instances (when IB = 500) and 61.9% when (IB = 1, 000).

In addition to this, total bacterial clearance is now achieved generally

during the middle stages of infection rather than early stages as was

shown with IB = 1 and IB = 100. This signals toward the ability of

higher IB to establish more severe infections.

3.2.1. Simulating an immunocompromised
environment

We now generate 200 simulations with IB = 1, however,

we change the number of resident immune cells to reflect an

immunocompromised environment. We set IrM = 300, and IMC =

30 (as opposed to all previous simulations where IrM = 500 and

IMC = 50). As can be seen in Figure 13, in an immunocompromised

environment with low initial loads of resident immune cells, our

model indicates that bacteria are able to establish larger infections.

Furthermore, an aggregate analysis of the 200 simulations (see

Figure 14) indicates that our model does not achieve clearance in

51% of instances, in contrast with the non-immunocompromised

environment (also IB = 1), only 23.3% of simulations do not achieve

clearance. Our model produced late clearance in 6.7% of instances,

which allows more time for the bacteria to penetrate the umbrella

cells and potentially form more QIRs. This in turn would lead to

greater bacterial loads and growth post shedding, thus increasing the

likelihood of recurrence.

4. Discussion

We have developed a spatial mathematical model to investigate

the pathogen-host response in a typical bladder infection. In

a 2-dimensional 16 mm2 section of the bladder, we use our

hybrid individual-based model to simulate Uropathogenic

E. coli as individual elements, as well as immune cells.

In particular, we model resident and helper macrophages,

neutrophils and mast cells. In addition to these discrete

elements, we also model a generic chemokine in order to act

as a chemoattractant. This is molecule directs the immune

cells to the site of infection, diffusing into the spatial domain

via a PDE.

In this paper, we have outlined the basic framework for the

model. We include a gradual decrease in the speed of bacteria,

as evidenced in the literature, and also model bacterial shedding

as a mechanism for reducing bacterial burden in the bladder. We

investigate several initial bacterial loads and show that even with one

bacterium at the start of the simulation it is possible for infection

to spread with colonization of the bladder epithelial tissue. This

finding is consistent with recent work in the porcine model of

UTI, in which an initial inoculum of ≤10 bacteria was sufficient

to seed a productive infection in vivo [34]. Not surprisingly, as the

initial bacterial burden increases, the time taken for the infection

to clear increases. The number of simulations not cleared within

the 80 h of the simulated infection also increases as the initial

bacterial load increases. Interestingly, the average number of bacteria

present in the cases where the infection is not cleared, is not too

dissimilar for IB = 1, 000, and we only see a big difference when

IB = 1, 000. At this initial bacterial load, the average number of

FIGURE 14

Pie charts summarizing bacterial clearance status for simulations with

and immunocompromised environment, IB = 1.

bacteria during the late stage of infection is significantly larger than

for smaller initial bacterial loads. In Section 3.2.1 we investigate

an immunocompromised environment with smaller numbers of

immune cells acting against the infection. Here we see, as expected,

that for immunocompromised simulations, more cases resulted

in infection persisting at the end of the simulation than in the

non-immunocompromised simulations. These results are consistent

with clinical scenarios. For example, UTI occurs in up to 72% of

immunocompromised donor kidney recipients, usually within the

first few months post-transplant [35].

We have shown that the modeling framework that we have

developed is able to simulate various scenarios in order to analyse

the resulting impact of particular parameters, helping to aid

understanding of these infections. Although we have only modeled

the first 80 h of an infection course, as we keep a count in the

model of the bacteria that manage to penetrate into the epithelial

bladder wall and evade bacterial shedding, in future work we will

run longer simulations to investigate the growth of these bacteria

and their role in recurrent infections. We also plan to integrate a

Pharmacokinetic/Pharmacodynamic (PK/PD) model of commonly

used antibiotics in order to simulate treatment effects. To our

knowledge, integrating a PK/PD model into a spatial model has

not been done before to study bladder infections, and the spatio-

temporal framework we present here is the crucial starting point. We

are also in the process of completing parallel wet-lab experiments to

compare to our model simulations. This analysis will be shown in

future publications. We acknowledge the limitations of the model

parameterisation of our framework and also plan to conduct a

number of simulations to more rigorously test the effects of varying

the neutrophil parameters, as these were highlighted in the sensitivity

analysis as the most sensitive quantities. We also plan to include

the BECs as agents within the model in future iterations, as well as

expand the model to three dimensions in order to more realistically

simulate the environment. With the planned future developments,

this model will be capable of providing new clinical insight into

bladder infections.

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2023.1090334
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Lasri Doukkali et al. 10.3389/fams.2023.1090334

Data availability statement

The original contributions presented in the study are publicly

available. This data can be found at: https://github.com/Ruth-

Bowness-Group/UTImodel, https://doi.org/10.5281/zenodo.7293

870.

Author contributions

RB provided funding for the work. RB and ALD contributed

to model conception and wrote the first draft of the manuscript.

ALD, RB, TL, JR, and BP contributed to the design of the study.

ALD created the computational code and performed analyses. TL, JR,

and BP wrote sections of the manuscript. All authors contributed to

manuscript revision, read, and approved the submitted version.

Funding

RBwas supported by a fellowship funded by theMedical Research

Council, MR/P014704/1, and also acknowledges funding from

the Academy of Medical Sciences (London), the Wellcome Trust

(London), the UK Government Department of Business, Energy

and Industrial Strategy (London), the British Heart Foundation

(London), and the Global Challenges Research Fund (Swindon, UK;

grant number SBF003\1052). TL gratefully acknowledges support

from the Italian Ministry of University and Research (MUR)

through the grant Dipartimenti di Eccellenza 2018-2022 (Project no.

E11G18000350001) and the PRIN 2020 project (No. 2020JLWP23)

Integrated Mathematical Approaches to Socio-Epidemiological

Dynamics (CUP: E15F21005420006).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

References

1. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections:
epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. (2015)
13:269–84. doi: 10.1038/nrmicro3432

2. StammWE, Norrby SR. Urinary tract infections: disease panorama and challenges. J
Infect Dis. (2001) 183:S1-S4. doi: 10.1086/318850

3. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ.
Host-pathogen checkpoints and population bottlenecks in persistent and intracellular
uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev. (2012) 36:616–48.
doi: 10.1111/j.1574-6976.2012.00339.x

4. Kostakioti M, Hultgren SJ, HadjifrangiskouM.Molecular blueprint of uropathogenic
Escherichia coli virulence provides clues toward the development of anti-virulence
therapeutics. Virulence. (2012) 3:592–3. doi: 10.4161/viru.22364

5. Subashchandrabose S, Hazen TH, Brumbaugh AR, Himpsl SD, Smith SN, Ernst RD,
et al. Host-specific induction of Escherichia coli fitness genes during human urinary tract
infection. Proc Natl Acad Sci USA. (2014) 111:18327–32. doi: 10.1073/pnas.1415959112

6. Abraham SN, Miao Y. The nature of immune responses to urinary tract infections.
Nat Rev Immunol. (2015) 15:655–63. doi: 10.1038/nri3887

7. Hayes BW, Abraham SN. Innate immune responses to bladder infection. Microbiol
Spectrum. (2016) 4:4–6. doi: 10.1128/microbiolspec.UTI-0024-2016

8. Lacerda Mariano L, Ingersoll MA. The immune response to infection in the bladder.
Nat Rev Urol. (2020) 17:439–58. doi: 10.1038/s41585-020-0350-8

9. Song J, Bishop BL, Li G, Duncan MJ, Abraham SN. TLR4-initiated and cAMP-
mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe. (2007)
1:287–98. doi: 10.1016/j.chom.2007.05.007

10. Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC)
infections: virulence factors, bladder responses, antibiotic, and non-antibiotic
antimicrobial strategies. Front Microbiol. (2017) 8:1566. doi: 10.3389/fmicb.2017.01566

11. Kim M, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Sasakawa C.
Bacterial interactions with the host epithelium. Cell Host Microbe. (2010) 8:20–35.
doi: 10.1016/j.chom.2010.06.006

12. Nagamatsu K, Hannan TJ, Guest RL, Kostakioti M, Hadjifrangiskou M, Binkley
J, et al. Dysregulation of Escherichia coli α-hemolysin expression alters the course of
acute and persistent urinary tract infection. Proc Natl Acad Sci USA. (2015) 112:E871–80.
doi: 10.1073/pnas.1500374112

13. Chromek M, Slamová Z, Bergman P, Kovács L, Ehrén I, Hökfelt T, et al. The
antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial
infection. Nat Med. (2006) 12:636–41. doi: 10.1038/nm1407

14. Bishop BL, Duncan MJ, Song J, Li G, Zaas D, Abraham SN. Cyclic AMP-regulated
exocytosis of Escherichia coli from infected bladder epithelial cells. Nat Med. (2007)
13:625–30. doi: 10.1038/nm1572

15. Mysorekar IU, Isaacson-Schmid M, Walker JN, Mills JC, Hultgren SJ. Bone
morphogenetic protein 4 signaling regulates epithelial renewal in the urinary
tract in response to uropathogenic infection. Cell Host Microbe. (2009) 5:463–75.
doi: 10.1016/j.chom.2009.04.005

16. Godaly G, Bergsten G, Hang L, Fischer H, Frendeus B, Lundstedt AC, et al.
Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J
Leukocyte Biol. (2001) 69:899–906. doi: 10.1189/jlb.69.6.899

17. Shahin R, Engberg I, Hagberg L, Eden CS. Neutrophil recruitment and bacterial
clearance correlated with LPS responsiveness in local gram-negative infection. J Immunol.
(1987) 138:3475–80. doi: 10.4049/jimmunol.138.10.3475

18. Michlewska S. Macrophage phagocytosis of apoptotic neutrophils is critically
regulated by the opposing actions of pro-inflammatory and anti-inflammatory agents:
key role for TNF-α (2011).

19. Soruri A, Grigat J, Forssmann U, Riggert J, Zwirner J. β-Defensins
chemoattract macrophages and mast cells but not lymphocytes and dendritic cells:
CCR6 is not involved. Eur J Immunol. (2007) 37:2474–86. doi: 10.1002/eji.20073
7292

20. Säve S, Persson K. Extracellular ATP and P2Y receptor activation induce a
proinflammatory host response in the human urinary tract. Infect Immunity. (2010)
78:3609–15. doi: 10.1128/IAI.00074-10

21. Jang TY, Kim YH. Interleukin-33 and mast cells bridge innate and adaptive
immunity: from the Allergologist’s perspective. Int Neurourol J. (2015) 19:142.
doi: 10.5213/inj.2015.19.3.142

22. Chan CY, John ALS, Abraham SN. Mast cell interleukin-10 drives
localized tolerance in chronic bladder infection. Immunity. (2013) 38:349–59.
doi: 10.1016/j.immuni.2012.10.019

23. Paya AS, Fernandez DR, Gil D, Garcia Chamizo JM, Perez FM. Mathematical
modeling of the lower urinary tract. Comput Methods Programs Biomed. (2013)
109:323–38. doi: 10.1016/j.cmpb.2012.09.005

24. Wilensky U, Rand W. An Introduction to Agent-Based Modeling: Modeling Natural,
Social, and Engineered Complex SystemsWith NetLogo. Cambridge, MA:Mit Press (2015).

25. Parunak HVD. "Go to the ant": engineering principles from natural
multi-agent systems. Ann Oper Res. (1997) 75:69–101. doi: 10.1023/A:1018980
001403

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2023.1090334
https://github.com/Ruth-Bowness-Group/UTImodel
https://github.com/Ruth-Bowness-Group/UTImodel
https://doi.org/10.5281/zenodo.7293870
https://doi.org/10.5281/zenodo.7293870
https://doi.org/10.1038/nrmicro3432
https://doi.org/10.1086/318850
https://doi.org/10.1111/j.1574-6976.2012.00339.x
https://doi.org/10.4161/viru.22364
https://doi.org/10.1073/pnas.1415959112
https://doi.org/10.1038/nri3887
https://doi.org/10.1128/microbiolspec.UTI-0024-2016
https://doi.org/10.1038/s41585-020-0350-8
https://doi.org/10.1016/j.chom.2007.05.007
https://doi.org/10.3389/fmicb.2017.01566
https://doi.org/10.1016/j.chom.2010.06.006
https://doi.org/10.1073/pnas.1500374112
https://doi.org/10.1038/nm1407
https://doi.org/10.1038/nm1572
https://doi.org/10.1016/j.chom.2009.04.005
https://doi.org/10.1189/jlb.69.6.899
https://doi.org/10.4049/jimmunol.138.10.3475
https://doi.org/10.1002/eji.200737292
https://doi.org/10.1128/IAI.00074-10
https://doi.org/10.5213/inj.2015.19.3.142
https://doi.org/10.1016/j.immuni.2012.10.019
https://doi.org/10.1016/j.cmpb.2012.09.005
https://doi.org/10.1023/A:1018980001403
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Lasri Doukkali et al. 10.3389/fams.2023.1090334

26. Wilensky U, Reisman K. Thinking like a wolf, a sheep, or a firefly: learning
biology through constructing and testing computational theories–an embodied modeling
approach. Cogn Instruct. (2006) 24:171–209. doi: 10.1207/s1532690xci2402_1

27. Wang X, Liu W, O’Donnell M, Lutgendorf S, Bradley C, Schrepf A, et al.
Evidence for the role of mast cells in cystitis-associated lower urinary tract dysfunction:
a multidisciplinary approach to the study of chronic pelvic pain research network animal
model study. PLoS ONE. (2016) 11:e0168772. doi: 10.1371/journal.pone.0168772

28. Johnzon CF, Rönnberg E, Pejler G. The role of mast cells in bacterial infection. Am
J Pathol. (2016) 186:4–14. doi: 10.1016/j.ajpath.2015.06.024

29. Forsyth VS, Armbruster CE, Smith SN, Pirani A, Springman AC, Walters MS, et
al. Rapid growth of uropathogenic Escherichia coli during human urinary tract infection.
mBio. (2018) 9:e00186–18. doi: 10.1128/mBio.00186-18

30. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, et al.
Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary
tract pathogenesis. Proc Natl Acad Sci. (2004) 101:1333–38. doi: 10.1073/pnas.03081
25100

31. Verma BK, Subramaniam P, Vadigepalli R. Model-based virtual patient
analysis of human liver regeneration predicts critical perioperative factors controlling
the dynamic mode of response to resection. BMC Syst Biol. (2019) 13:1–15.
doi: 10.1186/s12918-019-0678-y

32. Niederer S, Aboelkassem Y, Cantwell CD, Corrado C, Coveney S, Cherry EM, et al.
Creation and application of virtual patient cohorts of heart models. Philos Trans R Soc A.
(2020) 378:20190558. doi: 10.1098/rsta.2019.0558

33. Verma BK, Subramaniam P, Vadigepalli R. Characterizing different class of patients
based on their liver regeneration capacity post hepatectomy and the prediction of
safe future liver volume for improved recovery. In: 2018 International Conference on
Bioinformatics and Systems Biology (BSB). Allahabad: IEEE (2018). p. 152–6.

34. Stærk K, Andersen MØ, Andersen TE. Uropathogenic Escherichia coli can cause
cystitis at extremely low inocula in a pig model. J Med Microbiol. (2022) 71:001537.
doi: 10.1099/jmm.0.001537

35. Mitra S, Alangaden GJ. Recurrent urinary tract infections in kidney transplant
recipients. Curr Infect Dis Rep. (2011) 13:579–87. doi: 10.1007/s11908-011-0210-z

36. Patel AA, Ginhoux F, Yona S. Monocytes, macrophages, dendritic cells and
neutrophils: an update on lifespan kinetics in health and disease. Immunology. (2021)
163:250–61. doi: 10.1111/imm.13320

37. Barros-Becker F, Lam PY, Fisher R, Huttenlocher A. Live imaging reveals distinct
modes of neutrophil and macrophage migration within interstitial tissues. J Cell Sci.
(2017) 130:3801–8. doi: 10.1242/jcs.206128

38. Hidalgo A, Chilvers ER, Summers C, Koenderman L. The neutrophil life cycle.
Trends Immunol. (2019) 40:584–97. doi: 10.1016/j.it.2019.04.013

Frontiers in AppliedMathematics and Statistics 15 frontiersin.org

https://doi.org/10.3389/fams.2023.1090334
https://doi.org/10.1207/s1532690xci2402_1
https://doi.org/10.1371/journal.pone.0168772
https://doi.org/10.1016/j.ajpath.2015.06.024
https://doi.org/10.1128/mBio.00186-18
https://doi.org/10.1073/pnas.0308125100
https://doi.org/10.1186/s12918-019-0678-y
https://doi.org/10.1098/rsta.2019.0558
https://doi.org/10.1099/jmm.0.001537
https://doi.org/10.1007/s11908-011-0210-z
https://doi.org/10.1111/imm.13320
https://doi.org/10.1242/jcs.206128
https://doi.org/10.1016/j.it.2019.04.013
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	A hybrid individual-based mathematical model to study bladder infections
	1. Introduction
	1.1. Bladder epithelial cells
	1.2. Neutrophils
	1.3. Macrophages
	1.4. Mast cells

	2. Methods
	2.1. Model environment
	2.2. Agents and rules
	2.2.1. Bacteria
	2.2.2. Macrophages
	2.2.3. Neutrophils
	2.2.4. Mast cells

	2.3. Chemokine dynamics
	2.4. Uncertainty and sensitivity analysis

	3. Results
	3.1. Initial bacterial load
	3.1.1. Case where IB = 1
	3.1.2. Case where IB = 100

	3.2. Bacterial replication rate
	3.2.1. Simulating an immunocompromised environment


	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


